Role of en-APTAS Membranes in Enhancing the NO2 Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dispersion of CNTs
2.2. Fabrication of CNTs-CFH Gas Sensor
2.3. Fabrication of en-APTAS-Decorated CNTs-CFH Gas Sensor
2.4. Measurements of CNTs-CFH Gas Sensor
2.5. COMSOL Multiphysics Simulation
3. Results and Discussions
3.1. CFH-CNT Gas Sensor Simulations via COMSOL Multiphysics
3.2. Material Characteristics
3.3. Electrical Measurements
3.4. Gas Sensing Measurements
3.5. Gas Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, I.; Lee, D.; Mehmood, S.; Chae, M.; Ali, A.; Aftab, J.; Bhatti, A.S.; Karamat, S.; Kim, H.-D. Comprehensive analysis of reaction mechanisms in reduced graphene oxide and hematite heterostructure gas sensors. J. Alloys Compd. 2023, 967, 171698. [Google Scholar] [CrossRef]
- Kumar, R.; Mamta; Kumari, R.; Singh, V.N. SnO2-based NO2 gas sensor with outstanding sensing performance at room temperature. Micromachines 2023, 14, 728. [Google Scholar] [CrossRef] [PubMed]
- Navale, S.; Mane, A.; Chougule, M.; Sakhare, R.; Nalage, S.; Patil, V. Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films. Synth. Met. 2014, 189, 94–99. [Google Scholar] [CrossRef]
- Tian, T.; Yin, H.; Zhang, L.; Zhu, M.; Ma, D.; Shao, F.; Hu, N.; Yang, Z.; Zhang, Y.; Su, Y. Gas sensing performance and charge-transfer mechanism of semiconducting single-walled carbon nanotubes. Appl. Surf. Sci. 2023, 609, 155357. [Google Scholar] [CrossRef]
- Wang, Y.; Yeow, J.T. A review of carbon nanotubes-based gas sensors. J. Sens. 2009, 1, 493904. [Google Scholar] [CrossRef]
- Zhang, W.-D.; Zhang, W.-H. Carbon nanotubes as active components for gas sensors. J. Sens. 2009, 1, 160698. [Google Scholar] [CrossRef]
- Chen, G.; Paronyan, T.M.; Pigos, E.M.; Harutyunyan, A.R. Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep. 2012, 2, 343. [Google Scholar] [CrossRef] [PubMed]
- Elakia, M.; Gobinath, M.; Sivalingam, Y.; Palani, E.; Ghosh, S.; Nutalapati, V.; Surya, V.J. Investigation on visible light assisted gas sensing ability of multi-walled carbon nanotubes coated with pyrene based organic molecules. Phys. E Low-Dimens. Syst. Nanostructures 2020, 124, 114232. [Google Scholar] [CrossRef]
- Hwang, I.-S.; Lee, E.-B.; Kim, S.-J.; Choi, J.-K.; Cha, J.-H.; Lee, H.-J.; Ju, B.-K.; Lee, J.-H. Gas sensing properties of SnO2 nanowires on micro-heater. Sens. Actuators B Chem. 2011, 154, 295–300. [Google Scholar] [CrossRef]
- Simon, I.; Bârsan, N.; Bauer, M.; Weimar, U. Micromachined metal oxide gas sensors: Opportunities to improve sensor performance. Sens. Actuators B Chem. 2001, 73, 1–26. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-Y.; Mirzaei, A.; Nam, M.-S.; Kim, H.W.; Kim, S.S. Room-temperature detection of acetone gas by PANI/NiO-loaded TiO2 nanoparticles under UV irradiation. Sens. Actuators B Chem. 2023, 374, 132850. [Google Scholar] [CrossRef]
- Ali, M.; Lee, D.; Chae, M.; Ahmad, I.; Kim, H.-D. Advances in MXene-based Synaptic Devices and Sensors. Mater. Today Phys. 2024, 45, 101456. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Kim, H.D. Dynamic Response and Swift Recovery of Filament Heater-Integrated Low-Power Transparent CNT Gas Sensor. Adv. Funct. Mater. 2024, 34, 2405260. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Hersam, M.C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhang, N.; Xu, J.; Jin, Q.; San, X.; Wang, X. Co3O4/In2O3 pn heterostructures based gas sensor for efficient structure-driven trimethylamine detection. Ceram. Int. 2023, 49, 17354–17362. [Google Scholar] [CrossRef]
- Choi, M.S.; Kim, M.Y.; Mirzaei, A.; Kim, H.-S.; Kim, S.-i.; Baek, S.-H.; Chun, D.W.; Jin, C.; Lee, K.H. Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets. Appl. Surf. Sci. 2021, 568, 150910. [Google Scholar] [CrossRef]
- Ying, Z.; Zhang, T.; Feng, C.; Wen, F.; Li, L.; Zheng, X.; Zheng, P.; Wang, G. UV-enhanced NO2 gas sensors based on In2O3/ZnO composite material modified by polypeptides. Nanotechnology 2022, 33, 155501. [Google Scholar] [CrossRef]
- Dong, Z.; Hu, Q.; Liu, H.; Wu, Y.; Ma, Z.; Fan, Y.; Li, R.; Xu, J.; Wang, X. 3D flower-like Ni doped CeO2 based gas sensor for H2S detection and its sensitive mechanism. Sens. Actuators B Chem. 2022, 357, 131227. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Kim, H.-D. Influence of en-APTAS membrane on NO gas selectivity of HfO2-based memristor gas sensors. Jpn. J. Appl. Phys. 2024, 63, 03SP07. [Google Scholar] [CrossRef]
- Lim, N.; Kim, K.H.; Byun, Y.T. Preparation of defected SWCNTs decorated with en-APTAS for application in high-performance nitric oxide gas detection. Nanoscale 2021, 13, 6538–6544. [Google Scholar] [CrossRef]
- Ahmad, I.; Lee, D.; Chae, M.; Kim, H.-D. Advanced recovery and enhanced humidity tolerance of CNTs gas sensor using a filament heater. Chem. Eng. J. 2024, 496, 154014. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Jung, J.; Kim, H.-D. Enhanced memristor-based gas sensor for fast detection using a porous carbon nanotube top electrode with membrane. Cell Rep. Phys. Sci. 2023, 4, 11. [Google Scholar] [CrossRef]
- Kim, T.; Lee, D.; Chae, M.; Kim, K.-H.; Kim, H.-D. Enhancing the Resistive Switching Properties of Transparent HfO2-Based Memristor Devices for Reliable Gasistor Applications. Sensors 2024, 24, 6382. [Google Scholar] [CrossRef] [PubMed]
- Bature, U.I.; Nawi, I.M.; Khir, M.H.M.; Zahoor, F.; Algamili, A.S.; Hashwan, S.S.B.; Zakariya, M.A. Statistical simulation of the switching mechanism in ZnO-based RRAM devices. Materials 2022, 15, 1205. [Google Scholar] [CrossRef] [PubMed]
- Bature, U.I.; Nawi, I.M.; Khir, M.H.M.; Zahoor, F.; Hashwan, S.S.B.; Algamili, A.S.; Abbas, H. Analysis of thermodynamic resistive switching in ZnO-based RRAM device. Phys. Scr. 2023, 98, 035020. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Radiman, S.; Daud, A.; Tabet, N.; Al-Douri, Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013, 39, 2283–2292. [Google Scholar] [CrossRef]
- Chang, Q.-Q.; Cui, Y.-W.; Zhang, H.-H.; Chang, F.; Zhu, B.-H.; Yu, S.-Y. C-doped ZnO decorated with Au nanoparticles constructed from the metal–organic framework ZIF-8 for photodegradation of organic dyes. RSC Adv. 2019, 9, 12689–12695. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, R.; Huo, Y.; Li, H.; Wang, L. Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion. Adv. Funct. Mater. 2022, 32, 2109503. [Google Scholar] [CrossRef]
- Bourlier, Y.; Bouttemy, M.; Patard, O.; Gamarra, P.; Piotrowicz, S.; Vigneron, J.; Aubry, R.; Delage, S.; Etcheberry, A. Investigation of InAlN layers surface reactivity after thermal annealings: A complete XPS study for HEMT. ECS J. Solid State Sci. Technol. 2018, 7, P329. [Google Scholar] [CrossRef]
- Sun, J.; Chang, J.; Zhang, Y.; Wei, Y.; Zhang, Q.; Wang, F.; Lin, S.; Wang, Z.; Mao, M. CH4/C2H6 dual gas sensing system using a single mid-infrared laser. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 291, 122368. [Google Scholar] [CrossRef] [PubMed]
- Winkowski, M.; Stacewicz, T. Detection of ethane, methane, formaldehyde and water vapor in the 3.33 μm range. Metrol. Meas. Syst. 2022, 29, 271–282. [Google Scholar] [CrossRef]
- Chen, B.; Xu, R.; Zhang, R.; Liu, N. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOX by ammonia. Environ. Sci. Technol. 2014, 48, 13909–13916. [Google Scholar] [CrossRef]
- Gao, F.; Walter, E.D.; Karp, E.M.; Luo, J.; Tonkyn, R.G.; Kwak, J.H.; Szanyi, J.; Peden, C.H. Structure–activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J. Catal. 2013, 300, 20–29. [Google Scholar] [CrossRef]
- Leghrib, R.; Felten, A.; Pireaux, J.; Llobet, E. Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature. Thin Solid Film. 2011, 520, 966–970. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Zhang, Y.; Zhang, C.; Zhang, T. High performance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids. Sens. Actuators B Chem. 2015, 211, 318–324. [Google Scholar] [CrossRef]
- Cho, W.-S.; Moon, S.-I.; Paek, K.-K.; Lee, Y.-H.; Park, J.-H.; Ju, B.-K. Patterned multiwall carbon nanotube films as materials of NO2 gas sensors. Sens. Actuators B Chem. 2006, 119, 180–185. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Yuan, Z.; Jiang, Y.; Su, Y.; Ma, J.; Tai, H. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sens. Actuators B Chem. 2019, 295, 86–92. [Google Scholar] [CrossRef]
- Wei, B.-Y.; Hsu, M.-C.; Su, P.-G.; Lin, H.-M.; Wu, R.-J.; Lai, H.-J. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sens. Actuators B Chem. 2004, 101, 81–89. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, W.; Hong, Y.; Lee, G.; Yoon, D.S. Recent advances in carbon material-based NO2 gas sensors. Sens. Actuators B Chem. 2018, 255, 1788–1804. [Google Scholar] [CrossRef]
- Ma, D.; Su, Y.; Tian, T.; Yin, H.; Huo, T.; Shao, F.; Yang, Z.; Hu, N.; Zhang, Y. Highly sensitive room-temperature NO2 gas sensors based on three-dimensional multiwalled carbon nanotube networks on SiO2 nanospheres. ACS Sustain. Chem. Eng. 2020, 8, 13915–13923. [Google Scholar] [CrossRef]
Material | Vsensing | K [WK−1m−1] | Cp [JKg−1K−1] | σ [Sm−1] | ԑr | ρ [Kgm−3] |
---|---|---|---|---|---|---|
ZnO (with en-APTAS) | 0.5 V | 49 | 40.3 | 3.19 × 10−4 | 2.4 | 5.606 × 103 |
ZnO (without en-APTAS) | 0.5 V | 49 | 40.3 | 3.39 × 10−4 | 2.4 | 5.606 × 103 |
ZnO1−x | - | 70 | 100 | 2 × 10−4 | 3 | 6.500 × 103 |
Sensing Gas | Temperature | Sensing Material | Concentration of Gas (ppm) | Response % | Recovery Time (s) | Ref |
---|---|---|---|---|---|---|
NO2 | MHH in HRS | CNT | 10 | 1.46 | 0.001 | [13] |
NO2 | MHN in HRS | CNT | 10 | 1.77 | 0.001 | [13] |
NO2 | Room temperature | B-doped CNT/SnO2 | 2 | 2 | 9000 | [34] |
NO2 | Room temperature | rGO-CNT SnO2 | 5 | 2.53 | 77 | [35] |
NO2 | Room temperature | Mesh-shaped MWNT | 50 | 2.28 | N/A | [36] |
NO2 | Room temperature | PPy/N MWCNT | 5 | 1.25 | 668 | [37] |
NO2 | Room temperature | SWCNT/SnO2 | 600 | 71 | 90 | [38] |
NO2 | CFH in HRS | CNT | 50 | 54 | 0.001 | [21] |
NO2 | Room Temperature | HfO2 | 25 | 22 | N/A | [23] |
NO2 | Room Temperature | CNTs-TE with en-APTAS | 10 | 5.32 | 0.000006 | [19] |
NO2 | CFH in HRS | CNTs-CFH gas sensor | 20 | 24.94 | 0.001 | This work |
NO2 | CFH in HRS | En-APTAS coated CNTs-CFH gas sensor | 20 | 9.72 | 0.001 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Ali, M.; Kim, H.-D. Role of en-APTAS Membranes in Enhancing the NO2 Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors. Biosensors 2024, 14, 635. https://doi.org/10.3390/bios14120635
Ahmad I, Ali M, Kim H-D. Role of en-APTAS Membranes in Enhancing the NO2 Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors. Biosensors. 2024; 14(12):635. https://doi.org/10.3390/bios14120635
Chicago/Turabian StyleAhmad, Ibtisam, Mohsin Ali, and Hee-Dong Kim. 2024. "Role of en-APTAS Membranes in Enhancing the NO2 Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors" Biosensors 14, no. 12: 635. https://doi.org/10.3390/bios14120635
APA StyleAhmad, I., Ali, M., & Kim, H.-D. (2024). Role of en-APTAS Membranes in Enhancing the NO2 Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors. Biosensors, 14(12), 635. https://doi.org/10.3390/bios14120635