Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = Janus kinase-signal transducer and activator of transcription signaling pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3020 KiB  
Article
JAK2/STAT3 Signaling in Myeloid Cells Contributes to Obesity-Induced Inflammation and Insulin Resistance
by Chunyan Zhang, Jieun Song, Wang Zhang, Rui Huang, Yi-Jia Li, Zhifang Zhang, Hong Xin, Qianqian Zhao, Wenzhao Li, Saul J. Priceman, Jiehui Deng, Yong Liu, David Ann, Victoria Seewaldt and Hua Yu
Cells 2025, 14(15), 1194; https://doi.org/10.3390/cells14151194 - 2 Aug 2025
Viewed by 229
Abstract
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to [...] Read more.
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to insulin resistance remain largely unknown. Although the Janus Kinase (Jak)/signal transducer and activator of transcription 3 (Stat3) signaling in myeloid cells are known to promote the M2 phenotype in tumors, we demonstrate here that the Jak2/Stat3 pathway amplifies M1-mediated adipose tissue inflammation and insulin resistance under metabolic challenges. Ablating Jak2 in the myeloid compartment reduces insulin resistance in obese mice, which is associated with a decrease in infiltration of adipose tissue macrophages (ATMs). We show that the adoptive transfer of Jak2-deficient myeloid cells improves insulin sensitivity in obese mice. Furthermore, the protection of obese mice with myeloid-specific Stat3 deficiency against insulin resistance is also associated with reduced tissue infiltration by macrophages. Jak2/Stat3 in the macrophage is required for the production of pro-inflammatory cytokines that promote M1 macrophage polarization in the adipose tissues of obese mice. Moreover, free fatty acids (FFAs) activate Stat3 in macrophages, leading to the induction of M1 cytokines. Silencing the myeloid cell Stat3 with an in vivo siRNA targeted delivery approach reduces metabolically activated pro-inflammatory ATMs, thereby alleviating obesity-induced insulin resistance. These results demonstrate Jak2/Stat3 in myeloid cells is required for obesity-induced insulin resistance and inflammation. Moreover, targeting Stat3 in myeloid cells may be a novel approach to ameliorate obesity-induced insulin resistance. Full article
Show Figures

Figure 1

27 pages, 1869 KiB  
Review
Understanding the Molecular Basis of Miller–Dieker Syndrome
by Gowthami Mahendran and Jessica A. Brown
Int. J. Mol. Sci. 2025, 26(15), 7375; https://doi.org/10.3390/ijms26157375 - 30 Jul 2025
Viewed by 388
Abstract
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological [...] Read more.
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological defects, distinctive facial abnormalities, cognitive impairments, seizures, growth retardation, and congenital heart and liver abnormalities. One hallmark feature of MDS is an unusually smooth brain surface due to abnormal neuronal migration during early brain development. Several genes located within the MDS locus have been implicated in the pathogenesis of MDS, including PAFAH1B1, YWHAE, CRK, and METTL16. These genes play a role in the molecular and cellular pathways that are vital for neuronal migration, the proper development of the cerebral cortex, and protein translation in MDS. Improved model systems, such as MDS patient-derived organoids and multi-omics analyses indicate that WNT/β-catenin signaling, calcium signaling, S-adenosyl methionine (SAM) homeostasis, mammalian target of rapamycin (mTOR) signaling, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and others are dysfunctional in MDS. This review of MDS integrates details at the clinical level alongside newly emerging details at the molecular and cellular levels, which may inform the development of novel therapeutic strategies for MDS. Full article
(This article belongs to the Special Issue Rare Diseases and Neuroscience)
Show Figures

Figure 1

13 pages, 2596 KiB  
Article
Bark Extracts of Chamaecyparis obtusa (Siebold & Zucc.) Endl. Attenuate LPS-Induced Inflammatory Responses in RAW264.7 Macrophages
by Bo-Ae Kim, Ji-A Byeon, Young-Ah Jang and Yong-Jin Kwon
Plants 2025, 14(15), 2346; https://doi.org/10.3390/plants14152346 - 29 Jul 2025
Viewed by 295
Abstract
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) is an evergreen conifer native to temperate regions such as South Korea and Japan, traditionally used for its anti-inflammatory properties. However, the molecular mechanisms underlying the anti-inflammatory effects of C. obtusa bark extracts [...] Read more.
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) is an evergreen conifer native to temperate regions such as South Korea and Japan, traditionally used for its anti-inflammatory properties. However, the molecular mechanisms underlying the anti-inflammatory effects of C. obtusa bark extracts remain poorly understood. In this study, I compared the biological activities of C. obtusa bark extracts prepared using boiling water (COWB) and 70% ethanol (COEB), and investigated their anti-inflammatory mechanisms in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. COEB significantly suppressed both mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), along with decreased production of their respective inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, COEB selectively downregulated interleukin (IL)-1β expression, without affecting tumor necrosis factor-α (TNF-α), and unexpectedly upregulated IL-6. Notably, COEB did not inhibit the LPS-induced activation of major inflammatory signaling pathways, including mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). These findings suggest that COEB exerts anti-inflammatory effects by modulating key inflammatory mediators independently of canonical signaling pathways and may offer a novel therapeutic strategy for controlling inflammation. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 2108 KiB  
Article
Decoding the JAK-STAT Axis in Colorectal Cancer with AI-HOPE-JAK-STAT: A Conversational Artificial Intelligence Approach to Clinical–Genomic Integration
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Cancers 2025, 17(14), 2376; https://doi.org/10.3390/cancers17142376 - 17 Jul 2025
Viewed by 365
Abstract
Background/Objectives: The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway is a critical mediator of immune regulation, inflammation, and cancer progression. Although implicated in colorectal cancer (CRC) pathogenesis, its molecular heterogeneity and clinical significance remain insufficiently characterized—particularly within early-onset CRC [...] Read more.
Background/Objectives: The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway is a critical mediator of immune regulation, inflammation, and cancer progression. Although implicated in colorectal cancer (CRC) pathogenesis, its molecular heterogeneity and clinical significance remain insufficiently characterized—particularly within early-onset CRC (EOCRC) and across diverse treatment and demographic contexts. We present AI-HOPE-JAK-STAT, a novel conversational artificial intelligence platform built to enable the real-time, natural language-driven exploration of JAK/STAT pathway alterations in CRC. The platform integrates clinical, genomic, and treatment data to support dynamic, hypothesis-generating analyses for precision oncology. Methods: AI-HOPE-JAK-STAT combines large language models (LLMs), a natural language-to-code engine, and harmonized public CRC datasets from cBioPortal. Users define analytical queries in plain English, which are translated into executable code for cohort selection, survival analysis, odds ratio testing, and mutation profiling. To validate the platform, we replicated known associations involving JAK1, JAK3, and STAT3 mutations. Additional exploratory analyses examined age, treatment exposure, tumor stage, and anatomical site. Results: The platform recapitulated established trends, including improved survival among EOCRC patients with JAK/STAT pathway alterations. In FOLFOX-treated CRC cohorts, JAK/STAT-altered tumors were associated with significantly enhanced overall survival (p < 0.0001). Stratification by age revealed survival advantages in younger (age < 50) patients with JAK/STAT mutations (p = 0.0379). STAT5B mutations were enriched in colon adenocarcinoma and correlated with significantly more favorable trends (p = 0.0000). Conversely, JAK1 mutations in microsatellite-stable tumors did not affect survival, emphasizing the value of molecular context. Finally, JAK3-mutated tumors diagnosed at Stage I–III showed superior survival compared to Stage IV cases (p = 0.00001), reinforcing stage as a dominant clinical determinant. Conclusions: AI-HOPE-JAK-STAT establishes a new standard for pathway-level interrogation in CRC by empowering users to generate and test clinically meaningful hypotheses without coding expertise. This system enhances access to precision oncology analyses and supports the scalable, real-time discovery of survival trends, mutational associations, and treatment-response patterns across stratified patient cohorts. Full article
(This article belongs to the Special Issue AI-Based Applications in Cancers)
Show Figures

Figure 1

18 pages, 3083 KiB  
Article
Targeting Vascular and Inflammatory Crosstalk: Cannabigerol as a Dual-Pathway Modulator in Rosacea
by Suji Kim and Ji Hyun Lee
Int. J. Mol. Sci. 2025, 26(14), 6840; https://doi.org/10.3390/ijms26146840 - 16 Jul 2025
Viewed by 273
Abstract
Rosacea is a chronic inflammatory skin condition characterized by persistent erythema and abnormal vascular response. Although current treatments focus on symptomatic relief, they often provide only temporary improvement and may be associated with side effects or recurrence. Cannabigerol (CBG), a non-psychoactive cannabinoid, has [...] Read more.
Rosacea is a chronic inflammatory skin condition characterized by persistent erythema and abnormal vascular response. Although current treatments focus on symptomatic relief, they often provide only temporary improvement and may be associated with side effects or recurrence. Cannabigerol (CBG), a non-psychoactive cannabinoid, has recently garnered attention for its pharmacological activities, including anti-inflammatory, antioxidant, neuroprotective, and skin barrier–supportive effects. However, its role in modulating pathological responses in rosacea remains unclear. In this study, we investigated the therapeutic potential of topically applied CBG in an LL-37-induced rosacea-like mouse model. Clinical and histological assessments revealed that CBG markedly reduced erythema, epidermal hyperplasia, and mast cell infiltration. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed downregulation of Il1b, Il4, Il6, Il13, Il22, Il31, Tlr2, Vegfa, and Mmp9. Immunohistochemistry and Western blot analyses further demonstrated suppression of CD31, vascular endothelial growth factor (VEGF), and Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), along with reduced activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, including decreased levels of JAK1, STAT3, and phosphorylated STAT3. These findings suggest that topical CBG alleviates rosacea-like skin inflammation by targeting inflammatory and vascular pathways, including JAK/STAT and YAP/TAZ signaling. Full article
(This article belongs to the Special Issue Molecular Research Progress of Skin and Skin Diseases: 2nd Edition)
Show Figures

Figure 1

13 pages, 612 KiB  
Review
JAK2 Inhibitors and Emerging Therapies in Graft-Versus-Host Disease: Current Perspectives and Future Directions
by Behzad Amoozgar, Ayrton Bangolo, Abdifitah Mohamed, Charlene Mansour, Daniel Elias, Christina Cho and Siddhartha Reddy
Biomedicines 2025, 13(7), 1527; https://doi.org/10.3390/biomedicines13071527 - 23 Jun 2025
Viewed by 667
Abstract
Graft-versus-host disease (GVHD) remains a significant barrier to the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT), contributing to long-term morbidity and non-relapse mortality in both pediatric and adult populations. Central to GVHD pathophysiology is the Janus kinase (JAK)-signal transducer and activator of [...] Read more.
Graft-versus-host disease (GVHD) remains a significant barrier to the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT), contributing to long-term morbidity and non-relapse mortality in both pediatric and adult populations. Central to GVHD pathophysiology is the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, where JAK2 mediates key pro-inflammatory cytokines, including IL-6, IFN-γ, and GM-CSF. These cytokines promote donor T cell activation, effector differentiation, and target organ damage. The introduction of ruxolitinib, a selective JAK1/2 inhibitor, has transformed the treatment landscape for steroid-refractory acute and chronic GVHD, leading to improved response rates and durable symptom control. However, its limitations—such as cytopenias, infectious complications, and incomplete responses—have catalyzed the development of next-generation agents. In 2024, the FDA approved axatilimab, a CSF-1R inhibitor that targets monocyte-derived macrophages in fibrotic chronic GVHD, and remestemcel-L, an allogeneic mesenchymal stromal cell therapy, for pediatric steroid-refractory acute GVHD. Both agents offer mechanistically distinct and clinically meaningful additions to the therapeutic armamentarium. In parallel, emerging combination strategies involving JAK2 inhibitors and novel biologics show promise in enhancing immune tolerance while preserving graft-versus-leukemia (GvL) effects. Recent advances in biomarker development, such as the MAGIC Algorithm Probability (MAP), are enabling early risk stratification and response prediction. The integration of these tools with organ-specific and personalized approaches marks a shift toward more precise, durable, and tolerable GVHD therapy. This review highlights the current state and future direction of JAK2 inhibition and complementary therapies in the evolving GVHD treatment paradigm. Full article
(This article belongs to the Special Issue An Update on Transplantation Immunology)
Show Figures

Figure 1

23 pages, 1148 KiB  
Review
Ferulic Acid as an Anti-Inflammatory Agent: Insights into Molecular Mechanisms, Pharmacokinetics and Applications
by Jiaying Liu, Yu Guan, Le Yang, Heng Fang, Hui Sun, Ye Sun, Guangli Yan, Ling Kong and Xijun Wang
Pharmaceuticals 2025, 18(6), 912; https://doi.org/10.3390/ph18060912 - 18 Jun 2025
Viewed by 991
Abstract
Ferulic acid (FA), a hydroxycinnamic acid derivative, is a key bioactive component in traditional medicinal plants including Angelica sinensis and Asafoetida. Accumulating evidence supports its therapeutic efficacy in inflammatory disorders, such as rheumatoid arthritis (RA) and ulcerative colitis (UC). FA exerts anti-inflammatory [...] Read more.
Ferulic acid (FA), a hydroxycinnamic acid derivative, is a key bioactive component in traditional medicinal plants including Angelica sinensis and Asafoetida. Accumulating evidence supports its therapeutic efficacy in inflammatory disorders, such as rheumatoid arthritis (RA) and ulcerative colitis (UC). FA exerts anti-inflammatory effects through (1) the regulation of inflammatory cytokine levels; (2) modulation of signaling pathways such as nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and janus kinase/signal transducer and activator of transcription (JAK/STAT); (3) amelioration of oxidative stress; and (4) regulation of immune cell homeostasis. At the pharmacokinetic level, studies show that FA is rapidly absorbed but exhibits low bioavailability, mainly due to the influence of metabolic pathways and food matrix characteristics. This review systematically summarizes the literature on the anti-inflammatory effects of FA, covering molecular mechanisms, pharmacokinetic characteristics, and application scenarios. Preclinical studies show that FA has low toxicity and good safety, demonstrating potential for development as a novel anti-inflammatory drug. However, its clinical translation is hindered by bottlenecks such as low bioavailability and insufficient human clinical data. Future research should prioritize developing novel drug delivery systems and conducting large-scale clinical trials to facilitate its clinical translation. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Effects of Natural Product Extracts)
Show Figures

Graphical abstract

14 pages, 545 KiB  
Review
Associations of Hidradenitis Suppurativa with Atopic Dermatitis: A Review of Shared Pathogenesis and Approach to Treatment of Concomitant Disease
by Rayad B. Shams, Hiral S. Patel and Christopher J. Sayed
Allergies 2025, 5(2), 20; https://doi.org/10.3390/allergies5020020 - 13 Jun 2025
Viewed by 974
Abstract
Hidradenitis suppurativa (HS) and atopic dermatitis (AD) are both inflammatory dermatoses that can significantly impact patient quality of life, however, limited research exists regarding their association. The purpose of this comprehensive review is to compare the inflammatory pathogenesis of HS and AD, explore [...] Read more.
Hidradenitis suppurativa (HS) and atopic dermatitis (AD) are both inflammatory dermatoses that can significantly impact patient quality of life, however, limited research exists regarding their association. The purpose of this comprehensive review is to compare the inflammatory pathogenesis of HS and AD, explore the associations between these diseases, and discuss standalone and concomitant disease treatment options. Although HS and AD are understood to be primarily driven by the Th1 and Th2 inflammation pathways, respectively, these conditions both utilize the Janus Kinase/Signal transducer and activator of transcription (JAK/STAT) pathway to promote inflammation. Newer research also suggests that IL-36 and IL-1 receptor-associated kinase 4 (IRAK4) may be two additional inflammatory signals shared between the HS and AD disease pathways. These shared mechanisms are reflected in patient presentations as HS and AD are often concomitantly present and demonstrate a bidirectional association in the current literature. Treatment options for concomitant disease are limited, but leverage the shared immune pathogenesis of both diseases. Dupilumab has been reported to improve both HS and AD symptoms in select patients. JAK inhibitors are currently FDA-approved for the treatment of AD, and early trials have suggested benefits from JAK inhibitors such as upadacitinib, povorcitinib, and topical ruxolitinib for HS. Possible future avenues for research on treating both HS and AD include IRAK-4 inhibitors such as zabedosertib and BAY1830839, and diet and gut microbiome modifications. Full article
(This article belongs to the Section Dermatology)
Show Figures

Figure 1

22 pages, 483 KiB  
Review
Advancing Therapeutic Strategies in Atopic Dermatitis: Emerging Targets and Personalized Approaches
by Yang Lo, Ting-Ting Cheng, Chi-Jung Huang, Yu-Che Cheng and I-Tsu Chyuan
Biomolecules 2025, 15(6), 838; https://doi.org/10.3390/biom15060838 - 8 Jun 2025
Cited by 1 | Viewed by 1522
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder marked by intricate interplay among skin barrier dysfunction, immune dysregulation, and microbial dysbiosis. While therapeutic advancements targeting T helper 2 (Th2) cytokines, such as interleukin (IL)-4 and IL-13, and the Janus kinase/signal transducer and [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disorder marked by intricate interplay among skin barrier dysfunction, immune dysregulation, and microbial dysbiosis. While therapeutic advancements targeting T helper 2 (Th2) cytokines, such as interleukin (IL)-4 and IL-13, and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway have yielded promising outcomes, a significant proportion of patients still experience inadequate relief, particularly from persistent pruritus. Achieving minimal disease activity remains an unmet clinical priority and a cornerstone of effective AD management. This review provides an in-depth analysis of current therapeutic approaches and integrates findings from recent biologic studies, with a particular focus on innovative strategies under active investigation. These approaches include targeting components of the innate immune system, such as thymic stromal lymphopoietin (TSLP) and IL-1 family cytokines; the adaptive immune system, including OX40-OX40L interactions and Th17- and Th22-related cytokines; and mechanisms associated with pruritus, such as IL-31, histamine receptors, and neurokinin 1 receptor. Emerging insights underscore the transformative potential of personalized therapeutic regimens tailored to the distinct endotypes and severity of AD. Advances in deciphering the pathogenesis of AD are unlocking unprecedented opportunities for precision medicine, offering renewed hope for improved outcomes in this multifaceted and heterogeneous condition. Full article
Show Figures

Figure 1

14 pages, 2093 KiB  
Article
CRISPR/Cas9-Based Modeling of JAK2 V617F Mutation in K562 Cells Reveals Enhanced Proliferation and Sensitivity to Therapeutic Agents
by Nungruthai Nilsri, Rujira Mekchaaum, Supaporn Kalasin, Jirapas Jongjitwimol and Krai Daowtak
Int. J. Mol. Sci. 2025, 26(10), 4600; https://doi.org/10.3390/ijms26104600 - 11 May 2025
Viewed by 1653
Abstract
The Janus kinase 2 (JAK2) protein fulfills an important role in hematopoiesis via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, as it provides the genetic driver of BCR::ABL1-negative myeloproliferative neoplasms (MPNs), which are clinically manifested as polycythemia vera (PV), [...] Read more.
The Janus kinase 2 (JAK2) protein fulfills an important role in hematopoiesis via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, as it provides the genetic driver of BCR::ABL1-negative myeloproliferative neoplasms (MPNs), which are clinically manifested as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The most common cause of MPNs is the mutation of JAK2 V617F in the JAK2 gene, which results in increased cell proliferation. However, both the pathogenesis and treatment regimen of BCR::ABL1-negative MPNs remain poorly understood. The aim of the present study was to establish K562 cell lines with a point mutation in exon 14 (JAK2p.V617F) using CRISPR/Cas9 technology. The modified JAK2 V617F cell lines were examined for the gene mutation using droplet digital PCR (DDPCR), and the presence of the mutation was confirmed by DNA sequencing. Modified cells were characterized by measuring JAK2 gene expression and the extent of cell proliferation. Interferon α2a (IFN-α2a) and arsenic trioxide were also administered to the cells to explore their potential effects. The JAK2 V617F-mutated cells were found to exhibit a higher level of JAK2 gene expression compared with the wild type. Interestingly, a significant increase in the proliferation rate was observed with the modified cells compared with the wild type cells (p < 0.001), as assessed from the JAK2 gene expression levels. Furthermore, the treatments with IFN-α2a and arsenic trioxide led to the preferential suppression of the cell proliferation rate of the K562 expressing mutant JAK2 cells compared with the wild type cells, and this suppression occurred in a dose-dependent manner(p < 0.01). Moreover, the modified cells were able to differentiate into megakaryocyte-like cells following stimulation with phorbol 12 myristate 13 acetate (PMA). Taken together, the results of the present study have shown that the CRISPR/Cas9-modified JAK2 V617F model may be used as a disease model in the search of novel therapies for MPNs. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 7796 KiB  
Article
Glycine soja Leaf and Stem Extract Ameliorates Atopic Dermatitis-like Skin Inflammation by Inhibiting JAK/STAT Signaling
by Yoon-Young Sung, Misun Kim, Dong-Seon Kim and Eunjung Son
Int. J. Mol. Sci. 2025, 26(10), 4560; https://doi.org/10.3390/ijms26104560 - 9 May 2025
Viewed by 765
Abstract
Wild soybean (Glycine soja, GS) is a traditional medicine used to treat inflammation. In this study, the anti-atopic properties of GS leaf and stem extract on skin inflammation were evaluated in the Dermatophagoides farinae-extract-induced mouse model and keratinocytes. Oral administration [...] Read more.
Wild soybean (Glycine soja, GS) is a traditional medicine used to treat inflammation. In this study, the anti-atopic properties of GS leaf and stem extract on skin inflammation were evaluated in the Dermatophagoides farinae-extract-induced mouse model and keratinocytes. Oral administration of the GS extract reduced scratching, dermatitis score, transepidermal water loss, thickness of epidermis, inflammatory cell accumulation, and serum concentrations of thymic stromal lymphopoietin and immunoglobulin E. GS downregulated the expression of inflammatory gene markers of atopic dermatitis (AD), including interleukin (IL)-6; regulated on activation, normal T cell expressed and secreted (RANTES); thymus- and activation-regulated chemokine (TARC); and macrophage-derived chemokine (MDC) and upregulated the expression of filaggrin, a keratinocyte differentiation marker, in skin tissue. GS downregulated Janus kinase 1, signal transducer and activation of transcription (STAT) 1, and STAT3 pathways. Using ultra-performance liquid chromatography, we identified seven flavonoids in GS extract, including apigenin, epicatechin, genistein, genistin, daidzin, daidzein, and soyasaponin Bb. GS, apigenin, and genistein reduced the expression of IL-6, MDC, TARC, and RANTES and increased filaggrin via the downregulation of STAT3 phosphorylation in interferon-γ/tumor necrosis factor-α-stimulated keratinocytes. Our results suggest that GS leaf and stem extract ameliorates AD-like skin inflammation by regulating the immune response and restoring skin barrier function. Full article
(This article belongs to the Special Issue Anti-Inflammatory and Anti-Oxidant Effects of Extracts from Plants)
Show Figures

Figure 1

22 pages, 6520 KiB  
Article
The Therapeutic Effects of Dendropanax morbiferus Lév. Water Leaf Extracts in a Rheumatoid Arthritis Animal Model
by Dongho Lee, Min Jung Kim, Chang-Soo Cho, Ye Jin Yang, Jin-Kyung Kim, Ryounghoon Jeon, Sang-Hyun An, Kwang Il Park and Kwangrae Cho
Antioxidants 2025, 14(5), 548; https://doi.org/10.3390/antiox14050548 - 1 May 2025
Viewed by 688
Abstract
(1) Background: Rheumatoid arthritis (RA) is a chronic inflammatory condition known for its symptoms of joint damage and cartilage breakdown. Current treatments frequently result in adverse effects and show restricted efficacy in the long term. Dendropanax morbiferus, a plant recognized for its [...] Read more.
(1) Background: Rheumatoid arthritis (RA) is a chronic inflammatory condition known for its symptoms of joint damage and cartilage breakdown. Current treatments frequently result in adverse effects and show restricted efficacy in the long term. Dendropanax morbiferus, a plant recognized for its bioactive properties, demonstrates promise in the treatment of inflammatory conditions. The objective of this study was to examine the therapeutic properties of Dendropanax morbiferus Lév. water extract (DMWE) in RA through the utilization of in vitro and in vivo models. (2) Methods: Ultra-high-performance liquid chromatography (UPLC) analysis was used to identify bioactive compounds in DMWE. Antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical-scavenging assays. The in vitro experiments involved the treatment of CHON-001 cells with DMWE in order to assess its impacts on inflammation and matrix metalloproteinase (MMP) expression. The impact of DMWE on the Janus Kinase 2 (JAK2) and Signal Transducer and Activator of Transcription (STAT) signaling pathways was also assessed. RA was induced in Balb/c mice who were subsequently treated with varying doses of DMWE to assess its impact on joint morphology, edema, and body weight. (3) Results: DMWE demonstrated substantial antioxidant activity and hindered the expression of MMP-2 and MMP-8 in chondrocytes treated with IL-1β. It additionally inhibited the JAK2/STAT pathway and diminished inflammatory responses. Treatment with DMWE in living organisms led to a decrease in joint swelling, improved weight regains, and maintained joint structure, with higher doses exhibiting effects similar to those of the positive control, dexamethasone (Dexa). (4) Conclusions: DMWE was found to have excellent in vitro antioxidant and anti-inflammatory activities. In an RA-induced mouse model, DMWE-3 (500 mg/kg BW) was found to effectively treat RA by reducing the concentration of pro-inflammatory factors and preventing joint deformation. Full article
(This article belongs to the Special Issue Oxidative Stress and Inflammation in Bone Metabolism and Diseases)
Show Figures

Figure 1

17 pages, 5837 KiB  
Article
Therapeutic Effects of Sigesbeckia pubescens Makino Against Atopic Dermatitis-Like Skin Inflammation Through the JAK2/STAT Signaling Pathway
by Hyun-Kyung Song, Hye Jin Kim, Seong Cheol Kim and Taesoo Kim
Int. J. Mol. Sci. 2025, 26(9), 4191; https://doi.org/10.3390/ijms26094191 - 28 Apr 2025
Cited by 2 | Viewed by 491
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin condition, is a common allergic disorder. The human skin, the largest organ, serves as the first barrier in protecting the body against various external threats. Human epidermal keratinocytes (HEKs) in the epidermal layer and human dermal [...] Read more.
Atopic dermatitis (AD), a chronic inflammatory skin condition, is a common allergic disorder. The human skin, the largest organ, serves as the first barrier in protecting the body against various external threats. Human epidermal keratinocytes (HEKs) in the epidermal layer and human dermal fibroblasts (HDFs) in the dermis of the skin are implicated in AD-associated skin inflammation through the secretion of diverse inflammatory mediators, including chemokines. Sigesbeckia pubescens Makino (SP), a traditional Korean and Chinese herbal remedy, is used for treating inflammatory conditions. While several pharmacological effects of SP extract (SPE) have been documented, its specific inhibitory effect on AD-related skin inflammation remains unexplored. Hence, oral administration of SPE to NC/Nga mice reduced the severity of house dust mite extract-induced dermatitis, accompanied by lowered levels of serum inflammatory mediators, decreased epidermal thickness, reduced mast cell infiltration, and restoration of skin barrier function within skin lesions. In conclusion, SPE has demonstrated the ability to alleviate skin inflammation and protect the skin barrier and shows potential as a therapeutic option for AD. SPE inhibited proinflammatory chemokine production by modulating the Janus kinase (JAK) 2/signal transducer and activator of transcription proteins (STAT) 1/STAT3 signaling pathway in IFN-γ- and TNF-α-stimulated skin cells. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Targets in Skin Diseases)
Show Figures

Figure 1

16 pages, 1632 KiB  
Review
Innate Immune Sensing of Parapoxvirus Orf Virus and Viral Immune Evasion
by Basheer A. AlDaif and Stephen B. Fleming
Viruses 2025, 17(4), 587; https://doi.org/10.3390/v17040587 - 19 Apr 2025
Viewed by 600
Abstract
Orf virus (ORFV) is the type species of Parapoxvirus of the Poxviridae family that induces cutaneous pustular skin lesions in sheep and goats, and causes zoonotic infections in humans. Pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), leading to the triggering of [...] Read more.
Orf virus (ORFV) is the type species of Parapoxvirus of the Poxviridae family that induces cutaneous pustular skin lesions in sheep and goats, and causes zoonotic infections in humans. Pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), leading to the triggering of the innate immune response through multiple signalling pathways involving type I interferons (IFNs). The major PAMPs generated during viral infection are nucleic acids, which are the most important molecules that are recognized by the host. The induction of type l IFNs leads to activation of the Janus kinase (JAK)-signal transducer activator of transcription (STAT) pathway, which results in the induction of hundreds of interferon-stimulated genes (ISGs), many of which encode proteins that have antiviral roles in eliminating virus infection and create an antiviral state. Genetic and functional analyses have revealed that ORFV, as found for other poxviruses, has evolved multiple immunomodulatory genes and strategies that manipulate the innate immune sensing response. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

26 pages, 1674 KiB  
Review
Branched-Chain Amino Acids and Inflammation Management in Endurance Sports: Molecular Mechanisms and Practical Implications
by Miaomiao Xu, Danting Hu, Xiaoguang Liu, Zhaowei Li and Liming Lu
Nutrients 2025, 17(8), 1335; https://doi.org/10.3390/nu17081335 - 12 Apr 2025
Viewed by 4095
Abstract
Endurance athletes frequently experience muscle damage and inflammation due to prolonged, high-intensity exercise, which can impair recovery and hinder performance. This review examines the role of branched-chain amino acid (BCAA) supplementation in muscle repair, inflammation modulation, and immune regulation. BCAAs—particularly leucine and isoleucine—activate [...] Read more.
Endurance athletes frequently experience muscle damage and inflammation due to prolonged, high-intensity exercise, which can impair recovery and hinder performance. This review examines the role of branched-chain amino acid (BCAA) supplementation in muscle repair, inflammation modulation, and immune regulation. BCAAs—particularly leucine and isoleucine—activate key molecular pathways, including the mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), to promote muscle protein synthesis and enhance energy metabolism. They also attenuate inflammatory responses by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways, reducing levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). In addition, BCAAs influence immune function via mechanistic target of rapamycin complex 1 (mTORC1) signaling, enhance autophagy, and mitigate exercise-induced apoptosis. These molecular effects result in reduced muscle soreness, lower muscle damage biomarker levels (e.g., creatine kinase, lactate dehydrogenase), and improved recovery. Practical considerations such as optimal dosage, timing, and co-supplementation with carbohydrates, proteins, or omega-3s are also addressed. While BCAAs show promise as a nutritional strategy for enhancing recovery and controlling inflammation in endurance athletes, further research is needed to refine personalized protocols and clarify long-term effects. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

Back to TopTop