Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (687)

Search Parameters:
Keywords = J55 steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4746 KiB  
Article
Experimental Study on Millisecond Laser Percussion Drilling of Heat-Resistant Steel
by Liang Wang, Changjian Wu, Yefei Rong, Long Xu and Kaibo Xia
Materials 2025, 18(15), 3699; https://doi.org/10.3390/ma18153699 - 6 Aug 2025
Abstract
Millisecond lasers, with their high processing efficiency and large power, are widely used in manufacturing fields such as aerospace. This study aims to investigate the effects of different processing parameters on the micro-hole processing of 316 heat-resistant steel using millisecond lasers. Through the [...] Read more.
Millisecond lasers, with their high processing efficiency and large power, are widely used in manufacturing fields such as aerospace. This study aims to investigate the effects of different processing parameters on the micro-hole processing of 316 heat-resistant steel using millisecond lasers. Through the control variable method, the study examines the impact of pulse energy, pulse count, and pulse width on the quality of micro-holes, including the entrance diameter, exit diameter, and taper. Furthermore, combined with orthogonal experiments and COMSOL Multiphysics 6.2 simulations, the study explores the influence of pulse width on the formation of blind holes. The experimental results show that when the pulse energy is 2.2 J, the taper is minimal (2.2°), while the taper reaches its peak (2.4°) at 2.4 J pulse energy. As the pulse count increases to 55–60 pulses, the exit diameter stabilizes, and the taper decreases to 1.8°. Blind holes begin to form when the pulse width exceeds 1.2 ms. When the pulse width is 1.2 ms, pulse energy is 2.4 J, and pulse count is 50, the entrance diameter of the blind hole reaches its maximum, indicating that longer pulse widths result in more significant energy reflection and thermal accumulation effects. COMSOL simulations reveal that high-energy pulses cause intense melt ejection, while longer pulse widths exacerbate thermal accumulation at the micro-hole entrance, leading to blind hole formation. This study provides important process references for laser processing of through-holes and blind holes in heat-resistant steel. Full article
Show Figures

Figure 1

21 pages, 3755 KiB  
Article
Thermal and Expansion Analysis of the Lebanese Flatbread Baking Process Using a High-Temperature Tunnel Oven
by Yves Mansour, Pierre Rahmé, Nemr El Hajj and Olivier Rouaud
Appl. Sci. 2025, 15(15), 8611; https://doi.org/10.3390/app15158611 - 4 Aug 2025
Viewed by 173
Abstract
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this [...] Read more.
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this work presents the first experimental investigation of the traditional Lebanese flatbread baking process under realistic industrial conditions, specifically using a high-temperature tunnel oven with direct flame heating, extremely short baking times (~10–12 s), and peak temperatures reaching ~650 °C, which are essential to achieving the characteristic pocket formation and texture of Lebanese bread. This experimental study characterizes the baking kinetics of traditional Lebanese flatbread, recording mass loss pre- and post-baking, thermal profiles, and dough expansion through real-time temperature measurements and video recordings, providing insights into the dough’s thermal response and expansion behavior under high-temperature conditions. A custom-designed instrumented oven with a steel conveyor and a direct flame burner was employed. The dough, prepared following a traditional recipe, was analyzed during the baking process using K-type thermocouples and visual monitoring. Results revealed that Lebanese bread undergoes significant water loss due to high baking temperatures (~650 °C), leading to rapid crust formation and pocket development. Empirical equations modeling the relationship between baking time, temperature, and expansion were developed with high predictive accuracy. Additionally, an energy analysis revealed that the total energy required to bake Lebanese bread is approximately 667 kJ/kg, with an overall thermal efficiency of only 21%, dropping to 16% when preheating is included. According to previous CFD (Computational Fluid Dynamics) simulations, most heat loss in similar tunnel ovens occurs via the chimney (50%) and oven walls (29%). These findings contribute to understanding the broader thermophysical principles that can be applied to the development of more efficient baking processes for various types of bread. The empirical models developed in this study can be applied to automating and refining the industrial production of Lebanese flatbread, ensuring consistent product quality across different baking environments. Future studies will extend this work to alternative oven designs and dough formulations. Full article
(This article belongs to the Special Issue Chemical and Physical Properties in Food Processing: Second Edition)
Show Figures

Figure 1

20 pages, 1890 KiB  
Review
Laser Surface Hardening of Carburized Steels: A Review of Process Parameters and Application in Gear Manufacturing
by Janusz Kluczyński, Katarzyna Jasik, Jakub Łuszczek and Jakub Pokropek
Materials 2025, 18(15), 3623; https://doi.org/10.3390/ma18153623 - 1 Aug 2025
Viewed by 243
Abstract
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion [...] Read more.
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion speed, spot size, and focusing distance—on surface microhardness, hardening depth, and microstructure development. The findings indicate that the energy density is the dominant factor that affects the outcomes of LHT. Optimal results, in the form of a high surface microhardness and a sufficient depth of hardening, were achieved within the energy density range of 80–130 J/mm2, allowing for martensitic transformation while avoiding defects such as melting or cracking. At densities below 50 J/mm2, incomplete hardening occurred with minimal microhardness improvement. On the contrary, densities exceeding 150–180 J/mm2 caused surface overheating and degradation. For carburized 21NiCrMo2 steel, the most effective parameters included 450–1050 W laser power, 1.7–2.5 mm/s scanning speed, and 2.0–2.3 mm beam diameter. The review confirms that process control through energy-based parameters allows for reliable prediction and optimization of LHT for industrial applications, particularly in components exposed to cyclic loads. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

15 pages, 5275 KiB  
Article
Effect of Copper in Gas-Shielded Solid Wire on Microstructural Evolution and Cryogenic Toughness of X80 Pipeline Steel Welds
by Leng Peng, Rui Hong, Qi-Lin Ma, Neng-Sheng Liu, Shu-Biao Yin and Shu-Jun Jia
Materials 2025, 18(15), 3519; https://doi.org/10.3390/ma18153519 - 27 Jul 2025
Viewed by 316
Abstract
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding [...] Read more.
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding (GMAW) parameters. The mechanical capacities were assessed via tensile testing, Charpy V-notch impact tests at −20 °C and Vickers hardness measurements. Microstructural evolution was characterized through optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Key findings reveal that increasing the Cu content from 0.13 wt.% to 0.34 wt.% reduces the volume percentage of acicular ferrite (AF) in the weld metal by approximately 20%, accompanied by a significant decline in cryogenic toughness, with the average impact energy decreasing from 221.08 J to 151.59 J. Mechanistic analysis demonstrates that the trace increase in the Cu element. The phase transition temperature and inclusions is not significant but can refine the prior austenite grain size of the weld, so that the total surface area of the grain boundary increases, and the surface area of the inclusions within the grain is relatively small, resulting in the nucleation of acicular ferrite within the grain being weak. This microstructural transition lowers the critical crack size and diminishes the density for high-angle grain boundaries (HAGBs > 45°), which weakens crack deflection capability. Consequently, the crack propagation angle decreases from 54.73° to 45°, substantially reducing the energy required for stable crack growth and deteriorating low-temperature toughness. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 3051 KiB  
Article
Study on the Kinetics of Carbothermic Reduction of Stainless Steel Dust by Walnut Shell Biochar
by Guoyu Cui, Xiang Zhang, Yanghui Xu, Guojun Ma, Dingli Zheng and Ju Xu
Metals 2025, 15(8), 835; https://doi.org/10.3390/met15080835 - 26 Jul 2025
Viewed by 231
Abstract
Stainless steel dust (SSD) is a by-product generated during the smelting process of stainless steel, which is rich in valuable metals such as Fe, Cr, Ni, and Mn. To optimize the carbothermic reduction process of SSD, this study first conducted the thermodynamic analysis [...] Read more.
Stainless steel dust (SSD) is a by-product generated during the smelting process of stainless steel, which is rich in valuable metals such as Fe, Cr, Ni, and Mn. To optimize the carbothermic reduction process of SSD, this study first conducted the thermodynamic analysis of the carbothermic reduction of SSD and then employed walnut shell biochar as a reductant with non-isothermal thermogravimetric analysis with linear heating rates of 5 °C/min, 10 °C/min, 15 °C/min, and 20 °C/min. The activation energies of the carbothermic reduction reactions were calculated using the FWO method, KAS method, and Friedman method, respectively. Subsequently, the corresponding kinetic models were fitted and matched using the Málek method. The results indicate that before 600 °C, the direct reduction of SSD by carbon plays a dominant role. As the temperature increases, the indirect reduction becomes the main reduction reaction for SSD due to the generation of CO. The activation energies calculated by the Flynn–Wall–Ozawa (FWO) method, Kissinger–Akahira–Sunose (KAS) method, and Friedman method are 412.120 kJ/mol, 416.930 kJ/mol, and 411.778 kJ/mol, respectively, showing close values and a general trend of increasing activation energy as the conversion rate increased from 10% to 90%. Moreover, the reduction reaction is staged. In the conversion range of 10% to 50%, the carbothermic reduction reaction conforms to the shrinking core model within phase boundary reactions, coded as R1/4. In the conversion range of 50% to 60%, it conforms to the shrinking core model within phase boundary reactions, coded as R1/2; in the conversion range of 60% to 90%, the carbothermic reduction reaction follows the second-order chemical reaction model, coded as F2. Full article
(This article belongs to the Special Issue Separation, Reduction, and Metal Recovery in Slag Metallurgy)
Show Figures

Figure 1

16 pages, 3146 KiB  
Article
The Influence of Spheroidizing Annealing Process on the Microstructure and Low-Temperature Impact Toughness of Q235 Steel Used in Coal Explosion-Proof Equipment
by Hongkui Zhang, Yipeng Lan, Xinming Liu and Guanglong Li
Metals 2025, 15(8), 833; https://doi.org/10.3390/met15080833 - 25 Jul 2025
Viewed by 717
Abstract
To improve the low-temperature impact toughness of Q235B steel, this paper adopts a heat treatment method combining quenching and spheroidizing annealing to enhance its microstructure and properties and conducts a detailed analysis of the evolution of the microstructure of Q235 steel under the [...] Read more.
To improve the low-temperature impact toughness of Q235B steel, this paper adopts a heat treatment method combining quenching and spheroidizing annealing to enhance its microstructure and properties and conducts a detailed analysis of the evolution of the microstructure of Q235 steel under the spheroidizing annealing process. The results show that spheroidizing annealing at 700 °C has a significant spheroidizing effect on the pearlite structure: after 6 h of annealing, the room-temperature tensile strength reaches 522 MPa, the elongation is 31.28%, and the impact energy is 323.14 J; as the impact temperature decreases, the impact toughness of Q235B steel decreases, but the impact energy can still remain at 291.62 J under service conditions of −20 °C. This is attributed to the spherical cementite formed by spheroidizing annealing, which has better dispersibility and can reduce stress concentration, thereby improving the low-temperature impact toughness. Full article
Show Figures

Figure 1

29 pages, 8597 KiB  
Article
Study on the Damage Mechanisms in the Forming Process of High-Strength Steel Laser Tailor Welded Blanks Based on the Johnson–Cook Damage Model
by Xianping Sun, Huaqiang Li, Song Gao and Qihan Li
Materials 2025, 18(15), 3497; https://doi.org/10.3390/ma18153497 - 25 Jul 2025
Viewed by 616
Abstract
This paper, based on the Johnson–Cook damage model, investigates the damage mechanism of high-strength steel tailor welded blanks (TWBs) (Usibor1500P and Ductibor500) during the forming process. Initially, specimens with varying notch sizes were designed and fabricated to perform uniaxial tensile tests to determine [...] Read more.
This paper, based on the Johnson–Cook damage model, investigates the damage mechanism of high-strength steel tailor welded blanks (TWBs) (Usibor1500P and Ductibor500) during the forming process. Initially, specimens with varying notch sizes were designed and fabricated to perform uniaxial tensile tests to determine their mechanical properties. Then, the deformation process of the notched specimens was simulated using finite element software, revealing the distribution and variation of stress triaxiality at the fracture surface. By combining both experimental and simulation data, the parameters of the Johnson–Cook (J–C) damage model were calibrated, and the effects of temperature, strain rate, and stress triaxiality on material fracture behavior were further analyzed. Based on finite element analysis, the relevant coefficients for stress triaxiality, strain rate, and temperature were systematically calibrated, successfully establishing a J–C fracture criterion for TWB welds, Usibor1500P, and Ductibor500 high-strength steels. Finally, the calibrated damage model was further validated through the Nakajima-type bulge test, and the simulated Forming Limit Diagram (FLD) closely matched the experimental data. The results show that the analysis based on the J–C damage model can effectively predict the fracture behavior of tailor welded blanks (TWB) during the forming process. This study provides reliable numerical predictions for the damage behavior of high-strength steel laser-customized welded sheets and offers a theoretical basis for engineering design and material performance optimization. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 8543 KiB  
Article
Effect of Cr Content on the Microstructure and Toughness of the Supercritically Coarse-Grained Heat-Affected Zone in X80 Pipeline Steel
by Yuqin Qin, Feng Wang, Zhikui Li, Zhiguo Hu, Longyi Zhao, Shubiao Yin and Shujun Jia
Materials 2025, 18(15), 3466; https://doi.org/10.3390/ma18153466 - 24 Jul 2025
Viewed by 189
Abstract
The existing studies mainly focus on the coarse-grained heat-affected zone and the inter-critically reheated coarse-grained heat-affected zone, while the studies on other sub-zones are relatively low. Meanwhile, the studies on the Cr element in steel mainly focus on the influence of the Cr [...] Read more.
The existing studies mainly focus on the coarse-grained heat-affected zone and the inter-critically reheated coarse-grained heat-affected zone, while the studies on other sub-zones are relatively low. Meanwhile, the studies on the Cr element in steel mainly focus on the influence of the Cr element on strength and hardness; however, its mechanism is not very clear. Therefore, three kinds of X80 experimental steels with different Cr contents (0 wt.%, 0.13 wt.%, and 0.40 wt.%) were designed in this paper. The thermal simulation experiments on the supercritically coarse-grained heat-affected zone (SCCGHAZ) were carried out using a Gleeble-3500 thermal simulator. The effects of Cr on the microstructure and toughness of SCCGHAZ were systematically investigated through Charpy impact tests and microstructural characterization techniques. The results indicate that the microstructures of the three Cr-containing X80 experimental steels in SCCGHAZ are predominantly composed of fine granular bainite. However, impact tests at −10 °C show that the SCCGHAZs of 0 wt.% and 0.13 wt.% Cr steel exhibit higher impact energy, while that of the 0.40 wt.% Cr steel demonstrates significantly reduced energy impact (<100 J). Microstructural characterization reveals that the impact toughness of the SCCGHAZ in X80 steel is correlated with microstructural features, including effective grain size, grain boundary angles, and the volume fraction and shape of martensite–austenite (M-A) constituents. Among these factors, the volume fraction of M-A constituents substantially influences toughness. It was found that island-shaped M-A constituents inhibit crack propagation, whereas blocky M-A constituents impair toughness. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 4335 KiB  
Article
DEM Study on the Impact of Liner Lifter Bars on SAG Mill Collision Energy
by Yong Wang, Qingfei Xiao, Saizhen Jin, Mengtao Wang, Ruitao Liu and Guobin Wang
Lubricants 2025, 13(8), 321; https://doi.org/10.3390/lubricants13080321 - 23 Jul 2025
Viewed by 292
Abstract
The semi-autogenous grinding (SAG) mill, renowned for its high efficiency, high production capacity, and low cost, is widely used for crushing and grinding equipment. However, the current understanding of the overall particle behavior influencing its efficiency remains relatively limited, particularly the impact of [...] Read more.
The semi-autogenous grinding (SAG) mill, renowned for its high efficiency, high production capacity, and low cost, is widely used for crushing and grinding equipment. However, the current understanding of the overall particle behavior influencing its efficiency remains relatively limited, particularly the impact of the shape of SAG mill liners on material behavior. This study employs discrete element method (DEM) simulation technology to investigate the effects of different liner structures on particle trajectories and collision energy, systematically investigating the impact of lifter bars angle, height, and the number of lifter bars on grinding efficiency. The results of single-factor simulations indicate that when the lifter bars height (230 mm) and the number of lifter bars (36) are fixed, the total collision energy dissipation between steel balls and ore, as well as among ore particles, reaches a maximum of 526,069.53 J when the lifter bars angle is 25°. When the lifter bar angle is fixed at 25° and the number of lifter bars is set to 36, the maximum collision energy dissipation of 627,606.06 J occurs at a lifter bars height of 210 mm. When the angle (25°) and height (210 mm) are fixed, the highest energy dissipation of 443,915.37 J is observed with 12 lifter bars. Results from the three-factor, three-level orthogonal experiment reveal that the number of lifter bars exerts the most significant influence on grinding efficiency, followed by the angle and height. The optimal combination is determined to be a 20° angle, 12 lifter bars, and a 210 mm height, resulting in the highest total collision energy dissipation of 700,334 J. This represents an increase of 379,466 J compared to the original SAG mill liner configuration (320,868 J). This research aims to accurately simulate the motion of discrete particles within the mill through DEM simulations, providing a basis for optimizing the operational parameters and structural design of SAG mills. Full article
(This article belongs to the Special Issue Tribology in Ball Milling: Theory and Applications)
Show Figures

Figure 1

19 pages, 9770 KiB  
Article
Microstructural Characterization of S355J2 Steel Plate Cut with Plasma in Water-Bed
by Teodor Machedon-Pisu, Mihai Machedon-Pisu and Arthur Olah
Coatings 2025, 15(8), 866; https://doi.org/10.3390/coatings15080866 - 23 Jul 2025
Viewed by 330
Abstract
When processing widely used materials in welded structures such as steels, a surface operation such as plasma cutting applied in the automated Computer Numerical Control (CNC) version can provide technical and economic benefits to the cut components, but the impact on health and [...] Read more.
When processing widely used materials in welded structures such as steels, a surface operation such as plasma cutting applied in the automated Computer Numerical Control (CNC) version can provide technical and economic benefits to the cut components, but the impact on health and environment must be addressed accordingly. In this paper, a plate with a base material made of S355J2 + AR structural steel is cut in 10 pieces with plasma in a water-bed designed and manufactured by the authors in order to mitigate such risks. The surfaces cut in the water-bed are compared to surfaces cut in open air by macroscopic analyses of the edge cut, by microscopic analyses of the cut parts—base material, heat-affected zone, and cut area—and by hardness determinations. The results reveal improvements as a result of plasma cutting in the water-bed: slag reduction, preservation of granulation, transformations in the austenitic temperature zone, and hardness in the heat-affected zone. Compared to a classical cutting procedure such as oxygen flame cutting, the proposed procedure offers a clean alternative and also requires low maintenance. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

15 pages, 13057 KiB  
Article
Hydrogen Embrittlement and Cohesive Behavior of an Ultrahigh-Strength Lath Martensitic Steel of Tendon Bars for Structural Engineering
by Patricia Santos, Andrés Valiente and Mihaela Iordachescu
Appl. Sci. 2025, 15(14), 7998; https://doi.org/10.3390/app15147998 - 18 Jul 2025
Viewed by 204
Abstract
This paper assesses experimentally and theoretically the hydrogen-assisted cracking sensitivity of an ultrahigh-strength lath martensitic steel, recently used to manufacture tendon rods for structural engineering. The experimental values of the J-integral were obtained by tensile testing up to failure precracked SENT specimens in [...] Read more.
This paper assesses experimentally and theoretically the hydrogen-assisted cracking sensitivity of an ultrahigh-strength lath martensitic steel, recently used to manufacture tendon rods for structural engineering. The experimental values of the J-integral were obtained by tensile testing up to failure precracked SENT specimens in air, as an inert environment and in a thiocyanate aqueous solution, as a hydrogen-promoter medium. In parallel, the theoretical resources necessary to apply the Dugdale cohesive model to the SENT specimen were developed from the Green function in order to predict the J-integral dependency on the applied load and the crack size, with the cohesive resistance being the only material constant concerning fracture. The comparison of theoretical and experimental results strongly supports the premise that the cohesive crack accurately models the effect of the mechanisms by which the examined steel opposes crack propagation, both when in hydrogen-free and -embrittled conditions. The identification of experimental and theoretical limit values respectively involving a post-small-scale-yielding regime and unstable extension of the cohesive zone allowed for the value of the cohesive resistance to be determined, its condition as a material constant in hydrogen-free medium confirmed, and its strong decrease with hydrogen exposure revealed. Full article
(This article belongs to the Special Issue Application of Fracture Mechanics in Structures)
Show Figures

Figure 1

15 pages, 5721 KiB  
Article
Temperature-Dependent Martensitic Transformation in Cold-Rolled AISI 304 Stainless Steel
by Jaka Burja, Jernej Lindič, Barbara Šetina Batič and Aleš Nagode
Crystals 2025, 15(7), 652; https://doi.org/10.3390/cryst15070652 - 16 Jul 2025
Viewed by 259
Abstract
This study investigates the influence of plastic deformation and temperature on the formation of mechanically induced martensite and the associated changes in hardness in AISI 304 austenitic stainless steel. Cold rolling was performed at three temperatures (20 °C, 0 °C, and −196 °C) [...] Read more.
This study investigates the influence of plastic deformation and temperature on the formation of mechanically induced martensite and the associated changes in hardness in AISI 304 austenitic stainless steel. Cold rolling was performed at three temperatures (20 °C, 0 °C, and −196 °C) and various degrees of deformation (10–70%). Microstructural changes, including the formation of ε and α′ martensite, were characterized using X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The results confirm that martensitic transformation proceeds via the γ → ε → α′ sequence, with transformation rates and martensite fractions increasing at lower temperatures and higher strains. The stacking fault energy of 25.9 mJ/m2 favors this transformation pathway. Transformation rates of α′ martensite fractions significantly increased at lower temperatures and higher strains, 91.8% α′ martensite was observed at just 30% deformation at −196 °C. Hardness measurements revealed a strong correlation with martensite content: strain hardening dominated at lower deformations, while martensite formation became the primary hardening mechanism at higher deformations, especially at cryogenic temperatures. The highest hardness (551 HV) was observed in samples deformed to 70% at −196 °C. The findings provide insights into optimizing the mechanical properties of AISI 304 stainless steel through controlled deformation and temperature conditions. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials (2nd Edition))
Show Figures

Figure 1

13 pages, 4282 KiB  
Article
Cerium Addition Enhances Impact Energy Stability in S355NL Steel by Tailoring Microstructure and Inclusions
by Jiandong Yang, Bijun Xie and Mingyue Sun
Metals 2025, 15(7), 802; https://doi.org/10.3390/met15070802 - 16 Jul 2025
Viewed by 260
Abstract
S355NL structural steel is extensively employed in bridges, ships, and power station equipment owing to its excellent tensile strength, weldability, and low-temperature toughness. However, pronounced fluctuations in its Charpy impact energy at low temperatures significantly compromise the reliability and service life of critical [...] Read more.
S355NL structural steel is extensively employed in bridges, ships, and power station equipment owing to its excellent tensile strength, weldability, and low-temperature toughness. However, pronounced fluctuations in its Charpy impact energy at low temperatures significantly compromise the reliability and service life of critical components. In this study, vacuum-induction-melted ingots of S355NL steel containing 0–0.086 wt.% rare earth cerium were prepared. The effects of Ce on microstructures, inclusions, and impact toughness were systematically investigated using optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and Charpy V-notch testing. The results indicate that appropriate Ce additions (0.0011–0.0049 wt.%) refine the average grain size from 5.27 μm to 4.88 μm, reduce the pearlite interlamellar spacing from 204 nm to 169 nm, and promote the transformation of large-size Al2O3-MnS composite inclusions into fine, spherical, Ce-rich oxysulfides. Charpy V-notch tests at –50 °C reveal that 0.0011 wt.% Ce enhances both longitudinal (269.7 J) and transverse (257.4 J) absorbed energies while minimizing anisotropy (E_t/E_l  =  1.01). Conversely, excessive Ce addition (0.086 wt.%) leads to coarse inclusions and deteriorates impact performance. These findings establish an optimal Ce window (0.0011–0.0049 wt.%) for microstructural and inclusion engineering to enhance the low-temperature impact toughness of S355NL steel. Full article
Show Figures

Figure 1

16 pages, 22005 KiB  
Article
High-Impact Resistance of Textile/Fiber-Reinforced Cement-Based Composites: Experiment and Theory Analysis
by Zongcai Deng and Dongyue Liu
Textiles 2025, 5(3), 26; https://doi.org/10.3390/textiles5030026 - 4 Jul 2025
Viewed by 274
Abstract
To develop cement-based composite materials with exceptional impact resistance, this study investigates the impact resistance performance of steel fiber- and glass fiber-reinforced specimens, as well as steel fiber and glass fiber textile-reinforced specimens, through drop weight impact tests. The results showed that the [...] Read more.
To develop cement-based composite materials with exceptional impact resistance, this study investigates the impact resistance performance of steel fiber- and glass fiber-reinforced specimens, as well as steel fiber and glass fiber textile-reinforced specimens, through drop weight impact tests. The results showed that the impact resistance of specimens increases with the number of glass fiber textile layers, glass fiber volume fractions, and glass fiber lengths, with 36GF1.5SF1.0 exhibitinh ultra-high impact resistance with a failure impact energy of 114 kJ. Compared to the specimens reinforced with glass textiles, the specimens with glass fiber showed better impact resistance at the same volume fraction. The failure mode of unreinforced specimens is divided into several pieces, while fiber-reinforced specimens have local punching shear failure at the impact site, maintaining better integrity. An impact damage evolution equation and life prediction model based on a two-parameter Weibull distribution are developed. The research results will provide a reference for the selection of fibers for engineering applications. Full article
Show Figures

Figure 1

25 pages, 4932 KiB  
Article
Synthesis, Characterization, and Adhesion on Galvanized Steel of Original Thermoset Adhesive Films Based on Aza-Michael Addition Reaction
by Florian Cavodeau, Maurice Brogly, Jean-François Stumbe and Rémi Perrin
Polymers 2025, 17(13), 1796; https://doi.org/10.3390/polym17131796 - 27 Jun 2025
Viewed by 288
Abstract
This study focuses first on the synthesis through an aza-Michael addition reaction of original linear diamine prepolymers and original amine/acrylate thermoset adhesives, and second on their thermal, mechanical and adhesion characterization. The major advantage of the aza-Michael addition reaction is that it takes [...] Read more.
This study focuses first on the synthesis through an aza-Michael addition reaction of original linear diamine prepolymers and original amine/acrylate thermoset adhesives, and second on their thermal, mechanical and adhesion characterization. The major advantage of the aza-Michael addition reaction is that it takes place at room temperature, without a solvent and without a catalyst. Using the aza-Michael addition reaction, linear secondary diamine prepolymers were first synthesized with a control of the molecular weight, ranging from 867 to 1882 g mol−1. Then, aza-Michael reactions of diamine prepolymers with three different acrylates allowed the synthesis of new amine/acrylate thermoset adhesives. All the thermoset adhesives were characterized by rheology and thermal analysis, leading, once the crosslinking aza-Michael reaction had occurred, to soft thermoset networks with glass transition temperatures ranging from −23 to −8 °C, gel point times ranging from 40 min to 4 h, and a polar component of the surface energy ranging from 3 to 17 mJ m−2. Functionality of the acrylates directly influences the crosslinking rate, and a decreasing master curve is obtained when reporting crosslinking rate versus gel point time. Crosslinking density is controlled by the diamine prepolymer chain length. In a second step, thermoset adhesives were applied as thin films between two galvanized steel plates, and adhesion properties were evaluated through a lap-shear test. Results showed that the adhesive strength increases as the dynamic viscosity and molecular weight of the diamines prepolymer increases. Increasing the diamines prepolymer chain length results in an increase in strain at break, a decrease in the shear modulus, and a decrease in the maximum lap-shear strength. It is also observed that the adhesive strength decreases when the adhesive film thickness increases. Moreover, thermoset adhesives with high polarity and a surface energy similar to the surface energy of the substrate will favor high adhesion and a better adhesive strength of the assembly. Lastly, the nature of the acrylates and diamines prepolymer chain length allow tuning a wide range of adhesive strength and toughness of these original soft thermoset adhesives. Full article
Show Figures

Figure 1

Back to TopTop