Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,605)

Search Parameters:
Keywords = Inertial Measurement Unit (IMU) measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5909 KiB  
Article
Test–Retest Reliability of Task-Oriented Strength and Object Position in a Box Lifting Task Using the Activities of Daily Living Test and Training Device (ADL-TTD) in Children with Unilateral Spastic Cerebral Palsy
by Haowei Guo, Inge Heus, Bart Snijders, Nanne E. Land, Menno van der Holst, Rob. J. E. M. Smeets, Caroline H. G. Bastiaenen and Eugene A. A. Rameckers
Children 2025, 12(8), 1030; https://doi.org/10.3390/children12081030 - 5 Aug 2025
Abstract
Purpose: This study investigates the test–retest reliability of maximal voluntary contraction (MVC) and integrated object positioning during bimanual box lifting tasks in children with unilateral spastic cerebral palsy (USCP), using the Activities of Daily Living Test and Training Device (ADL-TTD). Materials and [...] Read more.
Purpose: This study investigates the test–retest reliability of maximal voluntary contraction (MVC) and integrated object positioning during bimanual box lifting tasks in children with unilateral spastic cerebral palsy (USCP), using the Activities of Daily Living Test and Training Device (ADL-TTD). Materials and Methods: Utilizing an explorative cross-sectional design, the study recruited 47 children with USCP. The ADL-TTD, equipped with an Inertial Measurement Unit (IMU) for precise object positioning, measured MVC, and object position in 3D space in a cross-sectional measurement containing two measurements in a fixed time period. Results: The findings demonstrated good test–retest reliability for MVC, with an ICCagreement of 0.95 for the mean MVC value. Additionally, good reliability was observed for object positioning in different directions measured with an IMU, with ICCagreement ranging from 0.82 to 0.86 degrees. Regarding the standard error of measurement (SEM), the SEMagreement for the mean MVC value was 5.94 kg, while the SEMagreement for object positioning was 1.48, 5.39, and 3.43 degrees, respectively. Conclusions: These results indicate that the ADL-TTD demonstrates good test–retest reliability for both MVC and object positioning, making it a valuable tool for analyzing this population in cross-sectional research by providing reliable measures of task-oriented strength and object manipulation. However, the relatively high SEMagreement, particularly in MVC, suggests that caution is needed when using this tool for repeated testing over time. This pioneering approach could significantly contribute to tailored assessment and training for children with USCP, highlighting the importance of integrating task-specific strength and positional accuracy into therapeutic interventions. Full article
(This article belongs to the Section Pediatric Orthopedics & Sports Medicine)
Show Figures

Figure 1

16 pages, 2388 KiB  
Article
Evaluating Lumbar Biomechanics for Work-Related Musculoskeletal Disorders at Varying Working Heights During Wall Construction Tasks
by Md. Sumon Rahman, Tatsuru Yazaki, Takanori Chihara and Jiro Sakamoto
Biomechanics 2025, 5(3), 58; https://doi.org/10.3390/biomechanics5030058 - 3 Aug 2025
Viewed by 53
Abstract
Objectives: The aim of this study was to evaluate the impact of four working heights on lumbar biomechanics during wall construction tasks, focusing on work-related musculoskeletal disorders (WMSDs). Methods: Fifteen young male participants performed simulated mortar-spreading and bricklaying tasks while actual [...] Read more.
Objectives: The aim of this study was to evaluate the impact of four working heights on lumbar biomechanics during wall construction tasks, focusing on work-related musculoskeletal disorders (WMSDs). Methods: Fifteen young male participants performed simulated mortar-spreading and bricklaying tasks while actual body movements were recorded using Inertial Measurement Unit (IMU) sensors. Muscle activities of the lumbar erector spinae (ES), quadratus lumborum (QL), multifidus (MF), gluteus maximus (GM), and iliopsoas (IL) were estimated using a 3D musculoskeletal (MSK) model and measured via surface electromyography (sEMG). The analysis of variance (ANOVA) test was conducted to identify the significant differences in muscle activities across four working heights (i.e., foot, knee, waist, and shoulder). Results: Findings showed that working at foot-level height resulted in the highest muscle activity (7.6% to 40.6% increase), particularly in the ES and QL muscles, indicating an increased risk of WMSDs. The activities of the ES, MF, and GM muscles were statistically significant across both tasks and all working heights (p < 0.01). Conclusions: Both MSK and sEMG analyses indicated significantly lower muscle activities at knee and waist heights, suggesting these as the best working positions (47 cm to 107 cm) for minimizing the risk of WMSDs. Conversely, working at foot and shoulder heights was identified as a significant risk factor for WMSDs. Additionally, the similar trends observed between MSK simulations and sEMG data suggest that MSK modeling can effectively substitute for sEMG in future studies. These findings provide valuable insights into ergonomic work positioning to reduce WMSD risks among wall construction workers. Full article
(This article belongs to the Section Tissue and Vascular Biomechanics)
Show Figures

Figure 1

15 pages, 2426 KiB  
Article
A Novel Integrated Inertial Navigation System with a Single-Axis Cold Atom Interferometer Gyroscope Based on Numerical Studies
by Zihao Chen, Fangjun Qin, Sibin Lu, Runbing Li, Min Jiang, Yihao Wang, Jiahao Fu and Chuan Sun
Micromachines 2025, 16(8), 905; https://doi.org/10.3390/mi16080905 (registering DOI) - 2 Aug 2025
Viewed by 102
Abstract
Inertial navigation systems (INSs) exhibit distinctive characteristics, such as long-duration operation, full autonomy, and exceptional covertness compared to other navigation systems. However, errors are accumulated over time due to operational principles and the limitations of sensors. To address this problem, this study theoretically [...] Read more.
Inertial navigation systems (INSs) exhibit distinctive characteristics, such as long-duration operation, full autonomy, and exceptional covertness compared to other navigation systems. However, errors are accumulated over time due to operational principles and the limitations of sensors. To address this problem, this study theoretically explores a numerically simulated integrated inertial navigation system consisting of a single-axis cold atom interferometer gyroscope (CAIG) and a conventional inertial measurement unit (IMU). The system leverages the low bias and drift of the CAIG and the high sampling rate of the conventional IMU to obtain more accurate navigation information. Furthermore, an adaptive gradient ascent (AGA) method is proposed to estimate the variance of the measurement noise online for the Kalman filter. It was found that errors of latitude, longitude, and positioning are reduced by 43.9%, 32.6%, and 32.3% compared with the conventional IMU over 24 h. On this basis, errors from inertial sensor drift could be further reduced by the online Kalman filter. Full article
Show Figures

Figure 1

16 pages, 5536 KiB  
Article
The Development of a Wearable-Based System for Detecting Shaken Baby Syndrome Using Machine Learning Models
by Ram Kinker Mishra, Khalid AlAnsari, Rylee Cole, Arin Nazarian, Ilkay Yildiz Potter and Ashkan Vaziri
Sensors 2025, 25(15), 4767; https://doi.org/10.3390/s25154767 - 2 Aug 2025
Viewed by 168
Abstract
Shaken Baby Syndrome (SBS) is one of the primary causes of fatal head trauma in infants and young children, occurring in about 33 per 100,000 infants annually in the U.S., with mortality rates being between 15% and 38%. Survivors frequently endure long-term disabilities, [...] Read more.
Shaken Baby Syndrome (SBS) is one of the primary causes of fatal head trauma in infants and young children, occurring in about 33 per 100,000 infants annually in the U.S., with mortality rates being between 15% and 38%. Survivors frequently endure long-term disabilities, such as cognitive deficits, visual impairments, and motor dysfunction. Diagnosing SBS remains difficult due to the lack of visible injuries and delayed symptom onset. Existing detection methods—such as neuroimaging, biomechanical modeling, and infant monitoring systems—cannot perform real-time detection and face ethical, technical, and accuracy limitations. This study proposes an inertial measurement unit (IMU)-based detection system enhanced with machine learning to identify aggressive shaking patterns. Findings indicate that wearable-based motion analysis is a promising method for recognizing high-risk shaking, offering a non-invasive, real-time solution that could minimize infant harm and support timely intervention. Full article
Show Figures

Figure 1

27 pages, 21019 KiB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 - 1 Aug 2025
Viewed by 192
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

15 pages, 2400 KiB  
Article
Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm
by Kimberly L. Branan, Rachel Kurian, Justin P. McMurray, Madhav Erraguntla, Ricardo Gutierrez-Osuna and Gerard L. Coté
Biosensors 2025, 15(8), 493; https://doi.org/10.3390/bios15080493 - 1 Aug 2025
Viewed by 156
Abstract
Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides [...] Read more.
Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides robust estimates of cardiorespiratory variables by combining three physiological signals from the upper arm: multiwavelength PPG, single-sided electrocardiography (SS-ECG), and bioimpedance plethysmography (BioZ), along with an inertial measurement unit (IMU) providing 3-axis accelerometry and gyroscope information. We evaluated the multimodal device on 16 subjects by its ability to estimate heart rate (HR) and breathing rate (BR) in the presence of various static and dynamic noise sources (e.g., skin tone and motion). We proposed a hierarchical approach that considers the subject’s skin tone and signal quality to select the optimal sensing modality for estimating HR and BR. Our results indicate that, when estimating HR, there is a trade-off between accuracy and robustness, with SS-ECG providing the highest accuracy (low mean absolute error; MAE) but low reliability (higher rates of sensor failure), and PPG/BioZ having lower accuracy but higher reliability. When estimating BR, we find that fusing estimates from multiple modalities via ensemble bagged tree regression outperforms single-modality estimates. These results indicate that multimodal approaches to cardiorespiratory monitoring can overcome the accuracy–robustness trade-off that occurs when using single-modality approaches. Full article
(This article belongs to the Special Issue Wearable Biosensors for Health Monitoring)
Show Figures

Figure 1

19 pages, 1954 KiB  
Article
Image Sensor-Based Three-Dimensional Visible Light Positioning for Various Environments
by Xiangyu Liu, Junqi Zhang, Song Song and Lei Guo
Sensors 2025, 25(15), 4741; https://doi.org/10.3390/s25154741 - 1 Aug 2025
Viewed by 155
Abstract
Research on image sensor (IS)-based visible light positioning systems has attracted widespread attention. However, when the receiver is tilted or under a single LED, the positioning system can only achieve two-dimensional (2D) positioning and requires the assistance of inertial measurement units (IMU). When [...] Read more.
Research on image sensor (IS)-based visible light positioning systems has attracted widespread attention. However, when the receiver is tilted or under a single LED, the positioning system can only achieve two-dimensional (2D) positioning and requires the assistance of inertial measurement units (IMU). When the LED is not captured or decoding fails, the system’s positioning error increases further. Thus, we propose a novel three-dimensional (3D) visible light positioning system based on image sensors for various environments. Specifically, (1) we use IMU to obtain the receiver’s state and calculate the receiver’s 2D position. Then, we fit the height–size curve to calculate the receiver’s height, avoiding the coordinate iteration error in traditional 3D positioning methods. (2) When no LED or decoding fails, we propose a firefly-assisted unscented particle filter (FA-UPF) algorithm to predict the receiver’s position, achieving high-precision dynamic positioning. The experimental results show that the system positioning error under a single LED is within 10 cm, and the average positioning error through FA-UPF under no light source is 6.45 cm. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 12094 KiB  
Article
Intelligent Active Suspension Control Method Based on Hierarchical Multi-Sensor Perception Fusion
by Chen Huang, Yang Liu, Xiaoqiang Sun and Yiqi Wang
Sensors 2025, 25(15), 4723; https://doi.org/10.3390/s25154723 - 31 Jul 2025
Viewed by 223
Abstract
Sensor fusion in intelligent suspension systems constitutes a fundamental technology for optimizing vehicle dynamic stability, ride comfort, and occupant safety. By integrating data from multiple sensor modalities, this study proposes a hierarchical multi-sensor fusion framework for active suspension control, aiming to enhance control [...] Read more.
Sensor fusion in intelligent suspension systems constitutes a fundamental technology for optimizing vehicle dynamic stability, ride comfort, and occupant safety. By integrating data from multiple sensor modalities, this study proposes a hierarchical multi-sensor fusion framework for active suspension control, aiming to enhance control precision. Initially, a binocular vision system is employed for target detection, enabling the identification of lane curvature initiation points and speed bumps, with real-time distance measurements. Subsequently, the integration of Global Positioning System (GPS) and inertial measurement unit (IMU) data facilitates the extraction of road elevation profiles ahead of the vehicle. A BP-PID control strategy is implemented to formulate mode-switching rules for the active suspension under three distinct road conditions: flat road, curved road, and obstacle road. Additionally, an ant colony optimization algorithm is utilized to fine-tune four suspension parameters. Utilizing the hardware-in-the-loop (HIL) simulation platform, the observed reductions in vertical, pitch, and roll accelerations were 5.37%, 9.63%, and 11.58%, respectively, thereby substantiating the efficacy and robustness of this approach. Full article
Show Figures

Figure 1

18 pages, 4452 KiB  
Article
Upper Limb Joint Angle Estimation Using a Reduced Number of IMU Sensors and Recurrent Neural Networks
by Kevin Niño-Tejada, Laura Saldaña-Aristizábal, Jhonathan L. Rivas-Caicedo and Juan F. Patarroyo-Montenegro
Electronics 2025, 14(15), 3039; https://doi.org/10.3390/electronics14153039 - 30 Jul 2025
Viewed by 264
Abstract
Accurate estimation of upper-limb joint angles is essential in biomechanics, rehabilitation, and wearable robotics. While inertial measurement units (IMUs) offer portability and flexibility, systems requiring multiple inertial sensors can be intrusive and complex to deploy. In contrast, optical motion capture (MoCap) systems provide [...] Read more.
Accurate estimation of upper-limb joint angles is essential in biomechanics, rehabilitation, and wearable robotics. While inertial measurement units (IMUs) offer portability and flexibility, systems requiring multiple inertial sensors can be intrusive and complex to deploy. In contrast, optical motion capture (MoCap) systems provide precise tracking but are constrained to controlled laboratory environments. This study presents a deep learning-based approach for estimating shoulder and elbow joint angles using only three IMU sensors positioned on the chest and both wrists, validated against reference angles obtained from a MoCap system. The input data includes Euler angles, accelerometer, and gyroscope data, synchronized and segmented into sliding windows. Two recurrent neural network architectures, Convolutional Neural Network with Long-short Term Memory (CNN-LSTM) and Bidirectional LSTM (BLSTM), were trained and evaluated using identical conditions. The CNN component enabled the LSTM to extract spatial features that enhance sequential pattern learning, improving angle reconstruction. Both models achieved accurate estimation performance: CNN-LSTM yielded lower Mean Absolute Error (MAE) in smooth trajectories, while BLSTM provided smoother predictions but underestimated some peak movements, especially in the primary axes of rotation. These findings support the development of scalable, deep learning-based wearable systems and contribute to future applications in clinical assessment, sports performance analysis, and human motion research. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

20 pages, 2108 KiB  
Review
Underwater Polarized Light Navigation: Current Progress, Key Challenges, and Future Perspectives
by Mingzhi Chen, Yuan Liu, Daqi Zhu, Wen Pang and Jianmin Zhu
Robotics 2025, 14(8), 104; https://doi.org/10.3390/robotics14080104 - 29 Jul 2025
Viewed by 385
Abstract
Underwater navigation remains constrained by technological limitations, driving the exploration of alternative approaches such as polarized light-based systems. This review systematically examines advances in polarized navigation from three perspectives. First, the principles of atmospheric polarization navigation are analyzed, with their operational mechanisms, advantages, [...] Read more.
Underwater navigation remains constrained by technological limitations, driving the exploration of alternative approaches such as polarized light-based systems. This review systematically examines advances in polarized navigation from three perspectives. First, the principles of atmospheric polarization navigation are analyzed, with their operational mechanisms, advantages, and inherent constraints dissected. Second, innovations in bionic polarization multi-sensor fusion positioning are consolidated, highlighting progress beyond conventional heading-direction extraction. Third, emerging underwater polarization navigation techniques are critically evaluated, revealing that current methods predominantly adapt atmospheric frameworks enhanced by advanced filtering to mitigate underwater interference. A comprehensive synthesis of underwater polarization modeling methodologies is provided, categorizing physical, data-driven, and hybrid approaches. Through rigorous analysis of studies, three persistent barriers are identified: (1) inadequate polarization pattern modeling under dynamic cross-media conditions; (2) insufficient robustness against turbidity-induced noise; (3) immature integration of polarization vision with sonar/IMU (Inertial Measurement Unit) sensing. Targeted research directions are proposed, including adaptive deep learning models, multi-spectral polarization sensing, and bio-inspired sensor fusion architectures. These insights establish a roadmap for developing reliable underwater navigation systems that transcend current technological boundaries. Full article
(This article belongs to the Section Sensors and Control in Robotics)
Show Figures

Figure 1

14 pages, 827 KiB  
Article
Sensor Fusion for Enhancing Motion Capture: Integrating Optical and Inertial Motion Capture Systems
by Hailey N. Hicks, Howard Chen and Sara A. Harper
Sensors 2025, 25(15), 4680; https://doi.org/10.3390/s25154680 - 29 Jul 2025
Viewed by 320
Abstract
This study aimed to create and evaluate an optimization-based sensor fusion algorithm that combines Optical Motion Capture (OMC) and Inertial Motion Capture (IMC) measurements to provide a more efficient and reliable gap-filling process for OMC measurements to be used for future research. The [...] Read more.
This study aimed to create and evaluate an optimization-based sensor fusion algorithm that combines Optical Motion Capture (OMC) and Inertial Motion Capture (IMC) measurements to provide a more efficient and reliable gap-filling process for OMC measurements to be used for future research. The proposed algorithm takes the first and last frame of OMC data and fills the rest with gyroscope data from the IMC. The algorithm was validated using data from twelve participants who performed a hand cycling task with an inertial measurement unit (IMU) placed on their hand, forearm, and upper arm. The OMC tracked a cluster of reflective markers that were placed on top of each IMU. The proposed algorithm was evaluated with simulated gaps of up to five minutes. Average total root-mean-square errors (RMSE) of <1.8° across a 5 min duration were observed for all sensor placements for the cyclic upper limb motion pattern used in this study. The results demonstrated that the fusion of these two sensing modalities is feasible and shines light on the possibility of more field-based studies for human motion analysis. Full article
Show Figures

Figure 1

20 pages, 28928 KiB  
Article
Evaluating the Effectiveness of Plantar Pressure Sensors for Fall Detection in Sloped Surfaces
by Tarek Mahmud, Rujan Kayastha, Krishna Kisi, Anne Hee Ngu and Sana Alamgeer
Electronics 2025, 14(15), 3003; https://doi.org/10.3390/electronics14153003 - 28 Jul 2025
Viewed by 226
Abstract
Falls are a major safety concern in physically demanding occupations such as roofing, where workers operate on inclined surfaces under unstable postures. While inertial measurement units (IMUs) are widely used in wearable fall detection systems, they often fail to capture early indicators of [...] Read more.
Falls are a major safety concern in physically demanding occupations such as roofing, where workers operate on inclined surfaces under unstable postures. While inertial measurement units (IMUs) are widely used in wearable fall detection systems, they often fail to capture early indicators of instability related to foot–ground interactions. This study evaluates the effectiveness of plantar pressure sensors, alone and combined with IMUs, for fall detection on sloped surfaces. We collected data in a controlled laboratory environment using a custom-built roof mockup with incline angles of 0°, 15°, and 30°. Participants performed roofing-relevant activities, including standing, walking, stooping, kneeling, and simulated fall events. Statistical features were extracted from synchronized IMU and plantar pressure data, and multiple machine learning models were trained and evaluated, including traditional classifiers and deep learning architectures, such as MLP and CNN. Our results show that integrating plantar pressure sensors significantly improves fall detection. A CNN using just three IMUs and two plantar pressure sensors achieved the highest F1 score of 0.88, outperforming the full 17-sensor IMU setup. These findings support the use of multimodal sensor fusion for developing efficient and accurate wearable systems for fall detection and physical health monitoring. Full article
Show Figures

Figure 1

27 pages, 31172 KiB  
Article
Digital Twin for Analog Mars Missions: Investigating Local Positioning Alternatives for GNSS-Denied Environments
by Benjamin Reimeir, Amelie Leininger, Raimund Edlinger, Andreas Nüchter and Gernot Grömer
Sensors 2025, 25(15), 4615; https://doi.org/10.3390/s25154615 - 25 Jul 2025
Viewed by 208
Abstract
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of [...] Read more.
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of a digital twin for the AMADEE-24 analog Mars mission, organized by the Austrian Space Forum and conducted in Armenia in March 2024. Alternative local positioning methods were evaluated to enhance the system’s utility in Global Navigation Satellite System (GNSS)-denied environments. The digital twin integrates telemetry from the Aouda space suit simulators, inertial measurement unit motion capture (IMU-MoCap), and sensor data from the Intuitive Rover Operation and Collecting Samples (iROCS) rover. All nine experiment runs were reconstructed successfully by the developed digital twin. A comparative analysis of localization methods found that Simultaneous Localization and Mapping (SLAM)-based rover positioning and IMU-MoCap localization of the astronaut matched Global Positioning System (GPS) performance. Adaptive Cluster Detection showed significantly higher deviations compared to the previous GNSS alternatives. However, the IMU-MoCap method was limited by discontinuous segment-wise measurements, which required intermittent GPS recalibration. Despite these limitations, the results highlight the potential of alternative localization techniques for digital twin integration. Full article
Show Figures

Figure 1

18 pages, 1941 KiB  
Article
Design of Virtual Sensors for a Pyramidal Weathervaning Floating Wind Turbine
by Hector del Pozo Gonzalez, Magnus Daniel Kallinger, Tolga Yalcin, José Ignacio Rapha and Jose Luis Domínguez-García
J. Mar. Sci. Eng. 2025, 13(8), 1411; https://doi.org/10.3390/jmse13081411 - 24 Jul 2025
Viewed by 192
Abstract
This study explores virtual sensing techniques for the Eolink floating offshore wind turbine (FOWT), which features a pyramidal platform and a single-point mooring system that enables weathervaning to maximize power production and reduce structural loads. To address the challenges and costs associated with [...] Read more.
This study explores virtual sensing techniques for the Eolink floating offshore wind turbine (FOWT), which features a pyramidal platform and a single-point mooring system that enables weathervaning to maximize power production and reduce structural loads. To address the challenges and costs associated with monitoring submerged components, virtual sensors are investigated as an alternative to physical instrumentation. The main objective is to design a virtual sensor of mooring hawser loads using a reduced set of input features from GPS, anemometer, and inertial measurement unit (IMU) data. A virtual sensor is also proposed to estimate the bending moment at the joint of the pyramid masts. The FOWT is modeled in OrcaFlex, and a range of load cases is simulated for training and testing. Under defined sensor sampling conditions, both supervised and physics-informed machine learning algorithms are evaluated. The models are tested under aligned and misaligned environmental conditions, as well as across operating regimes below- and above-rated conditions. Results show that mooring tensions can be estimated with high accuracy, while bending moment predictions also perform well, though with lower precision. These findings support the use of virtual sensing to reduce instrumentation requirements in critical areas of the floating wind platform. Full article
Show Figures

Figure 1

17 pages, 1404 KiB  
Article
Securing Biomechanical Data Quality: A Comprehensive Evaluation of On-Board Accelerometers for Shock and Vibration Analysis
by Corentin Bosio, Christophe Sauret, Patricia Thoreux and Delphine Chadefaux
Sensors 2025, 25(15), 4569; https://doi.org/10.3390/s25154569 - 23 Jul 2025
Viewed by 264
Abstract
(1) On-board accelerometers are increasingly employed in real-world biomechanics to monitor vibrations and shocks. This study assesses the accuracy, repeatability, and variability of three commercially available inertial measurement units (IMUs)—Xsens, Blue Trident, and Shimmer 3—in measuring vibration and shock parameters relevant to human [...] Read more.
(1) On-board accelerometers are increasingly employed in real-world biomechanics to monitor vibrations and shocks. This study assesses the accuracy, repeatability, and variability of three commercially available inertial measurement units (IMUs)—Xsens, Blue Trident, and Shimmer 3—in measuring vibration and shock parameters relevant to human motion analysis. (2) A controlled laboratory setup utilizing an electrodynamic shaker was employed to generate sine waves at varying frequencies and amplitudes, as well as shock profiles with defined peak accelerations and durations. (3) The results showed that Blue Trident demonstrated the highest accuracy in shock amplitude and timing, with relative errors below 6%, while Xsens provided stable measurements for low-frequency vibrations. In contrast, Shimmer 3 exhibited considerable variability in signal quality. (4) These findings offer critical insights into sensor selection based on specific application needs, ensuring optimal accuracy and reliability in dynamic measurement environments. This study lays the groundwork for improved IMU application in biomechanical research and practical deployments. Future research should continue to investigate sensor performance, particularly in angular motion contexts, to further enhance motion analysis capabilities. Full article
Show Figures

Figure 1

Back to TopTop