Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = Itô sense

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 796 KiB  
Article
Electroassisted Incorporation of Ferrocene Within Sol–Gel Silica Films to Enhance Electron Transfer—Part II: Boosting Protein Sensing with Polyelectrolyte-Modified Silica
by Rayane-Ichrak Loughlani, Alonso Gamero-Quijano and Francisco Montilla
Molecules 2025, 30(15), 3246; https://doi.org/10.3390/molecules30153246 - 2 Aug 2025
Viewed by 197
Abstract
Silica-modified electrodes possess physicochemical properties that make them valuable in electrochemical sensing and energy-related applications. Although intrinsically insulating, silica thin films can selectively interact with redox species, producing sieving effects that enhance electrochemical responses. We synthesized Class I hybrid silica matrices incorporating either [...] Read more.
Silica-modified electrodes possess physicochemical properties that make them valuable in electrochemical sensing and energy-related applications. Although intrinsically insulating, silica thin films can selectively interact with redox species, producing sieving effects that enhance electrochemical responses. We synthesized Class I hybrid silica matrices incorporating either negatively charged poly(4-styrene sulfonic acid) or positively charged poly(diallyl dimethylammonium chloride). These hybrid films were deposited onto ITO electrodes and evaluated via cyclic voltammetry in aqueous ferrocenium solutions. The polyelectrolyte charge played a key role in the electroassisted incorporation of ferrocene: silica-PSS films promoted accumulation, while silica-PDADMAC films hindered it due to electrostatic repulsion. In situ UV-vis spectroscopy confirmed that only a fraction of the embedded ferrocene was electroactive. Nevertheless, this fraction enabled effective mediated detection of cytochrome c in solution. These findings highlight the crucial role of ionic interactions and hybrid composition in electron transfer to redox proteins, providing valuable insights for the development of advanced bioelectronic sensors. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

14 pages, 3702 KiB  
Article
A High-Sensitivity U-Shaped Optical Fiber SPR Sensor Based on ITO Coating
by Chuhan Ye, Zhibo Li, Wenhao Kang and Lei Hou
Sensors 2025, 25(13), 3911; https://doi.org/10.3390/s25133911 - 23 Jun 2025
Viewed by 400
Abstract
This paper proposes a high-sensitivity U-shaped optical fiber sensor based on indium tin oxide (ITO) for surface plasmon resonance (SPR) sensing. Finite element simulations reveal that introducing ITO enhances the surface electric field strength by 1.15× compared to conventional designs, directly boosting sensitivity. [...] Read more.
This paper proposes a high-sensitivity U-shaped optical fiber sensor based on indium tin oxide (ITO) for surface plasmon resonance (SPR) sensing. Finite element simulations reveal that introducing ITO enhances the surface electric field strength by 1.15× compared to conventional designs, directly boosting sensitivity. The U-shaped structure optimizes evanescent wave–metal film interaction, further improving performance. In an external refractive index (RI) range of 1.334–1.374 RIU, the sensor achieves a sensitivity of 4333 nm/RIU (1.85× higher than traditional fiber sensors) and a figure of merit (FOM) of 21.7 RIU−1 (1.68× improvement). Repeatability tests show a low relative standard deviation (RSD) of 0.4236% for RI measurements, with a maximum error of 0.00018 RIU, confirming excellent stability. The ITO coating’s strong adhesion ensures long-term reliability. With its simple structure, ease of fabrication, and superior sensitivity/FOM, this SPR sensor is well-suited for high-precision biochemical detection in intelligent sensing systems. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

21 pages, 4516 KiB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 593
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

10 pages, 674 KiB  
Article
Abundant Exact Traveling-Wave Solutions for Stochastic Graphene Sheets Model
by Wael W. Mohammed, Taher S. Hassan, Rabeb Sidaoui, Hijyah Alshammary and Mohamed S. Algolam
Axioms 2025, 14(6), 477; https://doi.org/10.3390/axioms14060477 - 19 Jun 2025
Viewed by 254
Abstract
Here, we consider the stochastic graphene sheets model (SGSM) forced by multiplicative noise in the Itô sense. We show that the exact solution of the SGSM may be obtained by solving some deterministic counterparts of the graphene sheets model and combining the result [...] Read more.
Here, we consider the stochastic graphene sheets model (SGSM) forced by multiplicative noise in the Itô sense. We show that the exact solution of the SGSM may be obtained by solving some deterministic counterparts of the graphene sheets model and combining the result with a solution of stochastic ordinary differential equations. By applying the extended tanh function method, we obtain the soliton solutions for the deterministic counterparts of the graphene sheets model. Because graphene sheets are important in many fields, such as electronics, photonics, and energy storage, the solutions of the stochastic graphene sheets model are beneficial for understanding several fascinating scientific phenomena. Using the MATLAB program, we exhibit several 3D graphs that illustrate the impact of multiplicative noise on the exact solutions of the SGSM. By incorporating stochastic elements into the equations that govern the evolution of graphene sheets, researchers can gain insights into how these fluctuations impact the behavior of the material over time. Full article
Show Figures

Figure 1

15 pages, 2677 KiB  
Article
Enzyme-Based Solid-Phase Electrochemiluminescence Sensors with Stable, Anchored Emitters for Sensitive Glucose Detection
by Chunyin Wei, Yanyan Zheng, Fei Yan and Lifang Xu
Biosensors 2025, 15(5), 332; https://doi.org/10.3390/bios15050332 - 21 May 2025
Cited by 2 | Viewed by 614
Abstract
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel [...] Read more.
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel array film (bp-SNA), enabling sensitive glucose detection. The sensor was constructed using an electrochemical-assisted self-assembly (EASA) method with various siloxane precursors to quickly modify the surface of indium tin oxide (ITO) electrodes with a bilayer SNA of different charge properties. The inner layer, including negatively charged SNA (n-SNA), attracted the positively charged ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via electrostatic interaction, while the outer layer, including positively charged SNA (p-SNA), repelled it, forming a barrier that efficiently concentrated the Ru(bpy)32+ emitter in a stable manner. After modifying the amine groups on the p-SNA surface with aldehyde groups, glucose oxidase (GOx) was covalently immobilized, forming the enzyme electrode. In the presence of glucose, GOx catalyzed the conversion of glucose to hydrogen peroxide (H2O2), which acted as a quencher for the Ru(bpy)32+/triethanolamine (TPA) system, reducing the ECL signal and enabling quantitative glucose analysis. The sensor exhibited a wide linear range from 10 μM to 7.0 mM and a limit of detection (LOD) of 1 μM (S/N = 3). Glucose detection in fetal bovine serum was realized. By replacing the enzyme type on the electrode surface, this sensing strategy holds the potential to provide a universal platform for the detection of different metabolites. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

10 pages, 5038 KiB  
Communication
ITO Meta-Absorber-Loaded Conformal UHF Monopole Antenna with Wide-Angel RCS Reduction
by Pan Lu, Jiuhao Gong, Xiaona Liu, Yuanxi Cao, Anxue Zhang and Sen Yan
Materials 2025, 18(6), 1379; https://doi.org/10.3390/ma18061379 - 20 Mar 2025
Cited by 1 | Viewed by 514
Abstract
In this paper, a conformal UHF antenna with a wide-angle radar cross section (RCS) reduction capability is proposed. The radiator of the design is a planar monopole antenna. Since the large physical size of the antenna in UHF band can generate a scatter [...] Read more.
In this paper, a conformal UHF antenna with a wide-angle radar cross section (RCS) reduction capability is proposed. The radiator of the design is a planar monopole antenna. Since the large physical size of the antenna in UHF band can generate a scatter beam with a large RCS in the high operating frequency of radars and other sensing applications, i.e., the X band, two types of ITO (Indium Tin Oxide) meta-absorber are proposed and loaded onto the monopole antenna to suppress the scatter. For the incident beam around the direction orthogonal to the radiator plane, the periodical meta-absorber can realize around a 20 dB RCS reduction in the X band. The incident wave around the parallel direction of the radiator is absorbed by the taper meta-absorber, which can greatly suppress the surface and then reduce the RCS in the horizontal plane. The combined effect means the antenna can achieve a wide-angle RCS reduction. It should be noted that the antenna can still produce a high-efficiency omnidirectional beam after the lossy meta-absorber is loaded. In our opinion, the advantages of the proposed antenna design, including good radiation performance in UHF band and high RCS reduction in X band, make it a suitable candidate for airborne and drone applications. Full article
(This article belongs to the Special Issue Advancements in Optical Materials and Photonic Device Technologies)
Show Figures

Figure 1

17 pages, 1944 KiB  
Article
Abundant Elliptic, Trigonometric, and Hyperbolic Stochastic Solutions for the Stochastic Wu–Zhang System in Quantum Mechanics
by Wael W. Mohammed, Ekram E. Ali, Athar I. Ahmed and Marwa Ennaceur
Mathematics 2025, 13(5), 714; https://doi.org/10.3390/math13050714 - 22 Feb 2025
Cited by 1 | Viewed by 744
Abstract
In this article, we look at the stochastic Wu–Zhang system (SWZS) forced by multiplicative Brownian motion in the Itô sense. The mapping method, which is an effective analytical method, is employed to investigate the exact wave solutions of the aforementioned equation. The proposed [...] Read more.
In this article, we look at the stochastic Wu–Zhang system (SWZS) forced by multiplicative Brownian motion in the Itô sense. The mapping method, which is an effective analytical method, is employed to investigate the exact wave solutions of the aforementioned equation. The proposed scheme provides new types of exact solutions including periodic solitons, kink solitons, singular solitons and so on, to describe the wave propagation in quantum mechanics and analyze a wide range of essential physical phenomena. In the absence of noise, we obtain some previously found solutions of SWZS. Additionally, using the MATLAB program, the impacts of the noise term on the analytical solution of the SWZS were demonstrated. Full article
Show Figures

Figure 1

11 pages, 2622 KiB  
Article
Self-Powered, Flexible, Transparent Tactile Sensor Integrating Sliding and Proximity Sensing
by Kesheng Wang, Shouxin Du, Jiali Kong, Minghui Zheng, Shengtao Li, Enqiang Liang and Xiaoying Zhu
Materials 2025, 18(2), 322; https://doi.org/10.3390/ma18020322 - 13 Jan 2025
Cited by 1 | Viewed by 979
Abstract
Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and [...] Read more.
Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS). The principle of electrostatic induction and contact electrification is used to achieve tactile response when external objects approach and slide. Experiments show that the material type, speed, and pressure of the perceived object can cause the changes of the electrical signal. In addition, fluorinated ethylene propylene (FEP) is used as the contact electrification layer, and indium tin oxide (ITO) is used as the electrostatic induction electrode to achieve transparency and flexibility of the entire device. By utilizing the transparency characteristics of this sensor to integrate with optical cameras, it is possible to achieve integrated perception of tactile and visual senses. This has great advantages for applications in the field of intelligent perception and is expected to be integrated with different types of optical sensors in the future to achieve multimodal intelligent perception and sensing technology, which will contribute to the intelligence and integration of robot sensing. Full article
(This article belongs to the Special Issue Advanced Piezoelectric Nanomaterials: Fundamentals and Applications)
Show Figures

Graphical abstract

11 pages, 2643 KiB  
Article
Gold–Mercury–Platinum Alloy for Light-Enhanced Electrochemical Detection of Hydrogen Peroxide
by Yunping Wei, Runze Li and Meng Lin
Sensors 2025, 25(1), 135; https://doi.org/10.3390/s25010135 - 29 Dec 2024
Cited by 1 | Viewed by 994
Abstract
In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate [...] Read more.
In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate to form an amalgam, and then a galvanic replacement reaction was utilized to successfully prepare gold–mercury–platinum (AuHgPt) nanoalloys. The obtained alloys were characterized by scanning electron microscopy, UV–Vis spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques. The electrochemical sensing performance of the AuHgPt-modified electrode for hydrogen peroxide was evaluated by cyclic voltammetry and chronoamperometry. Under light conditions, the AuHgPt-modified electrode exhibited a desirable current response in the detection of hydrogen peroxide due to the synergistic effect of the localized surface plasmon resonance effect inherent in gold nanoparticles, and this synergistic effect improved the sensitivity of hydrogen peroxide detection. Meanwhile, the AuHgPt-modified electrode also exhibited better stability and reproducibility, which makes the modified electrode have great potential for various applications in the field of electrochemical sensing. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biochemical Sensors and Their Applications)
Show Figures

Figure 1

14 pages, 3204 KiB  
Article
Role of en-APTAS Membranes in Enhancing the NO2 Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors
by Ibtisam Ahmad, Mohsin Ali and Hee-Dong Kim
Biosensors 2024, 14(12), 635; https://doi.org/10.3390/bios14120635 - 20 Dec 2024
Cited by 4 | Viewed by 1161
Abstract
NO2 is a toxic gas that can damage the lungs with prolonged exposure and contribute to health conditions, such as asthma in children. Detecting NO2 is therefore crucial for maintaining a healthy environment. Carbon nanotubes (CNTs) are promising materials for NO [...] Read more.
NO2 is a toxic gas that can damage the lungs with prolonged exposure and contribute to health conditions, such as asthma in children. Detecting NO2 is therefore crucial for maintaining a healthy environment. Carbon nanotubes (CNTs) are promising materials for NO2 gas sensors due to their excellent electronic properties and high adsorption energy for NO2 molecules. However, conventional CNT-based sensors face challenges, including low responses at room temperature (RT) and slow recovery times. This study introduces a memristor-based NO2 gas sensor comprising CNT/ZnO/ITO decorated with an N-[3-(trimethoxysilyl)propyl] ethylene diamine (en-APTAS) membrane to enhance room-temperature-sensing performance. The amine groups in the en-APTAS membrane increase adsorption sites and boost charge transfer interactions between NO2 and the CNT surface. This modification improves the sensor’s response by 60% at 20 ppm compared to the undecorated counterpart. However, the high adsorption energy of NO2 slows the recovery process. To overcome this, a pulse-recovery method was implemented, applying a −2.5 V pulse with a 1 ms width, enabling the sensor to return to its baseline within 1 ms. These findings highlight the effectiveness of en-APTAS decoration and pulse-recovery techniques in improving the sensitivity, response, and recovery of CNT-based gas sensors. Full article
Show Figures

Figure 1

12 pages, 2423 KiB  
Article
Gold–Graphene Quantum Dot Hybrid Nanoparticle for Smart Diagnostics of Prostate Cancer
by Divakar Raj, Arun Kumar, Dhruv Kumar, Krishna Kant and Ashish Mathur
Biosensors 2024, 14(11), 534; https://doi.org/10.3390/bios14110534 - 4 Nov 2024
Cited by 2 | Viewed by 3282
Abstract
Prostate cancer is one of the most prevalent cancers afflicting men worldwide, often detected at advanced stages, leading to increased mortality rates. Addressing this challenge, we present an innovative approach employing electrochemical biosensing for early-stage prostate cancer detection. This study used Indium–Tin Oxide [...] Read more.
Prostate cancer is one of the most prevalent cancers afflicting men worldwide, often detected at advanced stages, leading to increased mortality rates. Addressing this challenge, we present an innovative approach employing electrochemical biosensing for early-stage prostate cancer detection. This study used Indium–Tin Oxide (ITO) as a substrate and a deposited gold–graphene quantum dot (Au–GQD) nanohybrid to establish electrochemical sensing platforms for DNA-hybridization assays. A capturing DNA probe, PCA3, was covalently immobilized on the surface of the Au–GQDs and deposited electrochemically onto the ITO electrode surface. The Au–GQDs enabled the capturing of the target PCA3 biomarker probe. The sensor achieved a limit of detection (LoD) of up to 211 fM and presented a linear detection range spanning 1 µM to 100 fM. A rapid 5-min response time was also achieved. The tested shelf life of the pre-immobilized sensor was approximately 19 ± 1 days, with pronounced selectivity for its intended target amidst various interferants. The sensing device has the potential to revolutionize prostate cancer management by facilitating early-stage detection and screening with enhanced treatment efficacy. Full article
(This article belongs to the Special Issue Nano-Biosensors for Detection and Monitoring (2nd Edition))
Show Figures

Figure 1

46 pages, 1633 KiB  
Article
Stochastic Differential Games and a Unified Forward–Backward Coupled Stochastic Partial Differential Equation with Lévy Jumps
by Wanyang Dai
Mathematics 2024, 12(18), 2891; https://doi.org/10.3390/math12182891 - 16 Sep 2024
Viewed by 2115
Abstract
We establish a relationship between stochastic differential games (SDGs) and a unified forward–backward coupled stochastic partial differential equation (SPDE) with discontinuous Lévy Jumps. The SDGs have q players and are driven by a general-dimensional vector Lévy process. By establishing a vector-form Ito [...] Read more.
We establish a relationship between stochastic differential games (SDGs) and a unified forward–backward coupled stochastic partial differential equation (SPDE) with discontinuous Lévy Jumps. The SDGs have q players and are driven by a general-dimensional vector Lévy process. By establishing a vector-form Ito-Ventzell formula and a 4-tuple vector-field solution to the unified SPDE, we obtain a Pareto optimal Nash equilibrium policy process or a saddle point policy process to the SDG in a non-zero-sum or zero-sum sense. The unified SPDE is in both a general-dimensional vector form and forward–backward coupling manner. The partial differential operators in its drift, diffusion, and jump coefficients are in time-variable and position parameters over a domain. Since the unified SPDE is of general nonlinearity and a general high order, we extend our recent study from the existing Brownian motion (BM)-driven backward case to a general Lévy-driven forward–backward coupled case. In doing so, we construct a new topological space to support the proof of the existence and uniqueness of an adapted solution of the unified SPDE, which is in a 4-tuple strong sense. The construction of the topological space is through constructing a set of topological spaces associated with a set of exponents {γ1,γ2,} under a set of general localized conditions, which is significantly different from the construction of the single exponent case. Furthermore, due to the coupling from the forward SPDE and the involvement of the discontinuous Lévy jumps, our study is also significantly different from the BM-driven backward case. The coupling between forward and backward SPDEs essentially corresponds to the interaction between noise encoding and noise decoding in the current hot diffusion transformer model for generative AI. Full article
Show Figures

Figure 1

13 pages, 3938 KiB  
Article
The Light Wavelength, Intensity, and Biasing Voltage Dependency of the Dark and Photocurrent Densities of a Solution-Processed P3HT:PC61BM Photodetector for Sensing Applications
by Farjana Akter Jhuma, Kentaro Harada, Muhamad Affiq Bin Misran, Hin-Wai Mo, Hiroshi Fujimoto and Reiji Hattori
Nanomaterials 2024, 14(18), 1496; https://doi.org/10.3390/nano14181496 - 14 Sep 2024
Cited by 2 | Viewed by 1261
Abstract
The promising possibility of an organic photodetector (OPD) is emerging in the field of sensing applications for its tunable absorption range, flexibility, and large-scale fabrication abilities. In this work, we fabricated a bulk heterojunction OPD with a device structure of glass/ITO/PEDOT:PSS/P3HT:PC61BM/Al [...] Read more.
The promising possibility of an organic photodetector (OPD) is emerging in the field of sensing applications for its tunable absorption range, flexibility, and large-scale fabrication abilities. In this work, we fabricated a bulk heterojunction OPD with a device structure of glass/ITO/PEDOT:PSS/P3HT:PC61BM/Al using the spin-coating process and characterized the dark and photocurrent densities at different applied bias conditions for red, green, and blue incident LEDs. The OPD photocurrent density exhibited a magnitude up to 2.5–3 orders higher compared to the dark current density at a −1 V bias while it increased by up to 3–4 orders at zero bias conditions for red, green, and blue lights, showing an increasing trend when a higher voltage is applied in the negative direction. Different OPD inner periphery shapes, the OPD to LED distance, and OPD area were also considered to bring the variation in the OPD dark and photocurrent densities, which can affect the on/off ratio of the OPD–LED hybrid system and is a critical phenomenon for any sensing application. Full article
Show Figures

Figure 1

15 pages, 4355 KiB  
Article
All-Layer Electrodeposition of a CdTe/Hg0.1Cd0.9Te/CdTe Photodetector for Short- and Mid-Wavelength Infrared Detection
by Vianey A. Candelas-Urrea, Carlos Villa-Angulo, Iván O. Hernández-Fuentes, Ricardo Morales-Carbajal and Rafael Villa-Angulo
Coatings 2024, 14(9), 1133; https://doi.org/10.3390/coatings14091133 - 3 Sep 2024
Cited by 1 | Viewed by 1621
Abstract
CdS, CdTe, Hg0.1Cd0.9Te, CdTe, and Ag films were progressively electrodeposited on ITO-coated soda–lime glass to manufacture a short- and mid-wavelength infrared photodetector. A distinctive feature of the applied electrodeposition method is the use of a non-aqueous solution containing ethylene [...] Read more.
CdS, CdTe, Hg0.1Cd0.9Te, CdTe, and Ag films were progressively electrodeposited on ITO-coated soda–lime glass to manufacture a short- and mid-wavelength infrared photodetector. A distinctive feature of the applied electrodeposition method is the use of a non-aqueous solution containing ethylene glycol (EG) as the electrolyte in a traditional three-electrode configuration for every film deposition. Using EG as a supplementary electrolyte and using the same deposition conditions with a potential below 0.75 V for all film coatings reduces their environmental incompatibility and offers a low-cost and low-energy route for fabricating the reported photodetector. The produced photodetector has a sensitivity of up to ≈957 nm with a detectivity (D*) of 2.86 × 1012 cm Hz1/2 W−1 and a dark current density (Jdark) of 10−6 mA cm−2. Furthermore, the manufactured photodiode exhibits self-powered performance because Voc and Jsc are self-generated, unlike previously reported photodiodes. The presented all-layer electrodeposition assembly approach can easily be adapted to fabricate sensing devices for different applications. Full article
(This article belongs to the Special Issue Optical Coatings: From Materials to Applications)
Show Figures

Figure 1

13 pages, 4278 KiB  
Article
Flexible and Disposable Hafnium Nitride Extended Gates Fabricated by Low-Temperature High-Power Impulse Magnetron Sputtering
by Chia-Ming Yang, Chao-Hui Wei, Jia-Yuan Chang and Chao-Sung Lai
Nanomaterials 2024, 14(14), 1191; https://doi.org/10.3390/nano14141191 - 12 Jul 2024
Cited by 1 | Viewed by 1582
Abstract
To obtain a high-performance extended gate field-effect transistor for pH detection, hafnium nitride (HfN) was first fabricated on an indium tin oxide on polyethylene terephthalate (ITO/PET) substrate using a high-power impulse magnetron sputter system (HiPIMS) in this study. It can be easily applied [...] Read more.
To obtain a high-performance extended gate field-effect transistor for pH detection, hafnium nitride (HfN) was first fabricated on an indium tin oxide on polyethylene terephthalate (ITO/PET) substrate using a high-power impulse magnetron sputter system (HiPIMS) in this study. It can be easily applied in biomedical diagnostic and environmental monitoring applications with the advantages of flexible, disposable, cost-effective, and reliable components. Various duty cycle conditions in HiPIMSs were designed to investigate the corresponding sensing performance and material properties including surface morphology and composition. As the duty cycle increased, the grain size of HfN increased. Additionally, X-ray photoelectron spectroscopy (XPS) analysis illustrated the presence of HfOxNy on the deposited HfN surface. Both behaviors could result in a better pH sensing performance based on the theory of the site-binding model. Subsequently, HfN with a 15% duty cycle exhibited excellent pH sensitivity and linearity, with values of 59.3 mV/pH and 99.8%, respectively; its hysteresis width and drift coefficient were −1 mV and 0.5 mV/h, respectively. Furthermore, this pH-sensing performance remained stable even after 2000 repeated bending cycles. These results indicate the potential and feasibility of this HiPIMS-deposited HfN for future wearable chemical applications. Full article
Show Figures

Figure 1

Back to TopTop