Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (291)

Search Parameters:
Keywords = IMMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 9204 KB  
Article
Unveiling Hidden Green Corridors: An Agent-Based Simulation (ABS) of Urban Green Continuity for Ecosystem Services and Climate Resilience
by Tao Dong, Massimo Tadi and Solomon Tamiru Tesfaye
Smart Cities 2025, 8(5), 163; https://doi.org/10.3390/smartcities8050163 - 1 Oct 2025
Abstract
Urban green spaces are essential for mitigating the heat island effect, supporting ecosystem services, and maintaining biodiversity. The distribution, fragmentation, and connection of the green spaces significantly impact the behavior of species in cities, serving as key indicators of environmental resilience and ecological [...] Read more.
Urban green spaces are essential for mitigating the heat island effect, supporting ecosystem services, and maintaining biodiversity. The distribution, fragmentation, and connection of the green spaces significantly impact the behavior of species in cities, serving as key indicators of environmental resilience and ecological benefits. However, current studies, as well as planning standards, often prioritize green spaces independently through their coverage or density, overlooking the importance of continuity and its impact on thermal regulation and accessibility. In this research, urban “hidden green corridors” refer to the unrecognized but functionally significant pathways that link fragmented green spaces through ecological behaviors, which enhance both biological and human habitats. This research focuses on developing an agent-based simulation (ABS) model based on the Physarealm plugin in Rhino, which can assess the effectiveness of these hidden corridors in different urban settings by integrating geographic information systems (GIS) and space syntax. Based on three case studies in Italy (Lambrate District, Bolognina, and Ispra), the simulation results are further interpreted through the AI agentic workflow “SOFIA”, developed by IMM Design Lab, Politecnico di Milano, and compared using manual analysis as well as mainstream large language models (ChatGPT 4.0 Web). The findings indicate that the “hidden green corridors” are essential for urban heat reduction, enhancement of urban biodiversity, and strengthening ecological flows. Full article
Show Figures

Figure 1

32 pages, 7470 KB  
Article
Consensus-Guided Construction of H5N1-Specific and Universal Influenza a Multiepitope Vaccines
by Marco Palma
Biology 2025, 14(10), 1327; https://doi.org/10.3390/biology14101327 - 25 Sep 2025
Abstract
Background/Objectives: Influenza A viruses—including highly pathogenic H5N1—remain a global threat due to rapid evolution, zoonoses, and pandemic potential. Strain-specific vaccines targeting variable antigens often yield limited, short-lived immunity. The HA receptor-binding domain (RBD), a functionally constrained and immunologically relevant region, is a promising [...] Read more.
Background/Objectives: Influenza A viruses—including highly pathogenic H5N1—remain a global threat due to rapid evolution, zoonoses, and pandemic potential. Strain-specific vaccines targeting variable antigens often yield limited, short-lived immunity. The HA receptor-binding domain (RBD), a functionally constrained and immunologically relevant region, is a promising target for broad and subtype-focused vaccines. We aimed to design multiepitope constructs targeting conserved HA-RBD and adjacent domains to elicit robust, durable, cross-protective responses. Methods: Extensive sequence analyses (>20,000 H5N1 and >190,000 influenza A sequences) were used to derive consensus sequences. Three HA-based candidates were developed: (i) EpitoCore-HA-VX, a multi-epitope construct containing CTL, HTL, and B-cell epitopes from the H5N1 HA-RBD; (ii) StructiRBD-HA-VX, incorporating a conformationally preserved RBD segment; and (iii) FusiCon-HA-VX, targeting the conserved HA fusion peptide shared across subtypes. Two external HA comparators—a 400-aa HA fragment and the literature-reported HA-13–263-Fd-His—were analyzed under the same pipeline. The workflow predicted epitopes; evaluated antigenicity, allergenicity, toxicity, conservation, and HLA coverage; generated AlphaFold models; performed TLR2/TLR4 docking with pyDockWEB; and carried out interface analysis with PDBsum; and C-ImmSim simulations. Results: Models suggested stable, energetically favorable TLR2/TLR4 interfaces supported by substantial binding surfaces and complementary electrostatic/desolvation profiles. Distinct docking patterns indicated receptor-binding flexibility. Immune simulations predicted strong humoral responses with modeled memory formation and, for the H5N1-focused designs, cytotoxic T-cell activity. All candidates and comparators were predicted to be antigenic, non-allergenic, and non-toxic, with combined HLA coverage approaching global breadth. Conclusions: This study compares three design strategies within a harmonized framework—epitope collation, structure-preserved RBD, and fusion-peptide targeting—while benchmarking against two HA comparators. EpitoCore-HA-VX and StructiRBD-HA-VX showed promise against diverse H5N1 isolates, whereas FusiCon-HA-VX supported cross-subtype coverage. As these findings are model-based, they should be interpreted qualitatively; nonetheless, the integrated, structure-guided approach provides an adaptable path for advancing targeted H5N1 and broader influenza A vaccine concepts. Full article
Show Figures

Figure 1

21 pages, 8166 KB  
Article
Transforming Vulnerable Urban Areas: An IMM-Driven Resilience Strategy for Heat and Flood Challenges in Rio de Janeiro’s Cidade Nova
by Massimo Tadi, Hadi Mohammad Zadeh and Hoda Esmaeilian Toussi
Urban Sci. 2025, 9(9), 339; https://doi.org/10.3390/urbansci9090339 - 28 Aug 2025
Viewed by 1485
Abstract
This study applies the Integrated Modification Methodology (IMM) to assess how morphology-driven, nature-based solutions reduce urban heat island (UHI) effects and flooding in Rio de Janeiro’s Cidade Nova. Multi-scale GIS diagnostics identify green continuity and vertical permeability as critical weaknesses. Simulations (Ladybug/Dragonfly) and [...] Read more.
This study applies the Integrated Modification Methodology (IMM) to assess how morphology-driven, nature-based solutions reduce urban heat island (UHI) effects and flooding in Rio de Janeiro’s Cidade Nova. Multi-scale GIS diagnostics identify green continuity and vertical permeability as critical weaknesses. Simulations (Ladybug/Dragonfly) and hydrological modelling (rational method) quantify the intervention’s impact, including greening, material retrofits, and drainage upgrades. Results show a 38% increase in albedo, a 13% reduction in volumetric heat capacity, and a 30% drop in thermal conductivity. These changes reduce the peak UHI by 0.2 °C hourly, narrowing the urban–rural temperature gap to 3.5 °C (summer) and 4.3 °C (winter). Hydrologically, impervious cover decreases from 22% to 15%, permeable surfaces rise from 9% to 29%, and peak runoff volume drops by 27% (16,062 to 11,753 m3/h), mitigating flood risks. Green space expands from 7.8% to 21%, improving connectivity by 50% and improving park access. These findings demonstrate that IMM-guided interventions effectively enhance thermal and hydrological resilience in dense tropical cities, aligning with climate adaptation and the Sustainable Development Goals. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

28 pages, 23278 KB  
Article
Digital Twin-Assisted Urban Resilience: A Data-Driven Framework for Sustainable Regeneration in Paranoá, Brasilia
by Tao Dong and Massimo Tadi
Urban Sci. 2025, 9(9), 333; https://doi.org/10.3390/urbansci9090333 - 26 Aug 2025
Cited by 1 | Viewed by 1322
Abstract
Rapid urbanization has intensified the systemic inequities of resources and infrastructure distribution in informal settlements, particularly in the Global South. Digital Twin Modeling (DTM), as an effective data-driven representation, enables real-time analysis, scenario simulation, and design optimization, making it a promising tool to [...] Read more.
Rapid urbanization has intensified the systemic inequities of resources and infrastructure distribution in informal settlements, particularly in the Global South. Digital Twin Modeling (DTM), as an effective data-driven representation, enables real-time analysis, scenario simulation, and design optimization, making it a promising tool to support urban resilience. This study introduces the Integrated Modification Methodology (IMM), developed by Politecnico di Milano (Italy), to explore how DTM can be systematically structured and transformed into an active instrument, linking theories with practical application. Focusing on Paranoá (Brasília), a case study developed under the NBSouth project in collaboration with the Politecnico di Milano and the University of Brasília, this research integrates advanced spatial mapping with comprehensive key performance indicators (KPIs) analysis to address developmental and environmental challenges during the regeneration process. Key metrics—Green Space Diversity, Ecosystem Service Proximity, and Green Space Continuity—were analyzed by a Geographic Information System (GIS) platform on 30 m by 30 m sampling grids. Additional KPIs across urban structural, environmental, and mobility layers were calculated to support the decision-making process for strategic mapping. This study contributes to theoretical advancements in DTM and broader discourse on urban regeneration under climate stress, offering a systemic and practical approach for multi-dimensional digitalization of urban structure and performance, supporting a more adaptive, data-based, and transferable planning process in the Global South. Full article
(This article belongs to the Topic Spatial Decision Support Systems for Urban Sustainability)
Show Figures

Figure 1

30 pages, 5210 KB  
Article
Highly Efficient and Secure Metadata-Driven Integrity Measurement for Containers
by Li Zhang, Shu-Pan Li, Jing-Pu Zhang, Guang-Jun Qin and Yu-An Tan
Electronics 2025, 14(17), 3393; https://doi.org/10.3390/electronics14173393 - 26 Aug 2025
Viewed by 395
Abstract
The integrity measurement mechanism (IMM) is key to creating a trusted execution environment (TEE) for containers. It ensures that files inside containers are real and have not been tampered with. However, traditional IMMs are inefficient. This is because they rely on message-digest algorithms [...] Read more.
The integrity measurement mechanism (IMM) is key to creating a trusted execution environment (TEE) for containers. It ensures that files inside containers are real and have not been tampered with. However, traditional IMMs are inefficient. This is because they rely on message-digest algorithms (MDAs), which require a lot of time and space. This makes them hard to use in environments where resources are limited. To solve these problems, we present two novel metadata-driven IMMs, the Overlay2 IMM and the Btrfs IMM, which use the built-in metadata structures of the Overlay2 and Btrfs filesystems, respectively. Compared to MDA-based IMMs, these new IMMs are much more efficient in operation. They are also more secure because they use an external validation mechanism that does not depend on the container’s running state. This effectively reduces security risks in dynamic environments. We built complete prototypes of these new IMMs. We tested them on edge servers with Intel CPUs and embedded devices with ARM CPUs. When we compared them with traditional MDA-based methods (including MD5 and SHA256), we found significant improvements. Our methods are more efficient in computation. They reduce the need for space and time by using filesystem metadata instead of hashing entire files. This makes them suitable for environments with limited resources. They run outside the container, so malicious actors inside the container cannot detect them, ensuring robust protection. In addition, they can check file integrity consistently no matter the container’s state (running, paused, or stopped). This is because they use metadata from the container image, which improves the overall reliability and consistency of the integrity measurement process. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

25 pages, 877 KB  
Review
Therapeutic Opportunities in Melanoma Through PRAME Expression
by Mislav Mokos, Ivana Prkačin, Klara Gaćina, Ana Brkić, Nives Pondeljak and Mirna Šitum
Biomedicines 2025, 13(8), 1988; https://doi.org/10.3390/biomedicines13081988 - 15 Aug 2025
Cited by 1 | Viewed by 959
Abstract
Background: Melanoma is one of the most aggressive types of skin cancer. Its diagnosis appears to be challenging due to morphological similarities to benign melanocytic lesions. Even though histopathological evaluation is the diagnostic gold standard, immunohistochemistry (IHC) proves to be useful in challenging [...] Read more.
Background: Melanoma is one of the most aggressive types of skin cancer. Its diagnosis appears to be challenging due to morphological similarities to benign melanocytic lesions. Even though histopathological evaluation is the diagnostic gold standard, immunohistochemistry (IHC) proves to be useful in challenging cases. Preferentially Expressed Antigen in Melanoma (PRAME) has emerged as a promising diagnostic, prognostic, and therapeutic marker in melanoma. Methods: This review critically examines the role of PRAME across clinical domains. It presents an evaluation of PRAME’s diagnostic utility in differentiating melanomas from benign nevi, its prognostic significance across melanoma subtypes, and therapeutic applications in emerging immunotherapy strategies. An extensive analysis of the current literature was conducted, with a focus on PRAME expression patterns in melanocytic lesions and various malignancies, along with its integration into IHC protocols and investigational therapies. Results: PRAME demonstrates high specificity and sensitivity in distinguishing melanoma from benign melanocytic proliferations, particularly in challenging subtypes such as acral, mucosal, and spitzoid lesions. Its overexpression correlates with poor prognosis in numerous malignancies. Therapeutically, PRAME’s HLA class I presentation enables T-cell-based targeting. Early-phase trials show promising results using PRAME-directed TCR therapies and bispecific ImmTAC agents. However, immune evasion mechanisms (i.e., heterogeneous antigen expression, immune suppression in the tumor microenvironment, and HLA downregulation) pose significant challenges to therapy. Conclusions: PRAME is a valuable biomarker for melanoma diagnosis and a promising target for immunotherapy. Its selective expression in malignancies supports its clinical utility in diagnostic precision, prognostic assessment, and precision oncology. Ongoing research aimed at overcoming immunological barriers will be essential for optimizing PRAME-directed therapies and establishing their place in the personalized management of melanoma. Full article
(This article belongs to the Special Issue Skin Diseases and Cell Therapy)
Show Figures

Figure 1

28 pages, 9221 KB  
Article
Adaptive Grid Expected Model Augmentation Based on Golden Section for Maneuvering Extended Object Tracking
by Lifan Sun, Shuo Sun, Dongkai Zhang, Bo Fan and Dan Gao
Remote Sens. 2025, 17(16), 2832; https://doi.org/10.3390/rs17162832 - 14 Aug 2025
Viewed by 322
Abstract
Maneuvering extended object tracking has garnered significant attention owing to the continuous advancements in the resolution capabilities of modern high-precision radar sensors. The efficacy of tracking algorithms for such objects is heavily contingent upon the design of the model set. However, existing methodologies [...] Read more.
Maneuvering extended object tracking has garnered significant attention owing to the continuous advancements in the resolution capabilities of modern high-precision radar sensors. The efficacy of tracking algorithms for such objects is heavily contingent upon the design of the model set. However, existing methodologies for model set design often yield suboptimal performance when confronted with highly maneuvering extended objects. The expected model augmentation (EMA) algorithm offers a data-driven mechanism for updating the model set in real time. Despite its advantages, the EMA algorithm is constrained by the fixed parameters of its basic models and static transition probabilities between models, thereby limiting its adaptability to extended objects exhibiting complex and dynamic maneuvering behaviors. To address these limitations, this paper proposes a modified variable structure multiple model (VSMM) framework for maneuvering extended object tracking, referred to as the adaptive grid expected model augmentation based on the golden section (GSAG-EMA) algorithm. The approach adaptively adjusts both the model structure and parameters in a grid-based format to accommodate the varying maneuvering patterns. It incorporates both local and global weighting schemes, with two models within the grid based on the golden section. Furthermore, the transition probability matrix is dynamically updated following specific rules, and the execution strategy for each module is determined according to the filtering results. Simulation results under both weak and strong maneuvering scenarios demonstrate that the proposed GSAG-EMA algorithm consistently outperforms the IMM-based, EMA, and AG-BMA algorithms in terms of root mean square error (RMSE) and Hausdorff distance, thereby substantiating its superior tracking performance. Full article
(This article belongs to the Special Issue Radar Data Processing and Analysis)
Show Figures

Figure 1

29 pages, 4115 KB  
Article
In Silico Design of a Multiepitope Vaccine Against Intestinal Pathogenic Escherichia coli Based on the 2011 German O104:H4 Outbreak Strain Using Reverse Vaccinology and an Immunoinformatic Approach
by Eman G. Youssef, Khaled Elnesr and Amro Hanora
Diseases 2025, 13(8), 259; https://doi.org/10.3390/diseases13080259 - 13 Aug 2025
Viewed by 507
Abstract
Background: While most Escherichia coli strains are harmless members of the gastrointestinal microbiota, certain pathogenic variants can cause severe intestinal and extraintestinal diseases. A notable outbreak of E. coli O104:H4, involving both enteroaggregative (EAEC) and enterohemorrhagic (EHEC) strains, occurred [...] Read more.
Background: While most Escherichia coli strains are harmless members of the gastrointestinal microbiota, certain pathogenic variants can cause severe intestinal and extraintestinal diseases. A notable outbreak of E. coli O104:H4, involving both enteroaggregative (EAEC) and enterohemorrhagic (EHEC) strains, occurred in Europe, resulting in symptoms ranging from bloody diarrhea to life-threatening colitis and hemolytic uremic syndrome (HUS). Since treatment options remain limited and have changed little over the past 40 years, there is an urgent need for an effective vaccine. Such a vaccine would offer major public health and economic benefits by preventing severe infections and reducing outbreak-related costs. A multiepitope vaccine approach, enabled by advances in immunoinformatics, offers a promising strategy for targeting HUS-causing E. coli (O104:H4 and O157:H7 serotypes) with minimal disruption to normal microbiota. This study aimed to design an immunogenic multiepitope vaccine (MEV) construct using bioinformatics and immunoinformatic tools. Methods and Results: Comparative proteomic analysis identified 672 proteins unique to E. coli O104:H4, excluding proteins shared with the nonpathogenic E. coli K-12-MG1655 strain and those shorter than 100 amino acids. Subcellular localization (P-SORTb) identified 17 extracellular or outer membrane proteins. Four proteins were selected as vaccine candidates based on transmembrane domains (TMHMM), antigenicity (VaxiJen), and conservation among EHEC strains. Epitope prediction revealed ten B-cell, four cytotoxic T-cell, and three helper T-cell epitopes. Four MEVs with different adjuvants were designed and assessed for solubility, stability, and antigenicity. Structural refinement (GALAXY) and docking studies confirmed strong interaction with Toll-Like Receptor 4 (TLR4). In silico immune simulations (C-ImmSim) indicated robust humoral and cellular immune responses. In Conclusions, the proposed MEV construct demonstrated promising immunogenicity and warrants further validation in experimental models. Full article
Show Figures

Figure 1

18 pages, 622 KB  
Article
Distributed Diffusion Multi-Distribution Filter with IMM for Heavy-Tailed Noise
by Guannan Chang, Changwu Jiang, Wenxing Fu, Tao Cui and Peng Dong
Signals 2025, 6(3), 37; https://doi.org/10.3390/signals6030037 - 1 Aug 2025
Viewed by 289
Abstract
With the diversification of space applications, the tracking of maneuvering targets has gradually gained attention. Issues such as their wide range of movement and observation outliers caused by human operation are worthy of in-depth discussion. This paper presents a novel distributed diffusion multi-noise [...] Read more.
With the diversification of space applications, the tracking of maneuvering targets has gradually gained attention. Issues such as their wide range of movement and observation outliers caused by human operation are worthy of in-depth discussion. This paper presents a novel distributed diffusion multi-noise Interacting Multiple Model (IMM) filter for maneuvering target tracking in heavy-tailed noise. The proposed approach leverages parallel Gaussian and Student-t filters to enhance robustness against non-Gaussian process and measurement noise. This hybrid filter is implemented as a node within a distributed network, where the diffusion algorithm leads to the global state asymptotically reaching consensus as the filtering time progresses. Furthermore, a fusion of multiple motion models within the IMM algorithm enables robust tracking of maneuvering targets across the distributed network and process outlier caused by maneuver compared to previous studies. Simulation results demonstrate the effectiveness of the proposed filter in tracking maneuvering targets. Full article
Show Figures

Figure 1

17 pages, 8082 KB  
Article
NPS6D100—A 6D Nanopositioning System with Sub-10 nm Performance in a Ø100 mm × 10 mm Workspace
by Steffen Hesse, Alex Huaman, Michael Katzschmann and Ludwig Herzog
Actuators 2025, 14(8), 361; https://doi.org/10.3390/act14080361 - 22 Jul 2025
Viewed by 343
Abstract
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform [...] Read more.
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform (or slider) in all DOFs. Based on an integrated planar direct drive concept, the system is enhanced by precise vertical actuation and full 6D output feedback control. The mechanical structure, drive architecture, guiding, and measurement subsystems are described in detail, along with experimental results that confirm sub-10 nm servo errors under constant setpoint operation and in synchronized multi-axis motion scenarios. With its scalable and low-disturbance design, the NPS6D100 is well suited as a nanopositioning platform for sub-10 nm applications in nanoscience and precision metrology. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

50 pages, 28354 KB  
Article
Mobile Mapping Approach to Apply Innovative Approaches for Real Estate Asset Management: A Case Study
by Giorgio P. M. Vassena
Appl. Sci. 2025, 15(14), 7638; https://doi.org/10.3390/app15147638 - 8 Jul 2025
Viewed by 1074
Abstract
Technological development has strongly impacted all processes related to the design, construction, and management of real estate assets. In fact, the introduction of the BIM approach has required the application of three-dimensional survey technologies, and in particular the use of LiDAR instruments, both [...] Read more.
Technological development has strongly impacted all processes related to the design, construction, and management of real estate assets. In fact, the introduction of the BIM approach has required the application of three-dimensional survey technologies, and in particular the use of LiDAR instruments, both in their static (TLS—terrestrial laser scanner) and dynamic (iMMS—indoor mobile mapping system) implementations. Operators and developers of LiDAR technologies, for the implementation of scan-to-BIM procedures, initially placed particular care on the 3D surveying accuracy obtainable from such tools. The incorporation of RGB sensors into these instruments has progressively expanded LiDAR-based applications from essential topographic surveying to geospatial applications, where the emphasis is no longer on the accurate three-dimensional reconstruction of buildings but on the capability to create three-dimensional image-based visualizations, such as virtual tours, which allow the recognition of assets located in every area of the buildings. Although much has been written about obtaining the best possible accuracy for extensive asset surveying of large-scale building complexes using iMMS systems, it is now essential to develop and define suitable procedures for controlling such kinds of surveying, targeted at specific geospatial applications. We especially address the design, field acquisition, quality control, and mass data management techniques that might be used in such complex environments. This work aims to contribute by defining the technical specifications for the implementation of geospatial mapping of vast asset survey activities involving significant building sites utilizing iMMS instrumentation. Three-dimensional models can also facilitate virtual tours, enable local measurements inside rooms, and particularly support the subsequent integration of self-locating image-based technologies that can efficiently perform field updates of surveyed databases. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

30 pages, 3155 KB  
Article
Optimizing UAV Spraying for Sustainable Agriculture: A Life Cycle and Efficiency Analysis in India
by Shefali Vinod Ramteke, Pritish Kumar Varadwaj and Vineet Tiwari
Sustainability 2025, 17(13), 6211; https://doi.org/10.3390/su17136211 - 7 Jul 2025
Viewed by 1140
Abstract
Problem: Agriculture in India faces pressing challenges related to water scarcity, excessive pesticide use, and inefficient energy consumption, impacting both economic sustainability and environmental health. Methodology: This study integrates Life Cycle Assessment (LCA), Data Envelopment Analysis (DEA), Intelligent Management Models (IMMs), and Multi-Criteria [...] Read more.
Problem: Agriculture in India faces pressing challenges related to water scarcity, excessive pesticide use, and inefficient energy consumption, impacting both economic sustainability and environmental health. Methodology: This study integrates Life Cycle Assessment (LCA), Data Envelopment Analysis (DEA), Intelligent Management Models (IMMs), and Multi-Criteria Decision Analysis (MCDA) to assess the economic and environmental benefits of UAV-based spraying in Indian agriculture. Data were collected from UAV service providers and field trials in Punjab, Haryana, and Rajasthan. Results: UAV spraying achieved a 70% reduction in water use, 40% reduction in pesticide consumption, and a 50% reduction in CO2 emissions compared to conventional spraying. DEA results showed higher efficiency scores for UAVs, while IMM optimization achieved 95% pesticide coverage and reduced drift by 80%. Implications: MCDA ranked government subsidies as the most effective policy intervention. These findings support UAV spraying as a viable, scalable solution for climate-smart agriculture in India, offering both productivity and sustainability gains. Full article
Show Figures

Figure 1

20 pages, 1857 KB  
Article
Multi-Information-Assisted Joint Detection and Tracking of Ground Moving Target for Airborne Radar
by Ran Liu, Xiangqian Li, Jinping Sun and Tao Shan
Remote Sens. 2025, 17(12), 2093; https://doi.org/10.3390/rs17122093 - 18 Jun 2025
Viewed by 538
Abstract
Airborne radar-based ground moving target tracking faces challenges such as low detection rates and high clutter density. While lowering the detection threshold can improve detection performance, it introduces significant false alarms, thereby degrading tracking performance. To address these challenges, this paper proposes a [...] Read more.
Airborne radar-based ground moving target tracking faces challenges such as low detection rates and high clutter density. While lowering the detection threshold can improve detection performance, it introduces significant false alarms, thereby degrading tracking performance. To address these challenges, this paper proposes a novel multi-information assisted Joint Detection and Tracking (JDT) framework for ground moving targets. This study enhances detection and tracking performance by integrating multi-source information, specifically echo information, road network data, and velocity limits, enabling bidirectional data exchange between the detector and tracker for multiple ground targets. An adaptive threshold detector is developed by incorporating a priori information and tracker feedback. Additionally, we innovatively propose an improved Variable Structure Interacting Multiple Model (VS-IMM) filter that leverages road network constraints and detector outputs for tracking, featuring an enhanced model probability calculation to significantly reduce computational time. Simulation results demonstrate that the proposed method significantly improves data association accuracy and tracking precision. Full article
(This article belongs to the Special Issue Radar Data Processing and Analysis)
Show Figures

Figure 1

39 pages, 22038 KB  
Article
UIMM-Tracker: IMM-Based with Uncertainty Detection for Video Satellite Infrared Small-Target Tracking
by Yuanxin Huang, Xiyang Zhi, Zhichao Xu, Wenbin Chen, Qichao Han, Jianming Hu, Yi Sui and Wei Zhang
Remote Sens. 2025, 17(12), 2052; https://doi.org/10.3390/rs17122052 - 14 Jun 2025
Viewed by 693
Abstract
Infrared video satellites have the characteristics of wide-area long-duration surveillance, enabling continuous operation day and night compared to visible light imaging methods. Therefore, they are widely used for continuous monitoring and tracking of important targets. However, energy attenuation caused by long-distance radiation transmission [...] Read more.
Infrared video satellites have the characteristics of wide-area long-duration surveillance, enabling continuous operation day and night compared to visible light imaging methods. Therefore, they are widely used for continuous monitoring and tracking of important targets. However, energy attenuation caused by long-distance radiation transmission reduces imaging contrast and leads to the loss of edge contours and texture details, posing significant challenges to target tracking algorithm design. This paper proposes an infrared small-target tracking method, the UIMM-Tracker, based on the tracking-by-detection (TbD) paradigm. First, detection uncertainty is measured and injected into the multi-model observation noise, transferring the distribution knowledge of the detection process to the tracking process. Second, a dynamic modulation mechanism is introduced into the Markov transition process of multi-model fusion, enabling the tracking model to autonomously adapt to targets with varying maneuvering states. Additionally, detection uncertainty is incorporated into the data association method, and a distance cost matrix between trajectories and detections is constructed based on scale and energy invariance assumptions, improving tracking accuracy. Finally, the proposed method achieves average performance scores of 68.5%, 45.6%, 56.2%, and 0.41 in IDF1, MOTA, HOTA, and precision metrics, respectively, across 20 challenging sequences, outperforming classical methods and demonstrating its effectiveness. Full article
Show Figures

Figure 1

11 pages, 465 KB  
Article
Rapid Enantiomeric Ratio Determination of Multiple Amino Acids Using Ion Mobility-Mass Spectrometry
by Wenqing Xu, Estelle Rathahao-Paris and Sandra Alves
Molecules 2025, 30(12), 2497; https://doi.org/10.3390/molecules30122497 - 6 Jun 2025
Viewed by 605
Abstract
Chiral analysis is becoming increasingly important across various scientific fields, including chemistry, pharmaceuticals, biosciences, and more recently, metabolomics. In this context, a high-resolution and high-throughput method was developed for the simultaneous determination of the enantiomeric ratio (er) of seven pairs of [...] Read more.
Chiral analysis is becoming increasingly important across various scientific fields, including chemistry, pharmaceuticals, biosciences, and more recently, metabolomics. In this context, a high-resolution and high-throughput method was developed for the simultaneous determination of the enantiomeric ratio (er) of seven pairs of amino acid (AA) enantiomers (Arg, Gln, His, Met, Pro, Tyr, and Trp) using flow injection analysis coupled with ion mobility-mass spectrometry (FIA-IM-MS) technology. Specifically, the Single Ion Mobility Monitoring (SIM2) mode on a TIMS-TofTM instrument enabled the rapid relative quantification of chiral compound mixtures. A linear model accurately described the relationship between enantiomeric ratio and IM-MS response for Arg, Gln, and Pro enantiomers, as evidenced by high R2 values and unbiased residuals. In contrast, non-linear trends were observed for His, Tyr, and Trp, where a quadratic model significantly improved the fit. However, the linear model was retained for Met, despite an R2 of about 0.98, due to its comparable performance and simplicity. Measurement accuracy was confirmed with very good recovery rates for er values of 0.95 and 0.99 across all AAs. Finally, the potential of the FIA-SIM2-MS approach in chiral analysis was demonstrated, particularly its ability to provide a reliable and efficient high-throughput tool for accurate er determination. Full article
Show Figures

Figure 1

Back to TopTop