Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (857)

Search Parameters:
Keywords = IL-1Ra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1777 KiB  
Article
The Seminal Role of the Proinflammatory Cytokine IL-1β and Its Signaling Cascade in Glioblastoma Pathogenesis and the Therapeutic Effect of Interleukin-1β Receptor Antagonist (IL-1RA) and Tolcapone
by Jagadeesh Narasimhappagari, Ling Liu, Meenakshisundaram Balasubramaniam, Srinivas Ayyadevara, Orwa Aboud and W. Sue T. Griffin
Int. J. Mol. Sci. 2025, 26(14), 6893; https://doi.org/10.3390/ijms26146893 - 18 Jul 2025
Viewed by 282
Abstract
Interleukin-1 beta(IL-1β) is the major driving force in neuroinflammation. Here, we report on (i) the role of (IL-1β) in activating a signaling cascade that leads to proliferation and metastasis in glioblastoma cancer pathogenesis as well as (ii) the therapeutic role for IL-1 Receptor [...] Read more.
Interleukin-1 beta(IL-1β) is the major driving force in neuroinflammation. Here, we report on (i) the role of (IL-1β) in activating a signaling cascade that leads to proliferation and metastasis in glioblastoma cancer pathogenesis as well as (ii) the therapeutic role for IL-1 Receptor Antagonist (IL-1RA) and Tolcapone against untoward aspects of tumor pathogenesis. Here, we report that IL-1β treatment at 50 ng/mL for 48 h increased proliferation and metastasis by 30-fold (p ≤ 0.05), leading to the formation of clones of rapidly dividing cancer cells, leading to the formation of organized glial fibrillary acid protein (GFAP)-immunoreactive, clone-like structures with protruding spikes. Further, IL-1β treatment significantly increased the expression of mRNA levels of the IL-1β-driven pathway TLR-MyD88-NF-κB-TNFα and IL-6 (p ≤ 0.05). IL-1β also increased autophagy via elevation of mRNA and protein levels of cathepsin B, LAMP-2, and LC3B. In contrast, IL-1RA and Tolcapone inhibited this proliferation and the expression of these mRNAs and proteins, inhibiting autophagy by downregulating these autophagy proteins and inducing apoptosis by upregulating the expression of pro-apoptotic proteins like caspase-8 and caspase-3. IL-1β and its receptor can be targeted for successful anticancer therapy, as shown here with the use of IL-1RA and/or Tolcapone. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

18 pages, 7084 KiB  
Article
Analysis of Key miRNA/mRNA Functional Axes During Host Dendritic Cell Immune Response to Mycobacterium tuberculosis Based on GEO Datasets
by Qian Gao, Shuangshuang Bao, Yaqi Sun, Kaixin Zhou and Yan Lin
Genes 2025, 16(7), 832; https://doi.org/10.3390/genes16070832 - 17 Jul 2025
Viewed by 304
Abstract
Background: Dendritic cells (DCs) play an important role as a bridge between innate and adaptive immunity, and changes in gene expression of DCs during the immune response to Mycobacterium tuberculosis (M.tb) may affect the development of tuberculosis. Methods: Using systems biology [...] Read more.
Background: Dendritic cells (DCs) play an important role as a bridge between innate and adaptive immunity, and changes in gene expression of DCs during the immune response to Mycobacterium tuberculosis (M.tb) may affect the development of tuberculosis. Methods: Using systems biology methods, mRNA and miRNA expression profile data of DCs infected with M.tb were obtained. A total of 1398 differentially expressed mRNAs and 79 differentially expressed miRNAs were identified, and a corresponding miRNA–mRNA regulatory network was constructed using Cytoscape 3.9.1 software. The functional annotations and pathway classifications of the miRNA–mRNA network were identified using the DAVID tool. Then, the key pathway modules in the miRNA–mRNA network were screened and subjected to PPI network analysis to identify hub nodes. Subsequently the miRNA/mRNA axis was determined, validated by qRT-PCR, and evaluated through ROC curve analysis. Results: The TNF signaling pathway and the Tuberculosis pathway were key pathway modules, with miR-34a-3p/TNF and miR-190a-3p/IL1B being the greatest correlations with the two pathway modules. qRT-PCR results showed that IL1B and miR-190a-3p exhibited significant differences in both the H37Ra and BCG infection groups. The AUC of two factors (IL1B and miR-190a-3p) was 0.9561 and 0.9625, respectively, showing high sensitivity and specificity. Conclusions: Consequently, miR-190a-3p/IL1B might be a good candidate marker to characterize the immune response of DCs to M.tb and a transition signal from innate to adaptive immunity. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

22 pages, 2521 KiB  
Article
Assessment of Feasibility of the M2 Macrophage-Based Adoptive Gene Transfer Strategy for Osteoarthritis with a Mouse Model
by Matilda H.-C. Sheng, David J. Baylink, Charles H. Rundle and Kin-Hing William Lau
Cells 2025, 14(14), 1067; https://doi.org/10.3390/cells14141067 - 11 Jul 2025
Viewed by 364
Abstract
Current osteoarthritis (OA) therapies fail to yield long-term clinical benefits, due in part to the lack of a mechanism for the targeted and confined delivery of therapeutics to OA joints. This study evaluates if M2 macrophages are effective cell vehicles for the targeted [...] Read more.
Current osteoarthritis (OA) therapies fail to yield long-term clinical benefits, due in part to the lack of a mechanism for the targeted and confined delivery of therapeutics to OA joints. This study evaluates if M2 macrophages are effective cell vehicles for the targeted and confined delivery of therapeutic genes to OA joints. CT bioluminescence in vivo cell tracing and fluorescent microscopy reveal that intraarticularly injected M2 macrophages were recruited to and retained at inflamed synovia. The feasibility of an M2 macrophage-based adoptive gene transfer strategy for OA was assessed using IL-1Ra as the therapeutic gene in a mouse tibial plateau injury model. Mouse M2 macrophages were transduced with lentiviral vectors expressing IL-1Ra or GFP. The transduced macrophages were intraarticularly injected into injured joints at 7 days post-injury and OA progression was monitored with plasma COMP and histology at 4 weeks. The IL-1Ra-expressing M2 macrophage treatment reduced plasma COMP, increased the area and width of the articular cartilage layer, decreased synovium thickness, and reduced the OARSI OA score without affecting the osteophyte maturity and meniscus scores when compared to the GFP-expressing M2 macrophage-treated or PBS-treated controls. When the treatment was given at 5 weeks post-injury, at which time OA should have developed, the IL-1Ra-M2 macrophage treatment also reduced plasma COMP, had a greater articular cartilage area and width, decreased synovial thickness, and reduced the OARSI OA score without an effect on the meniscus and osteophyte maturity scores at 8 weeks post-injury. In conclusion, the IL-1Ra-M2 macrophage treatment, given before or after OA was developed, delayed OA progression, indicating that the M2 macrophage-based adoptive gene transfer strategy for OA is tenable. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

18 pages, 4976 KiB  
Article
Mechanistic Insights into Cytokine Antagonist-Drug Interactions: A Physiologically Based Pharmacokinetic Modelling Approach with Tocilizumab as a Case Study
by Xian Pan, Cong Liu, Felix Stader, Abdallah Derbalah, Masoud Jamei and Iain Gardner
Pharmaceutics 2025, 17(7), 896; https://doi.org/10.3390/pharmaceutics17070896 - 10 Jul 2025
Viewed by 488
Abstract
Background: Understanding interactions between cytokine antagonists and drugs is essential for effective medication management in inflammatory conditions. Recent regulatory authority guidelines emphasise a systematic, risk-based approach to evaluating these interactions, underscoring the need for mechanistic insight. Proinflammatory cytokines, such as interleukin-6 (IL-6), modulate [...] Read more.
Background: Understanding interactions between cytokine antagonists and drugs is essential for effective medication management in inflammatory conditions. Recent regulatory authority guidelines emphasise a systematic, risk-based approach to evaluating these interactions, underscoring the need for mechanistic insight. Proinflammatory cytokines, such as interleukin-6 (IL-6), modulate cytochrome P450 (CYP) enzymes, reducing the metabolism of CYP substrates. Cytokine antagonists (such as IL-6 receptor antagonists) can counteract this effect, restoring CYP activity and increasing drug clearance. However, quantitative prediction of cytokine-mediated drug interactions remains challenging, as existing models often lack the mechanistic detail needed to capture the dynamic relationship between cytokine signalling, receptor engagement, and downstream modulation of drug metabolism. Methods: A physiologically based pharmacokinetic (PBPK) framework incorporating cytokine–receptor binding, subsequent downregulation of CYP expression, and blockade of the cytokine signalling by a therapeutic protein antagonist was developed to simulate and investigate cytokine antagonist-drug interactions. Tocilizumab, a humanised IL-6 receptor antagonist used to treat several inflammatory conditions associated with elevated IL-6 levels, was selected as a model drug to demonstrate the utility of the framework. Results: The developed PBPK model accurately predicted the pharmacokinetics profiles of tocilizumab and captured clinically observed dynamic changes in simvastatin exposure before and after tocilizumab treatment in rheumatoid arthritis (RA) patients. Simulated IL-6 dynamics aligned with observed clinical profiles, showing transient elevation following receptor blockade and associated restoration of CYP3A4 activity. Prospective simulations with commonly co-administered CYP substrates (celecoxib, chloroquine, cyclosporine, ibuprofen, prednisone, simvastatin, and theophylline) in RA patients revealed dose regimen- and drug-dependent differences in interaction magnitude. Conclusions: This study demonstrated the utility of PBPK models in providing a mechanistic understanding of cytokine antagonist-drug interactions, supporting enhanced therapeutic decision-making and optimising patient care in inflammatory conditions. Full article
Show Figures

Figure 1

20 pages, 6229 KiB  
Article
Integrating Network Pharmacology and Experimental Validation to Explore the Effect and Mechanism of Inonotus obliquus Polysaccharide in the Treatment of Rheumatoid Arthritis
by Yuan Fu, Tianyi Jiang, Xizhu Fang, Yifang Chen, Jiawei Li, Shengnan Huang, Fangfang Li and Dan Jin
Pharmaceuticals 2025, 18(7), 1017; https://doi.org/10.3390/ph18071017 - 8 Jul 2025
Viewed by 461
Abstract
Background/Objectives: Rheumatoid arthritis (RA) is a chronic, systemic, and progressive autoimmune–inflammatory disease primarily affecting small joints. Inonotus obliquus polysaccharide (IOP) is the main component of the parasitic fungus obliquus, which has anti-tumor, anti-inflammatory, and antioxidant effects. However, whether IOP has a therapeutic effect [...] Read more.
Background/Objectives: Rheumatoid arthritis (RA) is a chronic, systemic, and progressive autoimmune–inflammatory disease primarily affecting small joints. Inonotus obliquus polysaccharide (IOP) is the main component of the parasitic fungus obliquus, which has anti-tumor, anti-inflammatory, and antioxidant effects. However, whether IOP has a therapeutic effect on RA is still unclear. Thus, this study aimed to reveal the effect of IOP on MH7A cells and collagen-induced arthritis (CIA) rats and to investigate the molecular mechanism of IOP in RA. Methods: In this study, network pharmacology was used to identify the key signaling pathways in IOP treatment of RA. The effect of IOP was verified in rats with CIA. We performed CCK-8, EdU, colony formation assay, cell apoptosis, cell migration and invasion, Western blot analysis, and immunofluorescence to elucidate the effect of IOP on the proliferation, apoptosis, migration and invasion of MH7A cells and revealed its modulation of the NF-κB and NLRP3 inflammasome signaling pathways. Results: IOP treatment of CIA rats significantly alleviated joint swelling, synovial tissue proliferation and erosion, and reduced the expression of inflammatory factors TNF-α, IL-6, IL-1β and IL-18. In vitro, IOP significantly inhibited the proliferation, migration, and invasion abilities of TNF-α-stimulated MH7A cells and promoted their apoptosis. Mechanistically, IOP inhibited the NF-κB and NLRP3 inflammasome activation. Conclusions: This study revealed that IOP exerts anti-RA effects by downregulating the NF-κB and NLRP3 inflammasome signaling pathways, promoting cell apoptosis, and inhibiting the expression of inflammatory cytokines, representing a promising therapeutic option for RA. Full article
(This article belongs to the Special Issue Natural Products Derived from Fungi and Their Biological Activities)
Show Figures

Graphical abstract

11 pages, 930 KiB  
Communication
GeneHarmony: A Knowledge-Based Tool for Biomarker Discovery in Disease: Sjögren’s Disease vs. Rheumatoid Arthritis and Systemic Lupus Erythematosus
by Micaela F. Beckman, Adam Alexander, Jean-Luc C. Mougeot and Farah Bahrani Mougeot
Int. J. Mol. Sci. 2025, 26(13), 6379; https://doi.org/10.3390/ijms26136379 - 2 Jul 2025
Viewed by 456
Abstract
Sjögren’s Disease (SjD), Rheumatoid Arthritis (RA), and Systemic Lupus Erythematosus (SLE) are autoimmune diseases with overlapping genetic features, yet the etiologies of these diseases are poorly understood. Using these rheumatic diseases as an example of proof of concept, our aim was to develop [...] Read more.
Sjögren’s Disease (SjD), Rheumatoid Arthritis (RA), and Systemic Lupus Erythematosus (SLE) are autoimmune diseases with overlapping genetic features, yet the etiologies of these diseases are poorly understood. Using these rheumatic diseases as an example of proof of concept, our aim was to develop a tool that simplifies analysis of gene–disease associations applicable to any disease and to perform comparisons. This tool is meant to provide insights into associated gene symbols and gene expression data to identify candidate biomarkers in common among these diseases. The Diseasesv2.0 and GTExv8 databases were utilized for data collection, providing searchable disease names, affiliated gene symbols, confidence scores (ranging from 0 to 5, with 5 being the most confident), and gene expression across the panel of 54 tissue types present in GTExv8. Data infrastructure was established on a Postgres database using Plotlyv5.17.0 and Streamlitv1.27.2 Python packages. The resulting database was used to investigate the genetic associations among SjD, RA, and SLE, including confidence scores from 2.50 to 5.00. STRINGv12 analysis determined significant pathways (FDR < 0.05). Analysis using our tool revealed the following refined gene associations for each disease: SjD based on ‘Sjogren’ search term (n = 12 genes), RA (n = 231 genes), and SLE (n = 137 genes). We found seven genes in common, namely, CD4, CD8A, IL6, IL17A, TNFS13B, TNF, and TRIM21. With the exception of IL17A, these genes were expressed in tissue types known or suggested to be affected by SjD. STRINGv12 determined significant KEGG pathways involving interleukin signaling, cytokine signaling, and the immune system. We developed a tool that simplifies the data mining process, allowing users to search for diseases of interest and view common gene associations and gene expression. Some of the genes identified through our tool may be further explored to better understand SjD pathogenesis and systemic impact. Full article
Show Figures

Figure 1

15 pages, 740 KiB  
Article
Effects of Janus Kinase Inhibitors on Cardio-Vascular Risk in Rheumatic Diseases: A Prospective Pilot Study
by Diana Popescu, Minerva Codruta Badescu, Elena Rezus, Daniela Maria Tanase, Anca Ouatu, Nicoleta Dima, Oana-Nicoleta Buliga-Finis, Evelina Maria Gosav and Ciprian Rezus
J. Clin. Med. 2025, 14(13), 4676; https://doi.org/10.3390/jcm14134676 - 2 Jul 2025
Viewed by 409
Abstract
Background/Objectives: Patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA) exhibit increased cardiovascular risk, partly attributed to persistent systemic inflammation. Janus kinase inhibitors (JAKi) effectively reduce inflammation, but their impact on cardiovascular risk remains unclear. This pilot study aimed to evaluate the effect [...] Read more.
Background/Objectives: Patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA) exhibit increased cardiovascular risk, partly attributed to persistent systemic inflammation. Janus kinase inhibitors (JAKi) effectively reduce inflammation, but their impact on cardiovascular risk remains unclear. This pilot study aimed to evaluate the effect of JAKi therapy on systemic inflammation and lipid markers, correlate traditional cardiovascular risk factors with biological parameters, and quantify subclinical atherosclerosis progression. Methods: We conducted a prospective, single-center study including 48 patients receiving JAKi. Clinical, inflammatory, lipid, and vascular parameters were assessed at baseline (T0) and after 12 months (T1). Primary endpoints included changes in carotid intima-media thickness (cIMT), ankle-brachial index (ABI), and carotid plaque presence. Results: Mean cIMT significantly decreased from 0.29 mm to 0.125 mm (p = 0.019), while ABI improved modestly, but not significantly (0.125 to 0.04, p = 0.103). Carotid plaque prevalence increased slightly from 39.6% to 47.9%, p = 0.159. C-reactive protein (CRP) levels declined significantly, while interleukin (IL)-1β levels increased. Lipoprotein(a) [Lp(a)] levels decreased significantly (mean reduction −7.96 mmol/L, p = 0.001). Multivariate regression identified Lp(a) as an independent predictor of carotid plaque at both T0 (p = 0.011) and T1 (p = 0.005). Baseline ABI was a significant predictor of acute cardiovascular events [hazard ratio (HR): 4.614, 95% CI: 1.034–20.596, p = 0.045]. Conclusions: JAKi therapy significantly reduced systemic inflammation and cIMT in patients with autoimmune rheumatic diseases, suggesting a potential benefit in attenuating early vascular changes. However, residual cardiovascular risk remains in patients with low ABI and elevated Lp(a), warranting close monitoring. Full article
(This article belongs to the Special Issue Cardiovascular Risks in Autoimmune and Inflammatory Diseases)
Show Figures

Figure 1

21 pages, 885 KiB  
Article
Survival Outcomes and Prognostic Factors in Rheumatoid Arthritis Patients Receiving Biologic or Targeted Synthetic Therapy: Real-World Data
by Zhaklin Apostolova, Tanya Shivacheva and Tsvetoslav Georgiev
Antibodies 2025, 14(3), 54; https://doi.org/10.3390/antib14030054 - 30 Jun 2025
Viewed by 522
Abstract
Objectives: The present study aimed to evaluate the long-term survival of patients with rheumatoid arthritis (RA) receiving biologic or targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) in a real-world setting, and to identify key prognostic factors influencing mortality within this cohort. Methods: This retrospective, [...] Read more.
Objectives: The present study aimed to evaluate the long-term survival of patients with rheumatoid arthritis (RA) receiving biologic or targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) in a real-world setting, and to identify key prognostic factors influencing mortality within this cohort. Methods: This retrospective, observational cohort study analyzed 165 patients with confirmed RA who were on b/tsDMARD treatment for at least six months as of June 2017. Patient data, including demographics, disease duration, prior therapeutic regimens, and global functional status were extracted from medical records to collect data covering a seven-year follow-up period, extending from June 2017 to December 2024. Corticosteroid use was defined as continuous systemic intake during the RA activity analysis period. Survival outcomes were analyzed using Kaplan-Meier methods and multivariate Cox proportional hazards models to identify independent predictors of mortality. Results: Over a mean follow-up of 9.4 years, the mortality rate was 13.5 deaths per 1000 treatment-years, with an overall survival rate of 87.3%. Advanced functional disability and prolonged corticosteroid use were independently associated with higher mortality risk. In subgroup analyses, chronic kidney disease significantly increased mortality among patients on TNF inhibitors. In contrast, patients who remained on their initial anti-IL6 therapy had lower mortality, though this may reflect survivor bias. Conclusions: This study highlights the importance of long-term b/tsDMARD intervention in RA patients, with observed low mortality and high survival rates. Subgroup findings suggest the importance of comorbidity management in TNFi users and therapeutic stability in anti-IL6 users. Full article
(This article belongs to the Section Antibody-Based Therapeutics)
Show Figures

Figure 1

17 pages, 7173 KiB  
Article
Inhibition of Matrix Metalloproteinase-7 Attenuates Subpleural Fibrosis in Rheumatoid Arthritis-Associated Interstitial Lung Disease
by Li Xiong, Li-Mei Liang, Shu-Yi Ye, Xiao-Lin Cui, Shi-He Hu, Chen-Yue Lian, Wen-Jia Sun, Yang-Ping Lv, He-De Zhang, Meng Wang, Fei Xiang, Liang Xiong, Hong Ye, Wan-Li Ma and Lin-Jie Song
Biomedicines 2025, 13(7), 1581; https://doi.org/10.3390/biomedicines13071581 - 27 Jun 2025
Viewed by 600
Abstract
Background: Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is a significant complication of RA which lacks effective treatments with high mortality. This study aimed to investigate the role of matrix metalloproteinase-7 (MMP-7) in mediating RA-ILD. Methods: Based on the database of RA-ILD [...] Read more.
Background: Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is a significant complication of RA which lacks effective treatments with high mortality. This study aimed to investigate the role of matrix metalloproteinase-7 (MMP-7) in mediating RA-ILD. Methods: Based on the database of RA-ILD patients, a bioinformatics analysis was performed. A protein–protein interaction (PPI) network focusing on MMP-7 was simulated. Pleural mesothelial cells (PMCs) were treated with RA-ILD patients’ serum or RA-ILD-related inflammatory factors, and the protein expressions of collagen-I and MMP-7 were examined. An arthritis model was established using complete Freund’s adjuvant (CFA). Changes in the weight and joints of mice were recorded, and lung tissues were evaluated by Masson staining and Sirius red stain techniques. MMP-7 inhibitor, MMP-7 siRNA and MMP shRNA lentivirus were used to inhibit MMP-7 and investigate changes in collagen-I and fibrosis in vivo and in vitro. Results: MMP-7 was found to be significantly expressed in RA-ILD lung tissue by bioinformatics analysis, and MMP-7 to maybe interact with collagen-I. In vitro experiments indicated cytokines IL-1β, IL-6 and TNF-α promoted MMP-7 and collagen-I expression in PMCs. Serum obtained from patients with RA-ILD also upregulated MMP-7 and collagen-I expression in PMCs. Inhibition of MMP-7 with MMP-7 siRNA or MMP inhibitor prevented collagen-I synthesis in PMCs. In vivo, CFA induced arthritis and subpleural lung inflammation in rats, but the MMP-7 inhibitor and MMP-7 siRNA attenuated CFA-induced lung inflammation and subpleural lung fibrosis. Conclusions: MMP-7 mediated subpleural lung inflammation as well as fibrosis in RA-ILD. It provided theoretical and experimental support for MMP-7 being a therapeutic target in RA-ILD. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnostics, and Therapeutics for Rheumatic Diseases)
Show Figures

Figure 1

12 pages, 2552 KiB  
Article
Investigating the Mechanism of Emodin in Rheumatoid Arthritis Through the HIF-1α/NLRP3 Pathway and Mitochondrial Autophagy
by Dehao Du, Linlan Zhou, Jiayu Tian, Lianying Cheng, Han Zhang, Yifu Tang, Zexuan Qiu, Tingdan Zhang and Xiaofeng Rong
Curr. Issues Mol. Biol. 2025, 47(7), 486; https://doi.org/10.3390/cimb47070486 - 25 Jun 2025
Viewed by 569
Abstract
In this study, we investigated the inhibitory effects of emodin on pyroptosis in rheumatoid arthritis (RA) synovial cells by modulating the HIF-1α/NLRP3 inflammasome pathway and mitochondrial autophagy. By employing a chemically induced hypoxia model with CoCl2, we established experimental groups including [...] Read more.
In this study, we investigated the inhibitory effects of emodin on pyroptosis in rheumatoid arthritis (RA) synovial cells by modulating the HIF-1α/NLRP3 inflammasome pathway and mitochondrial autophagy. By employing a chemically induced hypoxia model with CoCl2, we established experimental groups including normal control, model group, and emodin-treated groups at different concentrations (5 μM, 10 μM, and 20 μM). We optimized the CoCl2 concentration via CCK-8 assay to ensure cell viability. ELISA, Western blotting, transmission electron microscopy, and immunofluorescence were employed to assess HIF-1α, IL-1β, and IL-18 levels, pyroptosis-related proteins, autophagy markers, and NLRP3 fluorescence intensity. Statistical analysis revealed that increased CoCl2 concentrations led to a significant cell viability reduction (p < 0.05), with 300 μM CoCl2 causing ~50% inhibition at 24 h. Transmission electron microscopy confirmed autophagosome formation in emodin-treated groups, while Western blotting showed dose-dependent downregulation of HIF-1α, NLRP3, BNIP3, and related proteins. Immunofluorescence revealed reduced NLRP3 fluorescence intensity with increasing emodin doses (p < 0.05), alongside dose-dependent cell viability recovery (p < 0.05). Our findings demonstrate that emodin alleviates RA synovitis through dual mechanisms: inhibition of mitochondrial autophagy to regulate the balance between mitochondrial autophagy and pyroptosis, and suppression of HIF-1α/NLRP3-mediated pyroptosis signaling, thereby reducing IL-1β and IL-18 release and inhibiting synovial cell proliferation. This study provides innovative approaches for targeted RA therapy. Full article
Show Figures

Figure 1

18 pages, 2295 KiB  
Article
Study on Rapeseed Albumin Hydrolysis by PrtS Protease from Streptococcus thermophilus and Bioactivity Characterization of Resulting Hydrolysates
by Zeeshan Hafeez, Sophie Beaubier, Arnaud Aymes, Ségolène Christophe, Samina Akbar, Romain Kapel and Laurent Miclo
Foods 2025, 14(13), 2235; https://doi.org/10.3390/foods14132235 - 25 Jun 2025
Viewed by 381
Abstract
Lactic acid bacteria are well known for hydrolyzing milk proteins, but their application to plant proteins remains limited. This study evaluated the ability of the cell-wall-anchored PrtS protease from two Streptococcus thermophilus strains to hydrolyze rapeseed albumins (RAs), aiming to generate bioactive peptides [...] Read more.
Lactic acid bacteria are well known for hydrolyzing milk proteins, but their application to plant proteins remains limited. This study evaluated the ability of the cell-wall-anchored PrtS protease from two Streptococcus thermophilus strains to hydrolyze rapeseed albumins (RAs), aiming to generate bioactive peptides with potential food functionality. The specific activity of PrtS was first determined using a chromogenic substrate. RAs were then hydrolyzed using 10X- and 100X-concentrated cell pellets of each strain to assess the hydrolysis kinetics and the enzymatic mechanism. The results showed concentration-dependent hydrolysis, with protein conversion and the degree of hydrolysis increasing threefold at 100X for both strains. Despite the increased hydrolysis, the peptides produced had similar average sizes, averaging at five amino acids, indicating a consistent “one-by-one” cleavage mechanism. The in vitro testing of the RA hydrolysates produced with 100X PrtS from S. thermophilus LMD-9 revealed dose-dependent antioxidant activity comparable to native RAs. Importantly, unlike native RAs, these hydrolysates did not induce increased secretion of the pro-inflammatory mediator IL-8 in inflamed HT-29 cells, suggesting a reduced pro-inflammatory potential. These findings demonstrate that PrtS protease from S. thermophilus can effectively hydrolyze rapeseed proteins to produce functional hydrolysates with improved bioactivity profiles. Such hydrolysates have promising applications as functional ingredients in plant-based food products, contributing both to health benefits and potential food preservation through antioxidant activity. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

12 pages, 2595 KiB  
Article
Molecular Signatures of Dendritic Cell Activation upon TNF Stimulation: A Multi-Omics Study in Rheumatoid Arthritis
by Alina Alshevskaya, Shakir Suleimanov, Elizaveta Sheveleva, Roman Perik-Zavodskii, Olga Perik-Zavodskaia, Saleh Alrhmoun, Julia Lopatnikova, Julia Zhukova, Nadezhda Shkaruba, Natalia Sivitskaya, Alexey Sizikov, Elena Golikova and Sergey Sennikov
Int. J. Mol. Sci. 2025, 26(13), 6071; https://doi.org/10.3390/ijms26136071 - 24 Jun 2025
Viewed by 508
Abstract
Dendritic cells (DCs) play a central role in the immunopathogenesis of rheumatoid arthritis (RA), yet their regulation by tumor necrosis factor alpha (TNF) and associated receptors remains poorly characterized. We applied a single-cell multi-omics approach (CITE-seq) to profile peripheral blood mononuclear cells (PBMCs) [...] Read more.
Dendritic cells (DCs) play a central role in the immunopathogenesis of rheumatoid arthritis (RA), yet their regulation by tumor necrosis factor alpha (TNF) and associated receptors remains poorly characterized. We applied a single-cell multi-omics approach (CITE-seq) to profile peripheral blood mononuclear cells (PBMCs) from RA patients and healthy donors, before and after in vitro TNF stimulation. Using integrated analysis of surface protein expression and transcriptomic data, we focused on phenotypic and transcriptional changes in dendritic cell populations. DCs from RA patients exhibited elevated surface expression of CD14 and CD16, indicative of an inflammatory phenotype, and showed marked responsiveness to TNF. Upon stimulation, RA-derived DCs upregulated genes involved in antigen presentation (CD83, LAMP3), lymph node migration (CCR7, ADAM19), and inflammation (TRAF1, IL24) whereas such activation was absent in healthy controls. Our data reveal a TNF-responsive, pro-inflammatory transcriptional program in dendritic cells from RA patients and underscore the relevance of the TNF receptor profile in shaping DC function. These findings provide new insights into the immunobiology of RA and identify dendritic cells as potential targets for personalized immunomodulatory therapy. Full article
Show Figures

Figure 1

18 pages, 2195 KiB  
Article
Pilot Transcriptomic Profiling of Canine Oral Melanoma Reveals Conserved Oncogenic Pathways and Uncharacterized Molecular Signatures
by Carmen G. Pérez-Santana, Francisco Rodríguez-Esparragón, Sara E. Cazorla-Rivero, Ana A. Jiménez-Alonso, Bernardino Clavo, Jesús M. González-Martín, Ángeles Cánovas-Molina, Carmen Bartolomé, Lidia Estupiñán and Enrique Rodríguez Grau-Bassas
Cancers 2025, 17(13), 2106; https://doi.org/10.3390/cancers17132106 - 23 Jun 2025
Viewed by 848
Abstract
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize [...] Read more.
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize gene expression profiles in COM to identify differentially expressed genes (DEGs), potential biomarkers, and therapeutic targets. Methods: In this pilot study, we performed RNA sequencing (RNA-seq) on tumor and healthy oral tissue samples from dogs. Two independent analytical pipelines—Bowtie2-DESeq2 and HISAT-StringTie-Ballgown—were used to ensure robustness in DEG detection. We also conducted pathway enrichment and isoform-level analyses to investigate biological processes and alternative splicing events. Results: Both approaches identified a core set of 929 common DEGs. Key oncogenic pathways, including MAPK/ERK and cell cycle regulation, were significantly affected, with notable upregulation of BRAF, NRAS, CDK4, and MITF (log2FC = 2.86, p < 0.001). The transcription factor SOX10 and the cytokine IL-33, both previously implicated in melanoma progression, were consistently overexpressed. Additionally, NF1, a known RAS pathway inhibitor, was also upregulated. Isoform analysis revealed novel transcript variants, suggesting a complex layer of post-transcriptional regulation in COM. Many DEGs remained uncharacterized, and chromosomal distribution analysis highlighted potential genomic influences. Conclusions: Our findings provide new insights into the molecular landscape of COM, reinforcing its utility as a model for human melanoma. The identification of conserved oncogenic pathways and novel transcript variants opens avenues for further functional studies and the development of targeted therapies in both veterinary and human oncology. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

17 pages, 2729 KiB  
Article
Chronic Copper Overload Triggers Inflammation in Mesenteric PVAT Alongside Changes in Renin–Angiotensin System-Related Pathways
by Nina Bruna de Souza Mawandji, Nayara Ariel da Silva Lisboa, Karoline Neumann Gomes, Júlia Martins Vieira, Jussara de Jesus Simão, Maria Isabel Alonso-Vale, Karolini Zuqui Nunes, Dalton Valentim Vassallo and Andressa Bolsoni-Lopes
Nutrients 2025, 17(13), 2082; https://doi.org/10.3390/nu17132082 - 23 Jun 2025
Viewed by 415
Abstract
Background/Objectives: Copper is an essential micronutrient required for physiological functions, but elevated serum levels impair vascular reactivity and blood pressure regulation. Given PVAT’s critical role in vascular function, this study aimed to investigate the effects of chronic copper overload on the secretory function [...] Read more.
Background/Objectives: Copper is an essential micronutrient required for physiological functions, but elevated serum levels impair vascular reactivity and blood pressure regulation. Given PVAT’s critical role in vascular function, this study aimed to investigate the effects of chronic copper overload on the secretory function of mesenteric PVAT, focusing on its vasoregulatory role. Methods: In the first phase, 8-week-old male Wistar rats were assigned to two groups, namely control (saline, i.p.) or copper (25.72 µg/kg/day Cu, i.p., for 30 days), corresponding to twice the recommended daily dose of copper. In the second phase, rats were divided into four groups: control (saline, i.p., water by gavage), copper (Cu, i.p., water by gavage), losartan (saline, i.p., 10 mg/kg/day losartan by gavage), or copper + losartan (Cu, i.p., 10 mg/kg/day losartan by gavage). After euthanasia, mesenteric PVAT was collected for morphometric analysis, gene and protein expression of adipokines, inflammatory molecules, and the renin–angiotensin system. Serum was used for hormone and biochemical measurements. Results: In mesenteric PVAT, chronic copper overload increased adipocyte diameter and reduced lipolysis. It also elevated the secretion of TNF-α and PAI-1 while decreasing IL-10 levels. Additionally, it upregulated the mRNA expression of MCP-1, F4/80, CD86, TLR4, arginase-1, iNOS, ACE1, and AT1R, alongside an increase in serum angiotensin II levels. When copper treatment was combined with losartan, an AT1R antagonist, adipocyte hypertrophy; TNF-α secretion; and the gene expression of TLR4, F4/80, and arginase-1 were attenuated. Conclusions: Chronic exposure to double the recommended dose of Cu disrupts the secretory function of mesenteric PVAT, promoting inflammation and altering the local RAS. These effects appear to occur, at least in part, alongside the activation of the AT1R–TLR4–angiotensin II signaling pathway, triggering the upregulation of vasoregulatory inflammatory markers. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

13 pages, 2774 KiB  
Article
Combined Antiviral and Cytoprotective Action of Rosmarinic Acid Against EV-A71 Infection: A Potential Therapeutic Strategy
by Junping Lv, Weishi Lin, Siqi Chao, Jing Xie, Yue Cao, Jinfeng Tie, Yuehua Ke, Binan Lu and Zongran Pang
Pathogens 2025, 14(7), 622; https://doi.org/10.3390/pathogens14070622 - 23 Jun 2025
Viewed by 379
Abstract
Enterovirus A71 (EV-A71), a major etiological agent of hand-foot-mouth disease, can cause severe neurological complications. However, the mechanisms underlying EV-A71-induced cell damage and potential therapeutic strategies remain inadequately understood. Here, we investigated EV-A71 replication dynamics and associated cytopathic effects in nine distinct cell [...] Read more.
Enterovirus A71 (EV-A71), a major etiological agent of hand-foot-mouth disease, can cause severe neurological complications. However, the mechanisms underlying EV-A71-induced cell damage and potential therapeutic strategies remain inadequately understood. Here, we investigated EV-A71 replication dynamics and associated cytopathic effects in nine distinct cell lines, including epithelial, neuronal, immune, and other cell types. Cell viability, membrane integrity, and energy metabolism were assessed using Cell Counting Kit-8 (CCK-8), lactate dehydrogenase (LDH), and adenosine triphosphate (ATP) assays. The antiviral activity of rosmarinic acid (RA), a natural polyphenol, was evaluated by plaque reduction, qPCR, and Western blot. EV-A71 exhibited cell-type-specific replication and cytotoxicity patterns. RA significantly preserved cell viability, reduced LDH release, maintained ATP levels, and suppressed IL-6 expression. Mechanistically, RA inhibited viral replication by downregulating VP1 expression and viral RNA levels. Molecular docking indicated strong binding of RA to the hydrophobic pocket of VP1, potentially disrupting virus-host interactions. Collectively, these findings highlight RA’s combined antiviral and cytoprotective potential, supporting its candidacy as a therapeutic agent against EV-A71 infection. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

Back to TopTop