Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (300)

Search Parameters:
Keywords = Internet of Vehicles (IoVs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2174 KiB  
Article
TwinFedPot: Honeypot Intelligence Distillation into Digital Twin for Persistent Smart Traffic Security
by Yesin Sahraoui, Abdessalam Mohammed Hadjkouider, Chaker Abdelaziz Kerrache and Carlos T. Calafate
Sensors 2025, 25(15), 4725; https://doi.org/10.3390/s25154725 - 31 Jul 2025
Viewed by 234
Abstract
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we [...] Read more.
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we propose TwinFedPot, an innovative digital twin-based security architecture that combines honeypot-driven data collection with Zero-Shot Learning (ZSL) for robust and adaptive cyber threat detection without requiring prior sampling. The framework leverages Inverse Federated Distillation (IFD) to train the DT server, where edge-deployed honeypots generate semantic predictions of anomalous behavior and upload soft logits instead of raw data. Unlike conventional federated approaches, TwinFedPot reverses the typical knowledge flow by distilling collective intelligence from the honeypots into a central teacher model hosted on the DT. This inversion allows the system to learn generalized attack patterns using only limited data, while preserving privacy and enhancing robustness. Experimental results demonstrate significant improvements in accuracy and F1-score, establishing TwinFedPot as a scalable and effective defense solution for smart traffic infrastructures. Full article
Show Figures

Figure 1

18 pages, 1040 KiB  
Article
A TDDPG-Based Joint Optimization Method for Hybrid RIS-Assisted Vehicular Integrated Sensing and Communication
by Xinren Wang, Zhuoran Xu, Qin Wang, Yiyang Ni and Haitao Zhao
Electronics 2025, 14(15), 2992; https://doi.org/10.3390/electronics14152992 - 27 Jul 2025
Viewed by 282
Abstract
This paper proposes a novel Twin Delayed Deep Deterministic Policy Gradient (TDDPG)-based joint optimization algorithm for hybrid reconfigurable intelligent surface (RIS)-assisted integrated sensing and communication (ISAC) systems in Internet of Vehicles (IoV) scenarios. The proposed system model achieves deep integration of sensing and [...] Read more.
This paper proposes a novel Twin Delayed Deep Deterministic Policy Gradient (TDDPG)-based joint optimization algorithm for hybrid reconfigurable intelligent surface (RIS)-assisted integrated sensing and communication (ISAC) systems in Internet of Vehicles (IoV) scenarios. The proposed system model achieves deep integration of sensing and communication by superimposing the communication and sensing signals within the same waveform. To decouple the complex joint design problem, a dual-DDPG architecture is introduced, in which one agent optimizes the transmit beamforming vector and the other adjusts the RIS phase shift matrix. Both agents share a unified reward function that comprehensively considers multi-user interference (MUI), total transmit power, RIS noise power, and sensing accuracy via the CRLB constraint. Simulation results demonstrate that the proposed TDDPG algorithm significantly outperforms conventional DDPG in terms of sum rate and interference suppression. Moreover, the adoption of a hybrid RIS enables an effective trade-off between communication performance and system energy efficiency, highlighting its practical deployment potential in dynamic IoV environments. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

25 pages, 1047 KiB  
Article
Integrated Blockchain and Federated Learning for Robust Security in Internet of Vehicles Networks
by Zhikai He, Rui Xu, Binyu Wang, Qisong Meng, Qiang Tang, Li Shen, Zhen Tian and Jianyu Duan
Symmetry 2025, 17(7), 1168; https://doi.org/10.3390/sym17071168 - 21 Jul 2025
Viewed by 340
Abstract
The Internet of Vehicles (IoV) operates in an environment characterized by asymmetric security threats, where centralized vulnerabilities create a critical imbalance that can be disproportionately exploited by attackers. This study addresses this imbalance by proposing a symmetrical security framework that integrates Blockchain and [...] Read more.
The Internet of Vehicles (IoV) operates in an environment characterized by asymmetric security threats, where centralized vulnerabilities create a critical imbalance that can be disproportionately exploited by attackers. This study addresses this imbalance by proposing a symmetrical security framework that integrates Blockchain and Federated Learning (FL) to restore equilibrium in the Vehicle–Road–Cloud ecosystem. The evolution toward sixth-generation (6G) technologies amplifies both the potential of vehicle-to-everything (V2X) communications and its inherent security risks. The proposed framework achieves a delicate balance between robust security and operational efficiency. By leveraging blockchain’s symmetrical and decentralized distribution of trust, the framework ensures data and model integrity. Concurrently, the privacy-preserving approach of FL balances the need for collaborative intelligence with the imperative of safeguarding sensitive vehicle data. A novel Cloud Proxy Re-Encryption Offloading (CPRE-IoV) algorithm is introduced to facilitate efficient model updates. The architecture employs a partitioned blockchain and a smart contract-driven FL pipeline to symmetrically neutralize threats from malicious nodes. Finally, extensive simulations validate the framework’s effectiveness in establishing a resilient and symmetrically secure foundation for next-generation IoV networks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 626 KiB  
Article
A Strong Anonymous Privacy Protection Authentication Scheme Based on Certificateless IOVs
by Xiaohu He, Shan Gao, Hua Wang and Chuyan Wang
Symmetry 2025, 17(7), 1163; https://doi.org/10.3390/sym17071163 - 21 Jul 2025
Viewed by 168
Abstract
The Internet of Vehicles (IoVs) uses vehicles as the main carrier to communicate with other entities, promoting efficient transmission and sharing of traffic data. Using real identities for communication may leak private data, so pseudonyms are commonly used as identity credentials. However, existing [...] Read more.
The Internet of Vehicles (IoVs) uses vehicles as the main carrier to communicate with other entities, promoting efficient transmission and sharing of traffic data. Using real identities for communication may leak private data, so pseudonyms are commonly used as identity credentials. However, existing anonymous authentication schemes have limitations, including large vehicle storage demands, information redundancy, time-dependent pseudonym updates, and public–private key updates coupled with pseudonym changes. To address these issues, we propose a certificateless strong anonymous privacy protection authentication scheme that allows vehicles to autonomously generate and dynamically update pseudonyms. Additionally, the trusted authority transmits each entity’s partial private key via a session key, eliminating reliance on secure channels during transmission. Based on the elliptic curve discrete logarithm problem, the scheme’s existential unforgeability is proven in the random oracle model. Performance analysis shows that it outperforms existing schemes in computational cost and communication overhead, with the total computational cost reduced by 70.29–91.18% and communication overhead reduced by 27.75–82.55%, making it more suitable for privacy-sensitive and delay-critical IoV environments. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Applied Cryptography)
Show Figures

Figure 1

36 pages, 8047 KiB  
Article
Fed-DTB: A Dynamic Trust-Based Framework for Secure and Efficient Federated Learning in IoV Networks: Securing V2V/V2I Communication
by Ahmed Alruwaili, Sardar Islam and Iqbal Gondal
J. Cybersecur. Priv. 2025, 5(3), 48; https://doi.org/10.3390/jcp5030048 - 19 Jul 2025
Viewed by 468
Abstract
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial [...] Read more.
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial attacks, and the handling of available resources. This paper introduces Fed-DTB, a new dynamic trust-based framework for FL that aims to overcome these challenges in the context of IoV. Fed-DTB integrates the adaptive trust evaluation that is capable of quickly identifying and excluding malicious clients to maintain the authenticity of the learning process. A performance comparison with previous approaches is shown, where the Fed-DTB method improves accuracy in the first two training rounds and decreases the per-round training time. The Fed-DTB is robust to non-IID data distributions and outperforms all other state-of-the-art approaches regarding the final accuracy (87–88%), convergence rate, and adversary detection (99.86% accuracy). The key contributions include (1) a multi-factor trust evaluation mechanism with seven contextual factors, (2) correlation-based adaptive weighting that dynamically prioritises trust factors based on vehicular conditions, and (3) an optimisation-based client selection strategy that maximises collaborative reliability. This work opens up opportunities for more accurate, secure, and private collaborative learning in future intelligent transportation systems with the help of federated learning while overcoming the conventional trade-off of security vs. efficiency. Full article
Show Figures

Figure 1

42 pages, 2129 KiB  
Review
Ensemble Learning Approaches for Multi-Class Intrusion Detection Systems for the Internet of Vehicles (IoV): A Comprehensive Survey
by Manal Alharthi, Faiza Medjek and Djamel Djenouri
Future Internet 2025, 17(7), 317; https://doi.org/10.3390/fi17070317 - 19 Jul 2025
Viewed by 436
Abstract
The emergence of the Internet of Vehicles (IoV) has revolutionized intelligent transportation and communication systems. However, IoV presents many complex and ever-changing security challenges and thus requires robust cybersecurity protocols. This paper comprehensively describes and evaluates ensemble learning approaches for multi-class intrusion detection [...] Read more.
The emergence of the Internet of Vehicles (IoV) has revolutionized intelligent transportation and communication systems. However, IoV presents many complex and ever-changing security challenges and thus requires robust cybersecurity protocols. This paper comprehensively describes and evaluates ensemble learning approaches for multi-class intrusion detection systems in the IoV environment. The study evaluates several approaches, such as stacking, voting, boosting, and bagging. A comprehensive review of the literature spanning 2020 to 2025 reveals important trends and topics that require further investigation and the relative merits of different ensemble approaches. The NSL-KDD, CICIDS2017, and UNSW-NB15 datasets are widely used to evaluate the performance of Ensemble Learning-Based Intrusion Detection Systems (ELIDS). ELIDS evaluation is usually carried out using some popular performance metrics, including Precision, Accuracy, Recall, F1-score, and Area Under Receiver Operating Characteristic Curve (AUC-ROC), which were used to evaluate and measure the effectiveness of different ensemble learning methods. Given the increasing complexity and frequency of cyber threats in IoV environments, ensemble learning methods such as bagging, boosting, and stacking enhance adaptability and robustness. These methods aggregate multiple learners to improve detection rates, reduce false positives, and ensure more resilient intrusion detection models that can evolve alongside emerging attack patterns. Full article
Show Figures

Figure 1

40 pages, 2206 KiB  
Review
Toward Generative AI-Based Intrusion Detection Systems for the Internet of Vehicles (IoV)
by Isra Mahmoudi, Djallel Eddine Boubiche, Samir Athmani, Homero Toral-Cruz and Freddy I. Chan-Puc
Future Internet 2025, 17(7), 310; https://doi.org/10.3390/fi17070310 - 17 Jul 2025
Viewed by 517
Abstract
The increasing complexity and scale of Internet of Vehicles (IoV) networks pose significant security challenges, necessitating the development of advanced intrusion detection systems (IDS). Traditional IDS approaches, such as rule-based and signature-based methods, are often inadequate in detecting novel and sophisticated attacks due [...] Read more.
The increasing complexity and scale of Internet of Vehicles (IoV) networks pose significant security challenges, necessitating the development of advanced intrusion detection systems (IDS). Traditional IDS approaches, such as rule-based and signature-based methods, are often inadequate in detecting novel and sophisticated attacks due to their limited adaptability and dependency on predefined patterns. To overcome these limitations, machine learning (ML) and deep learning (DL)-based IDS have been introduced, offering better generalization and the ability to learn from data. However, these models can still struggle with zero-day attacks, require large volumes of labeled data, and may be vulnerable to adversarial examples. In response to these challenges, Generative AI-based IDS—leveraging models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Transformers—have emerged as promising solutions that offer enhanced adaptability, synthetic data generation for training, and improved detection capabilities for evolving threats. This survey provides an overview of IoV architecture, vulnerabilities, and classical IDS techniques while focusing on the growing role of Generative AI in strengthening IoV security. It discusses the current landscape, highlights the key challenges, and outlines future research directions aimed at building more resilient and intelligent IDS for the IoV ecosystem. Full article
Show Figures

Figure 1

27 pages, 1665 KiB  
Article
A Heuristic Optical Flow Scheduling Algorithm for Low-Delay Vehicular Visible Light Communication
by Zhengying Cai, Shumeng Lei, Jingyi Li, Chen Yu, Junyu Liu and Guoqiang Gong
Photonics 2025, 12(7), 693; https://doi.org/10.3390/photonics12070693 - 9 Jul 2025
Viewed by 206
Abstract
Vehicular visible light communication (VVLC) with ultralow electromagnetic interference has great potential to propel the growth of the Internet of Vehicles (IoV). However, ensuring quick response times and minimal delays in VVLC is a significant challenge brought on by fast-moving vehicles. In response [...] Read more.
Vehicular visible light communication (VVLC) with ultralow electromagnetic interference has great potential to propel the growth of the Internet of Vehicles (IoV). However, ensuring quick response times and minimal delays in VVLC is a significant challenge brought on by fast-moving vehicles. In response to this problem, we propose a heuristic optical flow scheduling algorithm. First, the optical flow scheduling problem of VVLC is built as a multi-objective optimization model considering the makespan, delay, schedulable ratio, and bandwidth utilization with non-conflict constraints. Second, an improved artificial plant community (APC) algorithm with enhanced global and local search capabilities is proposed to achieve low-delay communication for time-sensitive optical flows. Finally, a series of benchmark experiments are conducted to show that the proposed algorithm can efficiently schedule optical flows with minimal delay. The cost of this algorithm is very low, and it is suitable for deployment on edge computing platforms such as vehicles. Full article
(This article belongs to the Special Issue New Advances in Optical Wireless Communication)
Show Figures

Figure 1

20 pages, 3008 KiB  
Article
Computation Offloading Strategy Based on Improved Polar Lights Optimization Algorithm and Blockchain in Internet of Vehicles
by Yubao Liu, Bocheng Yan, Benrui Wang, Quanchao Sun and Yinfei Dai
Appl. Sci. 2025, 15(13), 7341; https://doi.org/10.3390/app15137341 - 30 Jun 2025
Viewed by 237
Abstract
The rapid growth of computationally intensive tasks in the Internet of Vehicles (IoV) poses a triple challenge to the efficiency, security, and stability of Mobile Edge Computing (MEC). Aiming at the problems that traditional optimization algorithms tend to fall into, where local optimum [...] Read more.
The rapid growth of computationally intensive tasks in the Internet of Vehicles (IoV) poses a triple challenge to the efficiency, security, and stability of Mobile Edge Computing (MEC). Aiming at the problems that traditional optimization algorithms tend to fall into, where local optimum in task offloading and edge computing nodes are exposed to the risk of data tampering, this paper proposes a secure offloading strategy that integrates the Improved Polar Lights Optimization algorithm (IPLO) and blockchain. First, the truncation operation when a particle crosses the boundary is improved to dynamic rebound by introducing a rebound boundary processing mechanism, which enhances the global search capability of the algorithm; second, the blockchain framework based on the Delegated Byzantine Fault Tolerance (dBFT) consensus is designed to ensure data tampering and cross-node trustworthy sharing in the offloading process. Simulation results show that the strategy significantly reduces the average task processing latency (64.4%), the average system energy consumption (71.1%), and the average system overhead (75.2%), and at the same time effectively extends the vehicle’s power range, improves the real-time performance of the emergency accident warning and dynamic path planning, and significantly reduces the cost of edge computing usage for small and medium-sized fleets, providing an efficient, secure, and stable collaborative computing solution for IoV. Full article
Show Figures

Figure 1

18 pages, 826 KiB  
Article
An Intrusion Detection System for the CAN Bus Based on Locality-Sensitive Hashing
by Yun Cai, Jinxin Zuo, Mingrui Fan, Chengye Zhao and Yueming Lu
Electronics 2025, 14(13), 2572; https://doi.org/10.3390/electronics14132572 - 26 Jun 2025
Viewed by 441
Abstract
As the Internet of Vehicles (IoV) rapidly gains popularity, the Controller Area Network (CAN) faces increasingly severe security threats. Most of the existing research on protecting the CAN bus has been based on artificial intelligence models, which require complex feature extraction and training [...] Read more.
As the Internet of Vehicles (IoV) rapidly gains popularity, the Controller Area Network (CAN) faces increasingly severe security threats. Most of the existing research on protecting the CAN bus has been based on artificial intelligence models, which require complex feature extraction and training processes and are too resource-intensive for deployment in resource-constrained CAN environments. To address these challenges, we propose a lightweight intrusion detection system based on locality-sensitive hashing that achieves efficient security protection without relying on complex machine learning and deep learning frameworks. We employ the Nilsimsa algorithm to compute hash digests of the data, using the similarity scores of these digests as anomaly scores to identify abnormal traffic. Evaluations show that our method achieves an accuracy of 98%, and tests of the system’s overhead confirm its suitability for deployment in resource-limited CAN scenarios. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

22 pages, 3499 KiB  
Article
An Improved Soft Actor–Critic Task Offloading and Edge Computing Resource Allocation Algorithm for Image Segmentation Tasks in the Internet of Vehicles
by Wei Zou, Haitao Yu, Boran Yang, Aohui Ren and Wei Liu
World Electr. Veh. J. 2025, 16(7), 353; https://doi.org/10.3390/wevj16070353 - 25 Jun 2025
Viewed by 318
Abstract
This paper addresses the challenge of offloading resource-intensive image segmentation tasks and allocating computing resources within the Internet of Vehicles (IoV) using edge-based AI. To overcome the limitations of onboard computing in smart vehicles, this study develops an efficient edge computing resource allocation [...] Read more.
This paper addresses the challenge of offloading resource-intensive image segmentation tasks and allocating computing resources within the Internet of Vehicles (IoV) using edge-based AI. To overcome the limitations of onboard computing in smart vehicles, this study develops an efficient edge computing resource allocation system. The core of this system is an improved model-free soft actor–critic (iSAC) algorithm, which is enhanced by incorporating prioritized experience replay (PER). This PER-iSAC algorithm is designed to accelerate the learning process, maintain stability, and improve the efficiency and accuracy of computation offloading. Furthermore, an integrated computing and networking scheduling framework is employed to minimize overall task completion time. Simulation experiments were conducted to compare the PER-iSAC algorithm against baseline algorithms (Standard SAC and PPO). The results demonstrate that the proposed PER-iSAC significantly reduces task allocation error rates and optimizes task completion times. This research offers a practical engineering solution for enhancing the computational capabilities of IoV systems, thereby contributing to the development of more responsive and reliable autonomous driving applications. Full article
Show Figures

Figure 1

9 pages, 3532 KiB  
Article
Design and Validation of a Lightweight Entropy-Based Intrusion Detection Algorithm for Automotive CANs
by Jiacheng Chen and Zhifu Wang
World Electr. Veh. J. 2025, 16(6), 334; https://doi.org/10.3390/wevj16060334 - 18 Jun 2025
Viewed by 492
Abstract
The rapid devolopment of Internet of Vehicles (IoV) and Autonomous Connected Vehicles (ACVs) has increased the complexity of in-vehicle networks, exposing security vulnerabilities in traditional Controller Area Network (CAN) systems. CAN security faces dual challenges: stringent computational constraints imposed by automotive functional safety [...] Read more.
The rapid devolopment of Internet of Vehicles (IoV) and Autonomous Connected Vehicles (ACVs) has increased the complexity of in-vehicle networks, exposing security vulnerabilities in traditional Controller Area Network (CAN) systems. CAN security faces dual challenges: stringent computational constraints imposed by automotive functional safety requirements and the impracticality of protocol modifications in multi-device networks. To address this, we propose a lightweight intrusion detection algorithm leveraging information entropy to analyze side-channel CAN message ID distributions. Evaluated in terms of detection accuracy, false positive rate, and sensitivity to bus load variations, the algorithm was implemented on an NXP MPC-5748G embedded platform through the AutoSar Framework. Experimental results demonstrate robust performance under low computational resources, achieving high detection accuracy with high recall (>80%) even at 10% bus load fluctuation thresholds. This work provides a resource-efficient security framework compatible with existing CAN infrastructures, effectively balancing attack detection efficacy with the operational constraints of automotive embedded systems. Full article
Show Figures

Figure 1

20 pages, 1732 KiB  
Article
Multiparty Homomorphic Encryption for IoV Based on Span Program and Conjugate Search Problem
by Bo Mi, Siyuan Zeng, Ran Zeng, Fuyuan Wang and Qi Zhou
Cryptography 2025, 9(2), 41; https://doi.org/10.3390/cryptography9020041 - 6 Jun 2025
Viewed by 327
Abstract
With the rapid development of the automotive industry, research on the internet of vehicles (IoV) has become a hot topic in the field of automobiles. Considering the privacy of data collected from vehicles, this paper proposes a novel multiparty homomorphic encryption scheme (MHE) [...] Read more.
With the rapid development of the automotive industry, research on the internet of vehicles (IoV) has become a hot topic in the field of automobiles. Considering the privacy of data collected from vehicles, this paper proposes a novel multiparty homomorphic encryption scheme (MHE) for secure multiparty computation without the need for a trusted third party. The scheme ensures efficient computation of data while preserving the privacy of each party’s data. It consists of four phases: construction, computation, recombination, and refreshing. In the recombination phase, the key is reconstructed using a span program, enabling secure computation among participating parties under a semi-honest model. Finally, we compare the proposed scheme with mainstream approaches and conduct experiments within the framework of federated learning. Through both experimental and theoretical analyses, the performance of the proposed scheme is comprehensively evaluated, demonstrating its efficiency and correctness. Full article
Show Figures

Figure 1

28 pages, 3363 KiB  
Review
Internet of Vehicles for Sustainable Smart Cities: Opportunities, Issues, and Challenges
by Priyanka Mishra and Ghanshyam Singh
Smart Cities 2025, 8(3), 93; https://doi.org/10.3390/smartcities8030093 - 30 May 2025
Cited by 1 | Viewed by 2025
Abstract
Intelligent transport systems are essential for urban residents in large cities, facilitating not only vehicular mobility but also the movement of residents. Urban mobility is a significant concern, particularly in the context of the Internet of Things, where vehicles evolve into intelligent nodes [...] Read more.
Intelligent transport systems are essential for urban residents in large cities, facilitating not only vehicular mobility but also the movement of residents. Urban mobility is a significant concern, particularly in the context of the Internet of Things, where vehicles evolve into intelligent nodes within sensor networks. This convergence of the mobile Internet and the Internet of Vehicles (IoV) redefines urban mobility. In the context of smart cities, it examines the evolving IoV and communication models, unveiling both current and emerging trends. This research paper offers insights into global market trends and conducts bibliographic data analysis to illuminate the present and future potential of the IoV. It highlights IoV applications, the layered architecture, and connected and autonomous vehicle levels (Level 0 to Level 5). The communication model is explained, along with addressing research challenges and future directions. The conclusion summarizes the key findings and emphasizes the main points addressed in the study. Full article
Show Figures

Figure 1

48 pages, 556 KiB  
Review
Machine Learning-Based Security Solutions for IoT Networks: A Comprehensive Survey
by Abdullah Alfahaid, Easa Alalwany, Abdulqader M. Almars, Fatemah Alharbi, Elsayed Atlam and Imad Mahgoub
Sensors 2025, 25(11), 3341; https://doi.org/10.3390/s25113341 - 26 May 2025
Viewed by 2870
Abstract
The Internet of Things (IoT) is revolutionizing industries by enabling seamless interconnectivity across domains such as healthcare, smart cities, the Industrial Internet of Things (IIoT), and the Internet of Vehicles (IoV). However, IoT security remains a significant challenge due to vulnerabilities related to [...] Read more.
The Internet of Things (IoT) is revolutionizing industries by enabling seamless interconnectivity across domains such as healthcare, smart cities, the Industrial Internet of Things (IIoT), and the Internet of Vehicles (IoV). However, IoT security remains a significant challenge due to vulnerabilities related to data breaches, privacy concerns, cyber threats, and trust management issues. Addressing these risks requires advanced security mechanisms, with machine learning (ML) emerging as a powerful tool for anomaly detection, intrusion detection, and threat mitigation. This survey provides a comprehensive review of ML-driven IoT security solutions from 2020 to 2024, examining the effectiveness of supervised, unsupervised, and reinforcement learning approaches, as well as advanced techniques such as deep learning (DL), ensemble learning (EL), federated learning (FL), and transfer learning (TL). A systematic classification of ML techniques is presented based on their IoT security applications, along with a taxonomy of security threats and a critical evaluation of existing solutions in terms of scalability, computational efficiency, and privacy preservation. Additionally, this study identifies key limitations of current ML approaches, including high computational costs, adversarial vulnerabilities, and interpretability challenges, while outlining future research opportunities such as privacy-preserving ML, explainable AI, and edge-based security frameworks. By synthesizing insights from recent advancements, this paper provides a structured framework for developing robust, intelligent, and adaptive IoT security solutions. The findings aim to guide researchers and practitioners in designing next-generation cybersecurity models capable of effectively countering emerging threats in IoT ecosystems. Full article
Show Figures

Figure 1

Back to TopTop