Combined Antiviral and Cytoprotective Action of Rosmarinic Acid Against EV-A71 Infection: A Potential Therapeutic Strategy
Abstract
1. Introduction
2. Materials and Methods
2.1. Compounds
2.2. Cell Culture and Viral Preparation
2.3. Measurement of Cytotoxicity and Cell Viability
2.4. Antiviral Studies of RA
2.5. Western Blot Analysis
2.6. Plaque Assay for Viral Titration
2.7. Quantitative PCR
2.8. TCID50 Assay
2.9. Molecular Docking Analysis
2.10. Statistical Analysis
3. Results
3.1. The Multiplication Rates of EV-A71 Infection Vary Greatly in Different Host Cells
3.2. Impacts of EV-A71 Infection on the Viability of Host Cells
3.3. Rosmarinic Acid Mitigates EV-A71-Induced Cytotoxicity and Enhances Host Cell Viability
3.4. Rosmarinic Acid Modulates the Expression of Inflammatory Cytokines
3.5. Rosmarinic Acid Exhibits Antiviral Efficacy In Vitro
3.6. Rosmarinic Acid Exhibits Strong Binding Affinity to EV-A71 VP1
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ooi, M.H.; Wong, S.C.; Lewthwaite, P.; Cardosa, M.J.; Solomon, T. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 2010, 9, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Chen, J.; Fang, T.; Ma, R.; Wang, J.; Pan, X.; Dong, H.; Xu, G. Vaccination coverage estimates and utilization patterns of inactivated enterovirus 71 vaccine post vaccine introduction in Ningbo, China. BMC Public Health 2021, 21, 1118. [Google Scholar] [CrossRef]
- Hu, Y.; Zeng, G.; Chu, K.; Zhang, J.; Han, W.; Zhang, Y.; Li, J.; Zhu, F. Five-year immunity persistence following immunization with inactivated enterovirus 71 type (EV71) vaccine in healthy children: A further observation. Hum. Vaccines Immunother. 2018, 14, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Cursino, C.N.; Monteiro, P.G.O.; Duarte, G.D.S.; Vieira, T.B.Q.; Crisante, V.C.; Giordani, F.; Xavier, A.R.; de Almeida, R.; Calil-Elias, S. Predictors of adverse drug reactions associated with ribavirin in direct-acting antiviral therapies for chronic hepatitis C. Pharmacoepidemiol. Drug Saf. 2019, 28, 1601–1608. [Google Scholar] [CrossRef]
- Wang, S.; Pang, Z.; Fan, H.; Tong, Y. Advances in anti-EV-A71 drug development research. J. Adv. Res. 2024, 56, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Hunt-Fugate, A.; Murray, D.L. Adverse reactions to ribavirin. Pediatr. Infect. Dis. J. 1990, 9, 680–681. [Google Scholar]
- Janai, H.K.; Marks, M.I.; Zaleska, M.; Stutman, H.R. Ribavirin: Adverse drug reactions, 1986 to 1988. Pediatr. Infect. Dis. J. 1990, 9, 209–211. [Google Scholar] [CrossRef]
- Yamayoshi, S.; Iizuka, S.; Yamashita, T.; Minagawa, H.; Mizuta, K.; Okamoto, M.; Nishimura, H.; Sanjoh, K.; Katsushima, N.; Itagaki, T.; et al. Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J. Virol. 2012, 86, 5686–5696. [Google Scholar] [CrossRef]
- Xiang, Z.; Li, L.; Lei, X.; Zhou, H.; Zhou, Z.; He, B.; Wang, J. Enterovirus 68 3C protease cleaves TRIF to attenuate antiviral responses mediated by Toll-like receptor 3. J. Virol. 2014, 88, 6650–6659. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, Y.; Kotecha, A.; Fry, E.E.; Kelly, J.T.; Wang, X.; Rao, Z.; Rowlands, D.J.; Ren, J.; Stuart, D.I. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nat. Microbiol. 2019, 4, 414–419. [Google Scholar] [CrossRef]
- Ghamry, H.I.; Belal, A.; El-Ashrey, M.K.; Tawfik, H.O.; Alsantali, R.I.; Obaidullah, A.J.; El-Mansi, A.A.; Abdelrahman, D. Evaluating the ability of some natural phenolic acids to target the main protease and AAK1 in SARS COV-2. Sci. Rep. 2023, 13, 7357. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Wang, L.; Yang, S.; Liang, Y.; Zhang, Y.; Pan, X.; Li, J. Rosmarinic acid treatment protects against lethal H1N1 virus-mediated inflammation and lung injury by promoting activation of the h-PGDS-PGD(2)-HO-1 signal axis. Chin. Med. 2023, 18, 139. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.Y.; Chen, X.X.; Wang, X.H.; Ye, H.E.; Wu, Y.P.; Sun, W.Y.; Liang, L.; Duan, W.J.; Kurihara, H.; Huang, F.; et al. Reducing lipid peroxidation attenuates stress-induced susceptibility to herpes simplex virus type 1. Acta Pharmacol. Sin. 2023, 44, 1856–1866. [Google Scholar] [CrossRef]
- Fan, T.; Liu, B.; Yao, H.; Chen, X.; Yang, H.; Guo, S.; Wu, B.; Li, X.; Li, X.; Xun, M.; et al. Cathelicidin peptide analogues inhibit EV71 infection through blocking viral entry and uncoating. PLoS Pathog. 2024, 20, e1011967. [Google Scholar] [CrossRef]
- Xie, J.; Hu, X.; Li, H.; Zhu, H.; Lin, W.; Li, L.; Wang, J.; Song, H.; Jia, L. Murine models of neonatal susceptibility to a clinical strain of enterovirus A71. Virus Res. 2023, 324, 199038. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.X.; Cao, Y. CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Gan, J.; Xiao, Z.X.; Cao, Y. FitDock: Protein-ligand docking by template fitting. Brief. Bioinform. 2022, 23, bbac087. [Google Scholar] [CrossRef]
- Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M. A Comprehensive Review of Rosmarinic Acid: From Phytochemistry to Pharmacology and Its New Insight. Molecules 2022, 27, 3292. [Google Scholar] [CrossRef]
- Davila-Calderon, J.; Li, M.L.; Penumutchu, S.R.; Haddad, C.; Malcolm, L.; King, J.; Hargrove, A.E.; Brewer, G.; Tolbert, B.S. Enterovirus evolution reveals the mechanism of an RNA-targeted antiviral and determinants of viral replication. Sci. Adv. 2024, 10, eadg3060. [Google Scholar] [CrossRef] [PubMed]
- Miwatashi, W.; Ishida, M.; Takashino, A.; Kobayashi, K.; Yamaguchi, M.; Shitara, H.; Koike, S. Mouse Scarb2 Modulates EV-A71 Pathogenicity in Neonatal Mice. J. Virol. 2022, 96, e0056122. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.Y.; Lin, T.Y.; Hsu, K.H.; Huang, Y.C.; Lin, K.L.; Hsueh, C.; Shih, S.R.; Ning, H.C.; Hwang, M.S.; Wang, H.S.; et al. Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet 1999, 354, 1682–1686. [Google Scholar] [CrossRef] [PubMed]
- Kianmehr, M.; Khazdair, M.R.; Abbasnezhad, A.; Akram, M. Effects of Lamiaceae family plants and their bioactive ingredients on coronavirus-induced lung inflammation. Food Sci. Nutr. 2024, 12, 1528–1544. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Mohammad, T.; Rub, M.A.; Raza, A.; Azum, N.; Yadav, D.K.; Hassan, M.I.; Asiri, A.M. Biomedical features and therapeutic potential of rosmarinic acid. Arch. Pharm. Res. 2022, 45, 205–228. [Google Scholar] [CrossRef]
- Hsieh, C.F.; Jheng, J.R.; Lin, G.H.; Chen, Y.L.; Ho, J.Y.; Liu, C.J.; Hsu, K.Y.; Chen, Y.S.; Chan, Y.F.; Yu, H.M.; et al. Rosmarinic acid exhibits broad anti-enterovirus A71 activity by inhibiting the interaction between the five-fold axis of capsid VP1 and cognate sulfated receptors. Emerg. Microbes Infect. 2020, 9, 1194–1205. [Google Scholar] [CrossRef]
- Kortagere, S.; Madani, N.; Mankowski, M.K.; Schon, A.; Zentner, I.; Swaminathan, G.; Princiotto, A.; Anthony, K.; Oza, A.; Sierra, L.J.; et al. Inhibiting early-stage events in HIV-1 replication by small-molecule targeting of the HIV-1 capsid. J. Virol. 2012, 86, 8472–8481. [Google Scholar] [CrossRef]
- Ferron, F.; Subissi, L.; Silveira De Morais, A.T.; Le, N.T.T.; Sevajol, M.; Gluais, L.; Decroly, E.; Vonrhein, C.; Bricogne, G.; Canard, B.; et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc. Natl. Acad. Sci. USA 2018, 115, E162–E171. [Google Scholar] [CrossRef]
Prime Name | Sequence (5′—3′) |
---|---|
IL-6-F | CAATGAGGAGACTTGCCTGG |
IL-6-R | GCACAGCTCTGGCTTGTTC |
IL-1β-F | TGGCATTGAGGATGACTTGTTC |
IL-1β-R | CTGTAGTGGTGGTCGGAGATT |
TNF-α-F | AACATCCAACCTTCCCAAACG |
TNF-α-R | GACCCTAAGCCCCCAATTCTC |
EV-A71-F | CCGATTTCGGCGGCTTGAAG |
EV-A71-R | CACCCAAGCTTTACCTGCAC |
EV-A71-Probe | FAM-TCTAAGCGATGACTGCTCACTTGGGT |
CurPocket ID | Vina Score | Cavity Volume (Å3) | Center (x, y, z) (Å) | Docking Size (x, y, z) (Å) |
---|---|---|---|---|
1 | −9.1 | 2739 | 110,265,98 | 35,24,30 |
2 | −5.9 | 192 | 158,259,113 | 24,24,24 |
3 | −5.9 | 102 | 86,282,103 | 24,24,24 |
4 | −5.6 | 134 | 114,271,109 | 24,24,24 |
5 | −5.6 | 85 | 97,272,116 | 24,24,24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Lin, W.; Chao, S.; Xie, J.; Cao, Y.; Tie, J.; Ke, Y.; Lu, B.; Pang, Z. Combined Antiviral and Cytoprotective Action of Rosmarinic Acid Against EV-A71 Infection: A Potential Therapeutic Strategy. Pathogens 2025, 14, 622. https://doi.org/10.3390/pathogens14070622
Lv J, Lin W, Chao S, Xie J, Cao Y, Tie J, Ke Y, Lu B, Pang Z. Combined Antiviral and Cytoprotective Action of Rosmarinic Acid Against EV-A71 Infection: A Potential Therapeutic Strategy. Pathogens. 2025; 14(7):622. https://doi.org/10.3390/pathogens14070622
Chicago/Turabian StyleLv, Junping, Weishi Lin, Siqi Chao, Jing Xie, Yue Cao, Jinfeng Tie, Yuehua Ke, Binan Lu, and Zongran Pang. 2025. "Combined Antiviral and Cytoprotective Action of Rosmarinic Acid Against EV-A71 Infection: A Potential Therapeutic Strategy" Pathogens 14, no. 7: 622. https://doi.org/10.3390/pathogens14070622
APA StyleLv, J., Lin, W., Chao, S., Xie, J., Cao, Y., Tie, J., Ke, Y., Lu, B., & Pang, Z. (2025). Combined Antiviral and Cytoprotective Action of Rosmarinic Acid Against EV-A71 Infection: A Potential Therapeutic Strategy. Pathogens, 14(7), 622. https://doi.org/10.3390/pathogens14070622