The Therapeutic Effects of Dendropanax morbiferus Lév. Water Leaf Extracts in a Rheumatoid Arthritis Animal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Condition of UPLC-QTOF/MS Analysis
2.3. Antioxidant Evaluation
2.4. Ln Silico Molecular Docking
2.5. Cell Culture and Cytotoxicity
2.6. Western Bolt
2.7. Animal
2.8. Animal Experiment Design
2.9. Enzyme-Linked Immunosorbent Assay (ELISA)
2.10. Scoring of Inflammation Degree
2.11. Micro-CT Imaging
2.12. Hematoxylin and Eosin (H&E) Staning
2.13. Statistical Analysis
3. Results
3.1. Analysis of Principal Components of DMWE
3.2. Antioxidant Activity in DMWE
3.3. Molecular Docking Study of Rutin as a Potential MMP-8 Inhibitor for RA Therapy
3.4. DMWE Downregulates the IL-1β-Induced Upregulation of Inflammation Expression in CHON-001 Cells
3.5. DMWE Downregulates the IL-1β-Induced Upregulation of MMPs Expression in CHON-001 Cells
3.6. DMWE Downregulates the IL-1β-Induced Upregulation of JAK2/STAT Pathway Expression in CHON-001 Cells
3.7. Changing of Body Weights
3.8. Anti-Inflammatory Effects of DMWE on Serum TNF-α and IL-6 in RA Mouse Models
3.9. Effects of DMWE on Hind Limb Edema in RA Mouse Models
3.10. A Micro-CT Study on the Impact of DMWE on Bone Structure in RA Mouse Models
3.11. Histopathological Analysis of Joint Tissues in RA Mouse Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt |
ACAC | Anti-collagen II antibody cocktail |
ANOVA | Analysis of variance |
BCA | Bicinchoninic acid |
BV | Bone volume |
BW | Body weight |
CAIA | Collagen Antibody-Induced Arthritis |
COX-2 | Cyclooxygenase-2 |
COL2A1 | Collagen Type II Alpha 1 Chain |
DEXA | Dexamethasone |
DMWE | Dendropanax Morbiferus Lév. leaf water Extracts |
DPPH | 1,1-diphenyl-2-picrylhydrazyl |
ESI | Electrospray ionization source |
ELISA | Enzyme-Linked Immunosorbent Assay |
FBS | Fetal bovine serum |
FOV | Field of view |
H&E | Hematoxylin and Eosin |
IL-6 | Interleukin-6 |
iNOS | Inducible nitric oxide synthase |
JAK2 | Janus Kinase 2 |
LPS | Lipopolysaccharide |
MMPs | Matrix metalloproteinases |
MTT | (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) |
Micro-CT | Micro-computed tomography |
m/z | Mass-to-charge |
NC | Negative control |
PBS | Phosphate-buffered saline |
PC | Positive control |
QTOF/MS | Quadrupole time-of-flight/mass spectrometry |
RA | Rheumatoid Arthritis |
SEM | Standard Error of the Mean |
SPF | Specific pathogen-free |
STAT | Signal Transducer and Activator of Transcription |
solution A | 0.1% formic acid in H2O |
solution B | 0.1% formic acid in acetonitrile |
TV | Total volume |
TNF-α | Tumor necrosis factor-α |
UPLC | Ultra-High-Performance Liquid Chromatography |
DMARDs | Disease-modifying anti-rheumatic drugs |
References
- Radu, A.-F.; Bungau, S.G. Management of rheumatoid arthritis: An overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [PubMed]
- Kay, J.; Calabrese, L. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology 2004, 43, iii2–iii9. [Google Scholar] [CrossRef]
- Zhao, X.; Kim, Y.-R.; Min, Y.; Zhao, Y.; Do, K.; Son, Y.-O. Natural plant extracts and compounds for rheumatoid arthritis therapy. Medicina 2021, 57, 266. [Google Scholar] [CrossRef] [PubMed]
- Mateen, S.; Zafar, A.; Moin, S.; Khan, A.Q.; Zubair, S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin. Chim. Acta 2016, 455, 161–171. [Google Scholar] [CrossRef]
- Xu, T.; Liu, S.; Zhao, J.; Feng, G.; Pi, Z.; Song, F.; Liu, Z. A study on the effective substance of the Wu-tou formula based on the metabonomic method using UPLC-Q-TOF-HDMS. Mol. Biosyst. 2015, 11, 3081–3091. [Google Scholar] [CrossRef]
- Funk, J.L.; Oyarzo, J.N.; Frye, J.B.; Chen, G.; Lantz, R.C.; Jolad, S.D.; Sólyom, A.M.; Timmermann, B.N. Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis. J. Nat. Prod. 2006, 69, 351–355. [Google Scholar] [CrossRef]
- Kim, M.J.; Son, J.D.; Yang, Y.J.; Heo, J.W.; Lee, H.J.; Park, K.I. LC-MS/MS analysis and antioxidant activity of Dendropanax morbiferus extract. Herb. Formula Sci. 2024, 32, 235–245. [Google Scholar]
- Hwang, C.E.; Kim, S.C.; Cho, C.S.; Song, W.Y.; Joo, O.S.; Cho, K.M. Comparison of chlorogenic acid and rutin contents and antioxidant activity of Dendropanax morbiferus extracts according to ethanol concentration. Korean J. Food Preserv. 2020, 27, 880–887. [Google Scholar] [CrossRef]
- Lee, S.-g.; Lee, S.-h.; Park, E.-J. Antimicrobial and Antioxidant Activities of Ethanol Leaf Extract of Dendropanax morbiferus Lev. Korean J. Food Cook. Sci. 2015, 31, 515–523. [Google Scholar] [CrossRef]
- Song, J.-H.; Kang, H.-B.; Kim, J.H.; Kwak, S.; Sung, G.-J.; Park, S.-H.; Jeong, J.-H.; Kim, H.; Lee, J.; Jun, W.; et al. Antiobesity and cholesterol-lowering effects of Dendropanax morbifera water extracts in mouse 3T3-L1 Cells. J. Med. Food 2018, 21, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, R.; Cho, D.-Y.; Su-Kim, I.; Choi, D.-K. Dendropanax morbiferus and other species from the genus Dendropanax: Therapeutic potential of its traditional uses, phytochemistry, and pharmacology. Antioxidants 2020, 9, 962. [Google Scholar] [CrossRef]
- Ding, L.; Lin, H.; Ma, Z.; He, Y.; Ding, S.; Zhang, K.; Zhang, J.; Li, W.; Xiao, L. Stigmasterol mitigates rheumatoid arthritis progression by decreasing Nrf2/NLRP3-mediated pyroptosis in chondrocyte. Mol. Immunol. 2024, 179, 9–17. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Chen, Y.-J.; Chang, W.-A.; Tsai, W.-C.; Ou, T.-T.; Wu, C.-C.; Sung, W.-Y.; Yen, J.-H.; Kuo, P.-L. Dual role of chondrocytes in rheumatoid arthritis: The chicken and the egg. Int. J. Mol. Sci. 2020, 21, 1071. [Google Scholar] [CrossRef]
- Kim, M.J.; Yang, Y.J.; Min, G.Y.; Heo, J.W.; Son, J.D.; You, Y.Z.; Kim, H.H.; Kim, G.S.; Lee, H.J.; Yang, J.H.; et al. Anti-inflammatory and antioxidant properties of Camellia sinensis L. extract as a potential therapeutic for atopic dermatitis through NF-κB pathway inhibition. Sci. Rep. 2025, 15, 2371. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ.; Alwasel, S.H. DPPH radical scavenging assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Lee, S.G.; Wang, T.; Vance, T.M.; Hurbert, P.; Kim, D.-O.; Koo, S.I.; Chun, O.K. Validation of analytical methods for plasma total antioxidant capacity by comparing with urinary 8-isoprostane level. J. Microbiol. Biotechnol. 2017, 27, 388–394. [Google Scholar] [CrossRef]
- Kim, M.J.; Yang, Y.J.; Heo, J.W.; Son, J.-d.; You, Y.Z.; Yang, J.-H.; Park, K.I. Potential Chondroprotective Effect of Artemisia annua L. Water Extract on SW1353 Cell. Int. J. Mol. Sci. 2025, 26, 1901. [Google Scholar] [CrossRef]
- Park, D.-Y.; Shin, W.-R.; Kim, S.Y.; Nguyen, Q.-T.; Lee, J.-P.; Kim, D.-Y.; Ahn, J.-Y.; Kim, Y.-H. In silico molecular docking validation of procalcitonin-binding aptamer and sepsis diagnosis. Mol. Cell. Toxicol. 2023, 19, 843–855. [Google Scholar] [CrossRef]
- Ou, D.; Liu, S.; Tong, C.; Tan, H.; Yang, Y.; He, C.J.E.; Medicine, T. LIM mineralization protein-1 inhibits IL-1β-induced human chondrocytes injury by altering the NF-κB and MAPK/JNK pathways. Exp. Ther. Med. 2022, 23, 61. [Google Scholar] [CrossRef]
- Kim, H.H.; Jeong, S.H.; Park, M.Y.; Bhosale, P.B.; Abusaliya, A.; Kim, H.W.; Seong, J.K.; Ahn, M.; Park, K.I.; Heo, J.D.; et al. Potential Joint Protective and Anti-Inflammatory Effects of Integrin αvβ3 in IL-1β-Treated Chondrocytes Cells. Biomedicines 2023, 11, 2745. [Google Scholar] [CrossRef]
- Yang, Y.J.; Kim, M.J.; Heo, J.W.; Kim, H.H.; Kim, G.S.; Shim, M.S.; Kim, K.Y.; Park, K.I. Korean Mistletoe (Viscum album var. coloratum) Ethanol Extracts Enhance Intestinal Barrier Function and Alleviate Inflammation. Antioxidants 2025, 14, 370. [Google Scholar] [CrossRef]
- Xie, Z.; Dai, J.; Yang, A.; Wu, Y. A role for bradykinin in the development of anti-collagen antibody-induced arthritis. Rheumatology 2014, 53, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Waritani, T.; Cutler, D.; Terato, K. Collagen antibody-induced arthritis (CAIA) in mice: Triggering of arthritis by HMGB1, a late stage lethal mediator of LPS (99.22). J. Immunol. 2009, 182, 99.22. [Google Scholar] [CrossRef]
- Inglis, J.J.; Criado, G.; Medghalchi, M.; Andrews, M.; Sandison, A.; Feldmann, M.; Williams, R.O. Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen. Arthritis Res. Ther. 2007, 9, R113. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Kim, M.J.; Lee, H.J.; Lee, W.-Y.; Yang, J.-H.; Kim, H.H.; Shim, M.S.; Heo, J.W.; Son, J.D.; Kim, W.H. Ziziphus jujuba Miller Ethanol Extract Restores Disrupted Intestinal Barrier Function via Tight Junction Recovery and Reduces Inflammation. Antioxidants 2024, 13, 575. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.; Zhang, Y.; Dusad, A.; Ren, K.; Purdue, P.E.; Goldring, S.R.; Wang, D. The evaluation of the therapeutic efficacy and side effects of a macromolecular dexamethasone prodrug in the collagen-induced arthritis mouse model. Pharm. Res. 2016, 33, 186–193. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Müller, R. Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef]
- Yang, J.-H.; Yoo, J.-M.; Cho, W.-K.; Ma, J.Y. Ethanol Extract of Sanguisorbae Radix Inhibits Mast Cell Degranulation and Suppresses 2, 4-Dinitrochlorobenzene-Induced Atopic Dermatitis-Like Skin Lesions. Mediat. Inflamm. 2016, 2016, 2947390. [Google Scholar] [CrossRef]
- Mattey, D.L.; Nixon, N.B.; Dawes, P.T. Association of circulating levels of MMP-8 with mortality from respiratory disease in patients with rheumatoid arthritis. Arthritis Res. Ther. 2012, 14, R204. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Zuo, G.; Lee, H.J.; Hwang, S.H.; Lee, S.K.; Park, J.H.; Suh, H.-W.; Lim, S.S. Evaluation of the antinociceptive effect and standardization of Platycladus orientalis (L.) Franco extract. Mol. Cell. Toxicol. 2024, 20, 747–757. [Google Scholar] [CrossRef]
- Jha, L.A.; Imran, M.; Shrestha, J.; Devkota, H.P.; Bhattacharya, K.; Alsayari, A.; Wahab, S.; Jha, S.K.; Paudel, K.R.; Kesharwani, P. Effectiveness of phytoconstituents and potential of phyto-nanomedicines combination to treat osteoarthritis. Eur. Polym. J. 2024, 215, 113243. [Google Scholar]
- Liu, X.; Wang, Z.; Qian, H.; Tao, W.; Zhang, Y.; Hu, C.; Mao, W.; Guo, Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front. Immunol. 2022, 13, 945129. [Google Scholar] [CrossRef]
- Huria, N.; Saraf, A.A.; Padinjarekutt, D.L.; Gaikwad, L.; Mourya, N.; Deo, D.; Tanpathak, S.V.; Burande, S. The Biomarker Flavonoid “Rutin” in Morus Species: Isolation, Identification, and Characterization; IntechOpen: London, UK, 2024. [Google Scholar]
- Lee, Y.J.; Jeune, K.H. The effect of rutin on antioxidant and anti-inflammation in streptozotocin-induced diabetic rats. Appl. Microsc. 2013, 43, 54–64. [Google Scholar] [CrossRef]
- Meng, X.-L.; Yu, M.-M.; Liu, Y.-C.; Gao, Y.-L.; Chen, X.-S.; Shou, S.-T.; Chai, Y.-F. Rutin inhibits cardiac apoptosis and prevents sepsis-induced cardiomyopathy. Front. Physiol. 2022, 13, 834077. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Kim, H.-R.; Lee, S.-H.; Kim, Y.-S.; Kim, S.-N.; Kim, S.-Y.; Park, M.H. Angelica decursiva (Miq.) Franch. & Sav. extract inhibits UVB-mediated photoaging by regulating MAPK-related inflammatory pathways. Mol. Cell. Toxicol. 2024. [Google Scholar] [CrossRef]
- Kim, K.S.; Choi, H.M.; Lee, Y.-A.; Choi, I.A.; Lee, S.-H.; Hong, S.-J.; Yang, H.-I.; Yoo, M.C. Expression levels and association of gelatinases MMP-2 and MMP-9 and collagenases MMP-1 and MMP-13 with VEGF in synovial fluid of patients with arthritis. Rheumatol. Int. 2011, 31, 543–547. [Google Scholar] [CrossRef]
- Xue, M.; McKelvey, K.; Shen, K.; Minhas, N.; March, L.; Park, S.-Y.; Jackson, C.J. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology 2014, 53, 2270–2279. [Google Scholar] [CrossRef]
- García, S.; Forteza, J.; López-Otin, C.; Gómez-Reino, J.J.; González, A.; Conde, C. Matrix metalloproteinase-8 deficiency increases joint inflammation and bone erosion in the K/BxN serum-transfer arthritis model. Arthritis Res. Ther. 2010, 12, R224. [Google Scholar] [CrossRef]
- Harigai, M.; Kaneko, Y.; Tanaka, E.; Hirata, S.; Kameda, H.; Kaneko, K.; Kishimoto, M.; Kohno, M.; Kojima, M.; Kojima, T.; et al. 2024 Update of the Japan College of Rheumatology Clinical Practice Guidelines for the Management of Rheumatoid Arthritis-secondary publication. Mod. Rheumatol. 2025, 35, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Damerau, A.; Gaber, T. Modeling rheumatoid arthritis in vitro: From experimental feasibility to physiological proximity. Int. J. Mol. Sci. 2020, 21, 7916. [Google Scholar] [CrossRef]
- Veale, D.J.; Orr, C.; Fearon, U. Cellular and molecular perspectives in rheumatoid arthritis. Semin. Immunopathol. 2017, 39, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Bartok, B.; Firestein, G.S. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunol. Rev. 2010, 233, 233–255. [Google Scholar] [CrossRef] [PubMed]
- Bondeson, J.; Wainwright, S.D.; Lauder, S.; Amos, N.; Hughes, C.E. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res. Ther. 2006, 8, R187. [Google Scholar] [CrossRef]
- Pal, R.R.; Rajpal, V.; Singh, N.; Singh, S.; Mishra, N.; Singh, P.; Maurya, P.; Alka; Saraf, S.A. Downregulation of pro-inflammatory markers IL-6 and TNF-α in rheumatoid arthritis using nano-lipidic carriers of a quinone-based phenolic: An in vitro and in vivo study. Drug Deliv. Transl. Res. 2023, 13, 627–641. [Google Scholar] [CrossRef]
- Deng, Y.; Zheng, H.; Li, B.; Huang, F.; Qiu, Y.; Yang, Y.; Sheng, W.; Peng, C.; Tian, X.; Wang, W. Nanomedicines targeting activated immune cells and effector cells for rheumatoid arthritis treatment. J. Control. Release 2024, 371, 498–515. [Google Scholar] [CrossRef]
Grade | Clinical Findings |
---|---|
0 | Normal appearance, no signs of inflammation |
1 | Inflammation and edema present in one toe |
2 | Inflammation and edema present in one or more toes, but not involving the entire foot |
3 | Inflammation and edema involving the entire foot |
4 | Joint stiffness and generalized inflammation throughout the foot |
Peak No. | Retention Time (min) | Formula | Identification | Experiment Mass (m/z) | MS/MS |
---|---|---|---|---|---|
1 | 15.73 | C14H17N3O7 | Vulgaxanthin I | 340 | 322, 209 |
2 | 18.99 | C27H30O17 | Quercetin 3,4′-di-O-glucoside | 627 | 465, 303 |
3 | 21.19 | C26H28O14 | Schaftoside | 565 | 547, 445, 325 |
4 | 23.98 | C27H30O16 | Rutin | 611 | 303 |
5 | 25.59 | C21H20O12 | Hyperin | 465 | 303 |
6 | 26.36 | C22H18O11 | p-Coumaroyl caffeoyl tartaric acid | 458 | 295, 277 |
7 | 28.41 | C27H30O15 | Kaempferol-3-O-rutinoside | 595 | 287 |
Groups * | Concentration (mg/kg) | DPPH Radical Scavenging Activity (%) | ABTS Radical Scavenging Activity (%) |
---|---|---|---|
Control | 1 | 91.64 ± 0.75 a | 92.49 ± 1.22 a |
DMWE | 1 | 6.54 ± 0.48 b | 6.98 ± 1.73 b |
5 | 20.13 ± 2.41 c | 24.37 ± 2.22 c | |
10 | 43.20 ± 5.89 d | 40.13 ± 4.31 d | |
50 | 75.11 ± 3.08 e | 63.69 ± 5.12 e |
Groups | Score |
---|---|
NC | 0.00 ± 0.00 a |
PC | 3.80 ± 0.42 b |
DEXA | 1.20 ± 0.42 c |
DMWE-1 | 1.80 ± 0.79 cd |
DMWE-2 | 1.40 ± 0.52 cd |
DMWE-3 | 1.20 ± 0.42 cd |
Groups | Bonindex | ||
---|---|---|---|
BV (mm3) | TV (mm3) | BV/TV (%) | |
NC | 0.37 ± 0.01 a | 1.29 ± 0.00 | 28.91 ± 0.90 a |
PC | 0.27± 0.05 b | 1.29 ± 0.00 | 20.54 ± 3.69 b |
DEXA | 0.34 ± 0.03 c | 1.29 ± 0.00 | 26.45 ± 2.70 c |
DMWE-1 | 0.28 ± 0.05 bd | 1.29 ± 0.00 | 21.37 ± 4.05 bd |
DMWE-2 | 0.31 ± 0.07 cd | 1.29 ± 0.00 | 24.03 ± 5.43 cd |
DMWE-3 | 0.33 ± 0.04 cd | 1.29 ± 0.00 | 25.36 ± 2.75 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Kim, M.J.; Cho, C.-S.; Yang, Y.J.; Kim, J.-K.; Jeon, R.; An, S.-H.; Park, K.I.; Cho, K. The Therapeutic Effects of Dendropanax morbiferus Lév. Water Leaf Extracts in a Rheumatoid Arthritis Animal Model. Antioxidants 2025, 14, 548. https://doi.org/10.3390/antiox14050548
Lee D, Kim MJ, Cho C-S, Yang YJ, Kim J-K, Jeon R, An S-H, Park KI, Cho K. The Therapeutic Effects of Dendropanax morbiferus Lév. Water Leaf Extracts in a Rheumatoid Arthritis Animal Model. Antioxidants. 2025; 14(5):548. https://doi.org/10.3390/antiox14050548
Chicago/Turabian StyleLee, Dongho, Min Jung Kim, Chang-Soo Cho, Ye Jin Yang, Jin-Kyung Kim, Ryounghoon Jeon, Sang-Hyun An, Kwang Il Park, and Kwangrae Cho. 2025. "The Therapeutic Effects of Dendropanax morbiferus Lév. Water Leaf Extracts in a Rheumatoid Arthritis Animal Model" Antioxidants 14, no. 5: 548. https://doi.org/10.3390/antiox14050548
APA StyleLee, D., Kim, M. J., Cho, C.-S., Yang, Y. J., Kim, J.-K., Jeon, R., An, S.-H., Park, K. I., & Cho, K. (2025). The Therapeutic Effects of Dendropanax morbiferus Lév. Water Leaf Extracts in a Rheumatoid Arthritis Animal Model. Antioxidants, 14(5), 548. https://doi.org/10.3390/antiox14050548