Analysis of Key miRNA/mRNA Functional Axes During Host Dendritic Cell Immune Response to Mycobacterium tuberculosis Based on GEO Datasets
Abstract
1. Introduction
2. Materials and Methods
2.1. Expression Profile Data Collection and Analysis
2.2. Establishment of an miRNA–mRNA Regulatory Network Related to DCs Infected with M.tb
2.3. Functional Annotation and Pathway Enrichment Analysis for the miRNA–mRNA Regulatory Network
2.4. PPI Network Analysis of Key Modules
2.5. Propagation and Infection of M.tb H37Ra, BCG, and DCs
2.6. Laser Confocal Fluorescence Co-Localization Analysis
2.7. RNA Extraction and Identification of Key miRNA and mRNA by qRT-PCR
2.8. Statistical Analysis of Key miRNA/mRNA Axes
3. Results
3.1. Screening Results for Differentially Expressed mRNAs and miRNAs in DCs Infected with M.tb
3.2. Construction and Analysis of Potential miRNA–mRNA Regulatory Network for the Immune Response of DCs to M.tb
3.3. Functional and Pathway Analysis of Differentially Expressed Genes in miRNA–mRNA Regulatory Networks from DCs Infected with M.tb
3.4. Acquisition of Pivotal Axes in the miRNA–mRNA Regulatory Network by PPI Analysis
3.5. Mining and Statistical Analysis of Important miRNA/mRNA Axes
3.6. M.tb Successfully Entered the Lysosomes of PBMC-Derived DCs
3.7. Validation of Differential miRNA Expression Levels via qRT-PCR
3.8. Analysis of Relative Expression Levels of TNF and IL1B in the Infection Model
3.9. ROC Curve Analysis of the Expression of miR-190a-3p and IL1B
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Mihret, A. The role of dendritic cells in Mycobacterium tuberculosis infection. Virulence 2012, 3, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Ravesloot-Chavez, M.M.; Van Dis, E.; Stanley, S.A. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu. Rev. Immunol. 2021, 39, 611–637. [Google Scholar] [CrossRef] [PubMed]
- Van Den Eeckhout, B.; Tavernier, J.; Gerlo, S. Interleukin-1 as Innate Mediator of T Cell Immunity. Front. Immunol. 2020, 11, 621931. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.A.; Watkins, S.C.; Flynn, J.L. Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J. Immunol. 1997, 159, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Demangel, C.; Britton, W.J. Interaction of dendritic cells with mycobacteria: Where the action starts. Immunol. Cell Biol. 2000, 78, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Mohagheghpour, N.; van Vollenhoven, A.; Goodman, J.; Bermudez, L.E. Interaction of Mycobacterium avium with human monocyte-derived dendritic cells. Infect. Immun. 2000, 68, 5824–5829. [Google Scholar] [CrossRef] [PubMed]
- Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.J.; Pulendran, B.; Palucka, K. Immunobiology of dendritic cells. Annu. Rev. Immunol. 2000, 18, 767–811. [Google Scholar] [CrossRef] [PubMed]
- Hanekom, W.A.; Mendillo, M.; Manca, C.; Haslett, P.A.; Siddiqui, M.R.; Barry, C., III; Kaplan, G. Mycobacterium tuberculosis inhibits maturation of human monocyte-derived dendritic cells in vitro. J. Infect. Dis. 2003, 188, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Dulphy, N.; Herrmann, J.L.; Nigou, J.; Rea, D.; Boissel, N.; Puzo, G.; Charron, D.; Lagrange, P.H.; Toubert, A. Intermediate maturation of Mycobacterium tuberculosis LAM-activated human dendritic cells. Cell. Microbiol. 2007, 9, 1412–1425. [Google Scholar] [CrossRef] [PubMed]
- Kapsenberg, M.L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 2003, 3, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Curtsinger, J.M.; Mescher, M.F. Inflammatory cytokines as a third signal for T cell activation. Curr. Opin. Immunol. 2010, 22, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.P.; Mills, K.H. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 2013, 34, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Lo-Man, R.; Guermonprez, P.; Fiette, L.; Deriaud, E.; Burgaud, S.; Gicquel, B.; Winter, N.; Leclerc, C. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J. Immunol. 2002, 168, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.J.; Linas, B.; Trevejo-Nunez, G.J.; Kincaid, E.; Tamura, T.; Takatsu, K.; Ernst, J.D. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol. 2007, 179, 2509–2519. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Pawar, S.; Fuller, C.L.; Reinhart, T.A.; Flynn, J.L.; Kirschner, D.E. Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J. Immunol. 2004, 173, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Barinas, C.D.; Vergara-Vanegas, V.; Gamboa-Hernandez, C.M.; Ocampo, M.; Cuello-Oliveros, A.; Patarroyo, M.A.; Patarroyo, M.E. Peptide-pulsed dendritic cells’ immunomodulating effect regarding Mycobacterium tuberculosis growth in macrophages. Immunobiology 2023, 228, 152346. [Google Scholar] [CrossRef] [PubMed]
- Mellman, I.; Steinman, R.M. Dendritic cells: Specialized and regulated antigen processing machines. Cell 2001, 106, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, L.B.; Tailleux, L.; Pai, A.A.; Gicquel, B.; Marioni, J.C.; Gilad, Y. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA 2012, 109, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, D.; Majewski, P.; Schulte, L.C.; Korn, J.M.; Young, R.A.; Lander, E.S.; Hacohen, N. The plasticity of dendritic cell responses to pathogens and their components. Science 2001, 294, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Tailleux, L.; Neyrolles, O.; Honore-Bouakline, S.; Perret, E.; Sanchez, F.; Abastado, J.P.; Lagrange, P.H.; Gluckman, J.C.; Rosenzwajg, M.; Herrmann, J.L. Constrained intracellular survival of Mycobacterium tuberculosis in human dendritic cells. J. Immunol. 2003, 170, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yi, Z.; Wu, X.; Li, J.; Xu, F. Circulating microRNAs in patients with active pulmonary tuberculosis. J. Clin. Microbiol. 2011, 49, 4246–4251. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Xu, S.; Liu, X.; Zhang, Q.; Xu, X.; Liu, M.; Hua, M.; Li, N.; Yao, H.; Cao, X. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat. Immunol. 2011, 12, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, M.V.; Ni, B.; Morris, J.D.; Brooks, M.N.; Carlson, T.K.; Bakthavachalu, B.; Schoenberg, D.R.; Torrelles, J.B.; Schlesinger, L.S. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc. Natl. Acad. Sci. USA 2011, 108, 17408–17413. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Kaul, V.; Mehra, A.; Chatterjee, S.; Tousif, S.; Dwivedi, V.P.; Suar, M.; Van Kaer, L.; Bishai, W.R.; Das, G. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity. J. Biol. Chem. 2013, 288, 5056–5061. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.M.; Rao, D.S.; Baltimore, D. microRNA regulation of inflammatory responses. Annu. Rev. Immunol. 2012, 30, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Lodish, H.F.; Zhou, B.; Liu, G.; Chen, C.Z. Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol. 2008, 8, 120–130. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.M.; Rao, D.S.; Chaudhuri, A.A.; Baltimore, D. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 2010, 10, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Siddle, K.J.; Tailleux, L.; Deschamps, M.; Loh, Y.H.; Deluen, C.; Gicquel, B.; Antoniewski, C.; Barreiro, L.B.; Farinelli, L.; Quintana-Murci, L. bacterial infection drives the expression dynamics of microRNAs and their isomiRs. PLoS Genet. 2015, 11, e1005064. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, I.S.; Kostoulas, N.; Vergoulis, T.; Georgakilas, G.; Reczko, M.; Maragkakis, M.; Paraskevopoulou, M.D.; Prionidis, K.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA miRPath v.2.0: Investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012, 40, W498–W504. [Google Scholar] [CrossRef] [PubMed]
- Cen, G.; Liu, L.; Wang, J.; Wang, X.; Chen, S.; Song, Y.; Liang, Z. Weighted Gene Co-Expression Network Analysis to Identify Potential Biological Processes and Key Genes in COVID-19-Related Stroke. Oxid. Med. Cell. Longev. 2022, 2022, 4526022. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, Y.; Li, Z.; Wang, Y.; Zhang, Z.; Zhang, W.; Mu, Y.; Yang, J.; Yu, L.; Wang, M. Mannan-Binding Lectin Regulates the Th17/Treg Axis Through JAK/STAT and TGF-beta/SMAD Signaling Against Candida albicans Infection. J. Inflamm. Res. 2022, 15, 1797–1810. [Google Scholar] [CrossRef] [PubMed]
- Boro, M.; Singh, V.; Balaji, K.N. Mycobacterium tuberculosis-triggered Hippo pathway orchestrates CXCL1/2 expression to modulate host immune responses. Sci. Rep. 2016, 6, 37695. [Google Scholar] [CrossRef] [PubMed]
- He, T.S.; Dang, L.; Zhang, J.; Zhang, J.; Wang, G.; Wang, E.; Xia, H.; Zhou, W.; Wu, S.; Liu, X. The Hippo signaling component LATS2 enhances innate immunity to inhibit HIV-1 infection through PQBP1-cGAS pathway. Cell Death Differ. 2022, 29, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Mardpour, S.; Hamidieh, A.A.; Taleahmad, S.; Sharifzad, F.; Taghikhani, A.; Baharvand, H. Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J. Cell. Physiol. 2019, 234, 8249–8258. [Google Scholar] [CrossRef] [PubMed]
- Hamon, P.; Gerbe De Thore, M.; Classe, M.; Signolle, N.; Liu, W.; Bawa, O.; Meziani, L.; Clemenson, C.; Milliat, F.; Deutsch, E.; et al. TGFbeta receptor inhibition unleashes interferon-beta production by tumor-associated macrophages and enhances radiotherapy efficacy. J. Immunother. Cancer 2022, 10, e003519. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Li, X.; Zhou, D.; Geng, J.; Chen, L. Role of Hippo signaling in regulating immunity. Cell. Mol. Immunol. 2018, 15, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Sanarico, N.; Ciaramella, A.; Sacchi, A.; Bernasconi, D.; Bossu, P.; Mariani, F.; Colizzi, V.; Vendetti, S. Human monocyte-derived dendritic cells differentiated in the presence of IL-2 produce proinflammatory cytokines and prime Th1 immune response. J. Leukoc. Biol. 2006, 80, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Desch, A.N.; Randolph, G.J.; Murphy, K.; Gautier, E.L.; Kedl, R.M.; Lahoud, M.H.; Caminschi, I.; Shortman, K.; Henson, P.M.; Jakubzick, C.V. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 2011, 208, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Givi, M.E.; Folkerts, G.; Wagenaar, G.T.; Redegeld, F.A.; Mortaz, E. Cigarette smoke differentially modulates dendritic cell maturation and function in time. Respir. Res. 2015, 16, 131. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.S.; Conti, B.J.; Fraga-Silva, T.F.C.; Almeida, F.; Bonato, V.L.D. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J. Leukoc. Biol. 2020, 108, 1139–1156. [Google Scholar] [CrossRef] [PubMed]
- Sarajlic, M.; Neuper, T.; Fohrenbach Quiroz, K.T.; Michelini, S.; Vetter, J.; Schaller, S.; Horejs-Hoeck, J. IL-1beta Induces SOCS2 Expression in Human Dendritic Cells. Int. J. Mol. Sci. 2019, 20, 5931. [Google Scholar] [CrossRef] [PubMed]
- Meghil, M.M.; Ghaly, M.; Cutler, C.W. A Tale of Two Fimbriae: How Invasion of Dendritic Cells by Porphyromonas gingivalis Disrupts DC Maturation and Depolarizes the T-Cell-Mediated Immune Response. Pathogens 2022, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Chen, Y.; Brkic, J.; Fournier, L.; Ma, H.; Peng, C. miR-218-5p Induces Interleukin-1beta and Endovascular Trophoblast Differentiation by Targeting the Transforming Growth Factor beta-SMAD2 Pathway. Front. Endocrinol 2022, 13, 842587. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.B.; Rathinam, V.A.; Martens, G.W.; Martinot, A.J.; Kornfeld, H.; Fitzgerald, K.A.; Sassetti, C.M. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta. Nat. Immunol. 2013, 14, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhou, B.; Li, S.; Yue, J.; Yang, H.; Wen, Y.; Zhan, S.; Wang, W.; Liao, M.; Zhang, M.; et al. Allele-specific induction of IL-1beta expression by C/EBPbeta and PU.1 contributes to increased tuberculosis susceptibility. PLoS Pathog. 2014, 10, e1004426. [Google Scholar] [CrossRef] [PubMed]
- Gabay, C.; Lamacchia, C.; Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 2010, 6, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Juffermans, N.P.; Florquin, S.; Camoglio, L.; Verbon, A.; Kolk, A.H.; Speelman, P.; van Deventer, S.J.; van Der Poll, T. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J. Infect. Dis. 2000, 182, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Barber, K.D.; Barber, D.L.; Shenderov, K.; White, S.D.; Wilson, M.S.; Cheever, A.; Kugler, D.; Hieny, S.; Caspar, P.; Nunez, G.; et al. Caspase-1 independent IL-1beta production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol. 2010, 184, 3326–3330. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Barber, K.D.; Barber, D.L. Innate and Adaptive Cellular Immune Responses to Mycobacterium tuberculosis Infection. Cold Spring Harb. Perspect. Med. 2015, 5, a018424. [Google Scholar] [CrossRef] [PubMed]
- Tsao, T.C.; Hong, J.; Huang, C.; Yang, P.; Liao, S.K.; Chang, K.S. Increased TNF-alpha, IL-1 beta and IL-6 levels in the bronchoalveolar lavage fluid with the upregulation of their mRNA in macrophages lavaged from patients with active pulmonary tuberculosis. Tuber. Lung Dis. 1999, 79, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Ilonidis, G.; Parapanisiou, E.; Anogeianaki, A.; Giavazis, I.; Theofilogiannakos, E.K.; Tsekoura, P.; Kidonopoulou, K.; Trakatelli, C.; Polimenidis, Z.; Conti, P.; et al. Interleukin -1beta (IL-1 beta), interleukin 6 (IL-6) and tumor necrosis factor (TNF) in plasma and pleural fluid of pneumonia, lung cancer and tuberculous pleuritis. J. Biol. Regul. Homeost. Agents 2006, 20, 41–46. [Google Scholar] [PubMed]
- Jung, B.G.; Vankayalapati, R.; Samten, B. Mycobacterium tuberculosis stimulates IL-1beta production by macrophages in an ESAT-6 dependent manner with the involvement of serum amyloid A3. Mol. Immunol. 2021, 135, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xu, H.; Li, Q.; Wang, Q.; Liu, H.; Huang, Y.; Liang, Y.; Lie, L.; Han, Z.; Chen, Y.; et al. Viperin deficiency promotes dendritic cell activation and function via NF-kappaB activation during Mycobacterium tuberculosis infection. Inflamm. Res. 2023, 72, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Wang, Y.; Niu, H.; Ma, Y.; Song, J. Isolation, purification, and physicochemical characterization of Polygonatum polysaccharide and its protective effect against CCl(4)-induced liver injury via Nrf2 and NF-kappaB signaling pathways. Int. J. Biol. Macromol. 2024, 261 Pt 2, 129863. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Piao, L.; Sun, G.; Lv, C.; Jing, Y.; Jin, R. Long Non-Coding RNA PART1 Exerts Tumor Suppressive Functions in Glioma via Sponging miR-190a-3p and Inactivation of PTEN/AKT Pathway. OncoTargets Ther. 2020, 13, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huo, Y.; Zhou, Z.; Zhang, P.; Hu, J. Role of lncRNA PART1 in intervertebral disc degeneration and associated underlying mechanism. Exp. Ther. Med. 2021, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Roca, F.J.; Whitworth, L.J.; Prag, H.A.; Murphy, M.P.; Ramakrishnan, L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science 2022, 376, eabh2841. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Sud, D.; Plessner, H.; Lin, P.L.; Chan, J.; Flynn, J.L.; Kirschner, D.E. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput. Biol. 2007, 3, 1909–1924. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.L.; Myers, A.; Smith, L.; Bigbee, C.; Bigbee, M.; Fuhrman, C.; Grieser, H.; Chiosea, I.; Voitenek, N.N.; Capuano, S.V.; et al. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum. 2010, 62, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Allie, N.; Grivennikov, S.I.; Keeton, R.; Hsu, N.J.; Bourigault, M.L.; Court, N.; Fremond, C.; Yeremeev, V.; Shebzukhov, Y.; Ryffel, B.; et al. Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci. Rep. 2013, 3, 1809. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.G.; Kim, W.S.; Back, Y.W.; Kim, H.; Kwon, K.W.; Kim, J.S.; Shin, S.J.; Kim, H.J. Mycobacterium tuberculosis RpfE promotes simultaneous Th1- and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells. Eur. J. Immunol. 2015, 45, 1957–1971. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Liu, H.; Ge, B. Innate immunity in tuberculosis: Host defense vs pathogen evasion. Cell. Mol. Immunol. 2017, 14, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Quesniaux, V.F.; Jacobs, M.; Allie, N.; Grivennikov, S.; Nedospasov, S.A.; Garcia, I.; Olleros, M.L.; Shebzukhov, Y.; Kuprash, D.; Vasseur, V.; et al. TNF in host resistance to tuberculosis infection. Curr. Dir. Autoimmun. 2010, 11, 157–179. [Google Scholar] [CrossRef] [PubMed]
- Sotillo, E.; Laver, T.; Mellert, H.; Schelter, J.M.; Cleary, M.A.; McMahon, S.; Thomas-Tikhonenko, A. Myc overexpression brings out unexpected antiapoptotic effects of miR-34a. Oncogene 2011, 30, 2587–2594. [Google Scholar] [CrossRef] [PubMed]
Primer | Primer Sequences |
---|---|
hsa-miR-34a-3p | 5′-CAATCAGCAAGTATACTGCCCT-3′ |
hsa-miR-190a-3p | 5′-CTATATCAAACATATTCCT-3′ |
U6 Forward Primer | 5′-CTCGCTTCGGCAGCACA-3′ |
U6 Reverse Primer | 5′-AACGCTTCACGAATTTGCGT-3′ |
TNF Forward Primer | 5′-CCACGCTCTTCTGCCTGCTG-3′ |
TNF Reverse Primer | 5′-GGCTTGTCACTCGGGGTTCG-3′ |
IL1β Forward Primer | 5′-GACCTGGACCTCTCTGCCCTCTG-3′ |
IL1β Reverse Primer | 5′-GCCTGCCTGAAGCCCTTGC-3′ |
β-actin Forward Primer | 5′-CTGGAACGGTGAAGGTGACA-3′ |
β-actin Reverse Primer | 5′-AAGGGACTTCCTGTAACAATGCA-3′ |
KEGG Pathway | p-Value | miRNAs |
---|---|---|
ECM–receptor interaction (hsa04512) | 1.217072 × 10−8 | hsa-miR-190a-3p, hsa-miR-212-5p, hsa-miR-483-5p, hsa-miR-3925-3p, hsa-miR-4515, hsa-miR-6820-5p, hsa-miR-6891-5p, hsa-miR-7107-3p. |
TGF-beta signaling pathway (hsa04350) | 2.800639 × 10−8 | hsa-miR-9-3p, hsa-miR-92b-5p, hsa-miR-129-5p, hsa-miR-132-3p, hsa-miR-155-5p, hsa-miR-190a-3p, hsa-miR-203b-3p, hsa-miR-212-3p, hsa-miR-548ag, hsa-miR-671-5p, hsa-miR-4524a-5p. |
Hippo signaling pathway (hsa04390) | 9.265076 × 10−5 | hsa-miR-9-3p, hsa-miR-132-3p, hsa-miR-141-3p, hsa-miR-146a-3p, hsa-miR-190a-3p, hsa-miR-212-3p, hsa-miR-548ag, hsa-miR-4423-3p, hsa-miR-6761-5p, hsa-miR-6891-5p. |
Module in TNF Signaling Pathway | Module in Tuberculosis Pathway | ||
---|---|---|---|
Rank | Node | Rank | Node |
1 | IL1B | 1 | TNF |
2 | TNF | 2 | IL6 |
3 | IL6 | 3 | IL1B |
4 | ICAM1 | 4 | NFKB1 |
5 | IRF1 | 5 | TRAF6 |
6 | NFKBIA | 6 | IL1A |
7 | CCL2 | 7 | IRAK2 |
8 | NFKB1 | 8 | ITGAM |
9 | PTGS2 | 9 | RIPK2 |
10 | TNFAIP3 | 10 | JAK1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Q.; Bao, S.; Sun, Y.; Zhou, K.; Lin, Y. Analysis of Key miRNA/mRNA Functional Axes During Host Dendritic Cell Immune Response to Mycobacterium tuberculosis Based on GEO Datasets. Genes 2025, 16, 832. https://doi.org/10.3390/genes16070832
Gao Q, Bao S, Sun Y, Zhou K, Lin Y. Analysis of Key miRNA/mRNA Functional Axes During Host Dendritic Cell Immune Response to Mycobacterium tuberculosis Based on GEO Datasets. Genes. 2025; 16(7):832. https://doi.org/10.3390/genes16070832
Chicago/Turabian StyleGao, Qian, Shuangshuang Bao, Yaqi Sun, Kaixin Zhou, and Yan Lin. 2025. "Analysis of Key miRNA/mRNA Functional Axes During Host Dendritic Cell Immune Response to Mycobacterium tuberculosis Based on GEO Datasets" Genes 16, no. 7: 832. https://doi.org/10.3390/genes16070832
APA StyleGao, Q., Bao, S., Sun, Y., Zhou, K., & Lin, Y. (2025). Analysis of Key miRNA/mRNA Functional Axes During Host Dendritic Cell Immune Response to Mycobacterium tuberculosis Based on GEO Datasets. Genes, 16(7), 832. https://doi.org/10.3390/genes16070832