Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = IEC/IEEE 80005-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5045 KB  
Article
Quantifying Overload Risk: A Parametric Comparison of IEC 60076-7 and IEEE C57.91 Standards for Power Transformers
by Lukasz Staszewski and Waldemar Rebizant
Energies 2025, 18(24), 6469; https://doi.org/10.3390/en18246469 - 10 Dec 2025
Cited by 1 | Viewed by 460
Abstract
Modern power grids face increasing stress from volatile, high-dynamics loads, such as Electric Vehicle (EV) charging clusters and intermittent renewable energy sources. Accurate transformer thermal monitoring via the International Electrotechnical Commission (IEC) 60076-7 and the Institute of Electrical and Electronics Engineers (IEEE) C57.91 [...] Read more.
Modern power grids face increasing stress from volatile, high-dynamics loads, such as Electric Vehicle (EV) charging clusters and intermittent renewable energy sources. Accurate transformer thermal monitoring via the International Electrotechnical Commission (IEC) 60076-7 and the Institute of Electrical and Electronics Engineers (IEEE) C57.91 standards is crucial, yet their methodologies differ significantly. This study develops a comprehensive MATLAB simulation framework to quantify these differences. The analysis compares physical thermal models across multi-stage cooling—Oil Natural Air Natural (ONAN), Oil Natural Air Forced (ONAF), and Oil Forced Air Forced (OFAF)—and insulation aging models. It is demonstrated that divergence in transformer life estimation stems primarily from the physical thermal models. A ‘reversal of conservatism’ is identified, where ‘conservative’ is defined as predicting higher hot-spot temperatures and enforcing a larger safety margin. Results prove that while the IEC model is thermally more conservative during cooling failures (static mode), the IEEE model is consistently more conservative during normal active cooling. Additionally, 2D “heat maps” are presented to define safe operational zones, and the catastrophic impact of cooling system failures is quantified. These findings provide a quantitative outline for managing transformer state under increasingly demanding loading schemes. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

17 pages, 740 KB  
Proceeding Paper
Life Cycle Assessment and Capitalized Cost of Transformer Overload: A Multi-Regional Study in Ecuador
by Juan David Ramírez, Jorge Paúl Muñoz, David Muñoz and Oswaldo Menéndez
Eng. Proc. 2025, 115(1), 16; https://doi.org/10.3390/engproc2025115016 - 15 Nov 2025
Viewed by 502
Abstract
This study presents an integrated thermo-economic framework for evaluating the impact of daily overload on the aging and cost performance of oil-immersed distribution transformers. The methodology combines international transformer thermal aging models, widely accepted in transformer loading guides such as those established by [...] Read more.
This study presents an integrated thermo-economic framework for evaluating the impact of daily overload on the aging and cost performance of oil-immersed distribution transformers. The methodology combines international transformer thermal aging models, widely accepted in transformer loading guides such as those established by IEEE and IEC, with an equivalent annual cost (EAC) model, enabling a unified assessment of insulation degradation and operational expenditures. Using a residential load profile with 15 min resolution and climate data from three Ecuadorian regions (Quito, Guayaquil, and the Amazon), we analyze the influence of varying overload levels, peak durations, cooling methods Oil Natural Air Natural (ONAN), Oil Natural Air Forced (ONAF), and Oil Forced Air Forced (OFAF), and installation environments (indoor/outdoor) on transformer lifetime and ownership costs. Parametric simulations reveal that ambient temperature is the dominant factor in thermal degradation, with Guayaquil showing service life reductions of up to 70% compared to Quito under identical loading conditions. While larger transformers with forced cooling exhibit enhanced thermal resilience, the economic performance deteriorates non-linearly beyond 120–130% loading due to compounding losses and replacement costs. The results demonstrate that (i) overload tolerance is climate dependent, (ii) indoor installations incur systematic thermal penalties, and (iii) the IEC and IEEE models yield similar outcomes under moderate conditions but diverge under severe stress. The proposed approach provides utilities with a robust decision-support tool to optimize transformer loading strategies, replacement planning, and cooling system upgrades in geographically diverse power systems. Full article
(This article belongs to the Proceedings of The XXXIII Conference on Electrical and Electronic Engineering)
Show Figures

Figure 1

40 pages, 4425 KB  
Article
Enhancing Power Quality and Reducing Costs in Hybrid AC/DC Microgrids via Fuzzy EMS
by Danilo Pratticò, Filippo Laganà, Mario Versaci, Dubravko Franković, Alen Jakoplić, Saša Vlahinić and Fabio La Foresta
Energies 2025, 18(22), 5985; https://doi.org/10.3390/en18225985 - 14 Nov 2025
Viewed by 706
Abstract
The rapid growth of renewable energy integration in modern power systems brings new challenges in terms of stability and quality of electricity supply. Hybrid AC/DC microgrids represent a promising solution to integrate photovoltaic panels (PV), wind turbines, fuel cells, and storage units with [...] Read more.
The rapid growth of renewable energy integration in modern power systems brings new challenges in terms of stability and quality of electricity supply. Hybrid AC/DC microgrids represent a promising solution to integrate photovoltaic panels (PV), wind turbines, fuel cells, and storage units with flexibility and efficiency. However, maintaining adequate power quality (PQ) under variable conditions of generation, load, and grid connection remains a critical issue. This paper presents the modelling, implementation, and validation of a hybrid AC/DC microgrid equipped with a fuzzy-logic-based energy management system (EMS). The study combines PQ assessment, measurement architecture, and supervisory control for technical compliance and economic efficiency. The microgrid integrates a combination of PV array, wind turbine, proton exchange membrane fuel cell (PEMFC), battery storage system, and heterogeneous AC/DC loads, all modelled in MATLAB/Simulink using a physical-network approach. The fuzzy EMS coordinates distributed energy resources by considering power imbalance, battery state of charge (SOC), and dynamic tariffs. Results demonstrate that the proposed controller maintains PQ indices within IEC/IEEE standards while eliminating short-term continuity events. The proposed EMS prevents harmful deep battery cycles, maintaining SOC within 30–90%, and optimises fuel cell activation, reducing hydrogen consumption by 14%. Economically, daily operating costs decrease by 10–15%, grid imports are reduced by 18%, and renewable self-consumption increases by approximately 16%. These findings confirm that fuzzy logic provides an effective, computationally light, and uncertainty-resilient solution for hybrid AC/DC microgrid EMS, balancing technical reliability with economic optimisation. Future work will extend the framework toward predictive algorithms, reactive power management, and hardware-in-the-loop validation for real-world deployment. Full article
Show Figures

Figure 1

31 pages, 5169 KB  
Article
Harmonic Mitigation in Unbalanced Grids Using Hybrid PSO-GA Tuned PR Controller for Two-Level SPWM Inverter
by Pema Dorji, Taimoor Muzaffar Gondal, Stefan Lachowicz and Octavian Bass
Electronics 2025, 14(21), 4351; https://doi.org/10.3390/electronics14214351 - 6 Nov 2025
Viewed by 719
Abstract
This study proposes an integrated control–optimization framework for harmonic mitigation in two-level, grid-connected inverters with battery energy storage operating under unbalanced grid conditions. A proportional–resonant controller in the stationary αβ frame and a proportional–integral controller in the synchronous dq frame are [...] Read more.
This study proposes an integrated control–optimization framework for harmonic mitigation in two-level, grid-connected inverters with battery energy storage operating under unbalanced grid conditions. A proportional–resonant controller in the stationary αβ frame and a proportional–integral controller in the synchronous dq frame are compared, with controller gains optimized using PSO, GA, and a hybrid PSO–GA approach. The hybrid method achieves superior trade-offs among THD, convergence speed, and computational effort. For the PR controller, hybrid PSO–GA reduces THD to 1.07%, satisfying IEEE 1547 and IEC 61727 standards, while for the PI controller it achieves 2.70%, outperforming standalone PSO (4.12%) and GA (3.38%). The hybrid-optimized gains further minimize tracking error indices (IAE, ISE, ITAE, ITSE), ensuring precise steady-state current regulation. Convergence analysis shows that hybrid PSO–GA attains optimal solutions within three iterations for both controllers, faster than GA and comparable to PSO for the PR case. Simulation studies on the IEEE 13-bus unbalanced feeder in DIgSILENT PowerFactory validate the proposed framework. Results confirm that the PR controller delivers a 60.36% THD reduction and tenfold ISE improvement over the optimized PI design, establishing a robust and scalable solution for harmonic suppression in unbalanced grid-tied energy systems. Full article
Show Figures

Figure 1

17 pages, 9693 KB  
Article
Sensing and Analyzing Partial Discharge Phenomenology in Electrical Asset Components Supplied by Distorted AC Waveform
by Gian Carlo Montanari, Sukesh Babu Myneni, Zhaowen Chen and Muhammad Shafiq
Sensors 2025, 25(21), 6594; https://doi.org/10.3390/s25216594 - 26 Oct 2025
Viewed by 861
Abstract
Power electronic devices for AC/DC and AC/AC conversion are, nowadays, widely distributed in electrified transportation and industrial applications, which can determine significant deviation in supply voltage waveform from the AC sinusoidal and promote insulation extrinsic aging mechanisms as partial discharges (PDs). PDs are [...] Read more.
Power electronic devices for AC/DC and AC/AC conversion are, nowadays, widely distributed in electrified transportation and industrial applications, which can determine significant deviation in supply voltage waveform from the AC sinusoidal and promote insulation extrinsic aging mechanisms as partial discharges (PDs). PDs are one of the most harmful processes as they are able to cause accelerated extrinsic aging of electrical insulation systems and are the cause of premature failure in electrical asset components. PD phenomenology under pulse width modulated (PWM) voltage waveforms has been dealt with in recent years, also through some IEC/IEEE standards, but less work has been performed on PD harmfulness under AC distorted waveforms containing voltage harmonics and notches. On the other hand, these voltage waveforms can often be present in electrical assets containing conventional loads and power electronics loads/drives, such as for ships or industrial installations. The purpose of this paper is to provide a contribution to this lack of knowledge, focusing on PD sensing and phenomenology. It has been shown that PD patterns can change considerably with respect to those known under sinusoidal AC when harmonic voltages and/or notches are present in the supply waveform. This can impact PD typology identification, which is based on features related to PD pattern-based physics. The adaptation of identification AI algorithms used for AC sinusoidal voltage as well as distorted AC waveforms is discussed in this paper, showing that effective identification of the type of defects generating PD, and thus of their harmfulness, can still be achieved. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

50 pages, 2576 KB  
Perspective
Bridging the AI–Energy Paradox: A Compute-Additionality Covenant for System Adequacy in Energy Transition
by George Kyriakarakos
Sustainability 2025, 17(21), 9444; https://doi.org/10.3390/su17219444 - 24 Oct 2025
Viewed by 1995
Abstract
As grids decarbonize and end-use sectors electrify, the rapid penetration of artificial intelligence (AI) and hyperscale data centers reshapes the electrical load profile and power quality requirements. This leads not only to higher consumption but also coincident demand in constrained urban nodes, steeper [...] Read more.
As grids decarbonize and end-use sectors electrify, the rapid penetration of artificial intelligence (AI) and hyperscale data centers reshapes the electrical load profile and power quality requirements. This leads not only to higher consumption but also coincident demand in constrained urban nodes, steeper ramps and tighter power quality constraints. The article investigates to what extent a compute-additionality covenant can reduce resource inadequacy (LOLE) at an acceptable $/kW-yr under realistic grid constraints, tying interconnection/capacity releases to auditable contributions (ELCC-accredited firm-clean MW in-zone or verified PCC-level services such as FFR/VAR/black-start). Using two worked cases (mature market and EMDE context) the way in which tranche-gated interconnection, ELCC accreditation and PCC-level services can hold LOLE at the planning target while delivering auditable FFR/VAR/ride-through performance at acceptable normalized costs is illustrated. Enforcement relies on standards-based telemetry and cybersecurity (IEC 61850/62351/62443) and PCC compliance (e.g., IEEE/IEC). Supply and network-side options are screened with stage-gates and indicative ELCC/PCC contributions. In a representative mature case, adequacy at 0.1 day·yr−1 is maintained at ≈$200 per compute-kW-yr. A covenant term sheet (tranche sizing, benefit–risk sharing, compliance workflow) is developed along an integration roadmap. Taken together, this perspective outlines a governance mechanism that aligns rapid compute growth with system adequacy and decarbonization. Full article
Show Figures

Figure 1

37 pages, 5731 KB  
Article
Probabilistic Prognostics and Health Management of Power Transformers Using Dissolved Gas Analysis Sensor Data and Duval’s Polygons
by Fabio Norikazu Kashiwagi, Miguel Angelo de Carvalho Michalski, Gilberto Francisco Martha de Souza, Halley José Braga da Silva and Hyghor Miranda Côrtes
Sensors 2025, 25(21), 6520; https://doi.org/10.3390/s25216520 - 23 Oct 2025
Viewed by 1076
Abstract
Power transformers are critical assets in modern power grids, where failures can lead to significant operational disruptions and financial losses. Dissolved Gas Analysis (DGA) is a key sensor-based technique widely used for condition monitoring, but traditional diagnostic approaches rely on deterministic thresholds that [...] Read more.
Power transformers are critical assets in modern power grids, where failures can lead to significant operational disruptions and financial losses. Dissolved Gas Analysis (DGA) is a key sensor-based technique widely used for condition monitoring, but traditional diagnostic approaches rely on deterministic thresholds that overlook uncertainty in degradation dynamics. This paper proposes a probabilistic framework for Prognostics and Health Management (PHM) of power transformers, integrating self-adaptive Auto Regressive Integrated Moving Average modeling with a probabilistic reformulation of Duval’s graphical methods. The framework enables automated estimation of fault types and failure likelihood directly from DGA sensor data, without requiring labeled datasets or expert-defined rules. Dissolved gas dynamics are forecasted using time-series models with residual-based uncertainty quantification, allowing probabilistic fault inference from predicted gas trends without assuming deterministic persistence of a specific fault type. A sequential pipeline is developed for real-time fault tracking and reliability assessment, aligned with IEC, IEEE, and CIGRE standards. Two case studies validate the method: one involving gas loss in an experimental setup and another examining thermal degradation in a 345 kV transformer. Results show that the framework improves diagnostic reliability, supports early fault detection, and enhances predictive maintenance strategies. By combining probabilistic modeling, time-series forecasting, and sensor-based diagnostic inference, this work contributes a practical and interpretable PHM solution for sensor-enabled monitoring environments in modern power grids. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

28 pages, 3160 KB  
Review
Plugging into Onshore Power Supply System Innovation: A Review from Standards and Patents to Port Deployment
by Daniel Jesus, Tiago Oliveira, Marina Perdigão and André Mendes
Energies 2025, 18(20), 5449; https://doi.org/10.3390/en18205449 - 16 Oct 2025
Cited by 1 | Viewed by 1539
Abstract
Shore power systems, also known as cold ironing or shore-to-ship (STS) connections, are increasingly recognized as a viable solution to reduce emissions and noise from ships during berthing operations. This paper provides a comprehensive overview of shore power technology, with a focus on [...] Read more.
Shore power systems, also known as cold ironing or shore-to-ship (STS) connections, are increasingly recognized as a viable solution to reduce emissions and noise from ships during berthing operations. This paper provides a comprehensive overview of shore power technology, with a focus on typical onboard energy consumption profiles across different types of ship, the main electrical architectures used in shore-side systems, and the compatibility challenges related to frequency, voltage, and control integration. The paper reviews international standards, particularly the ISO/IEC/IEEE 80005 series, that define technical requirements for interoperability and safety. A detailed analysis of recent patents highlights technological innovations in mobility, conversion topologies, and high-voltage integration. In addition, commercially available shore power solutions from major manufacturers are surveyed, with comparative data on power ratings, voltage levels, and converter topologies. Finally, the study discusses current limitations and outlines development directions for Onshore Power Supply systems, including regulatory developments, digital integration, and grid support functionalities. The insights presented aim to support the design, standardization, and deployment of efficient and scalable STS systems in line with global maritime decarbonization goals. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

47 pages, 14121 KB  
Article
Systematic Development and Hardware-in-the-Loop Testing of an IEC 61850 Standard-Based Monitoring and Protection System for a Modern Power Grid Point of Common Coupling
by Sinawo Nomandela, Mkhululi E. S. Mnguni and Atanda K. Raji
Energies 2025, 18(19), 5281; https://doi.org/10.3390/en18195281 - 5 Oct 2025
Cited by 2 | Viewed by 1271
Abstract
This paper presents a systematic approach to the development and validation of a monitoring and protection system based on the IEC 61850 standard, evaluated through hardware-in-the-loop (HIL) testing. The study utilized an already existing model of a modern power grid consisting of the [...] Read more.
This paper presents a systematic approach to the development and validation of a monitoring and protection system based on the IEC 61850 standard, evaluated through hardware-in-the-loop (HIL) testing. The study utilized an already existing model of a modern power grid consisting of the IEEE 9-bus power system integrated with a large-scale wind power plant (LSWPP). The SEL-487B Relay was configured to protect the PCC using a low-impedance busbar differential monitoring and protection system equipped with adaptive setting group logic that automatically transitions between Group 1 and Group 2 based on system loading conditions. Significant steps were followed for selecting and configuring instrument transformers and implementing relay logic in compliance with IEEE and IEC standards. Real-time digital simulation using Real-Time Digital Simulator (RTDS) hardware and its software, Real-time Simulation Computer-Aided Design (RSCAD), was used to assess the performance of the overall monitoring and protection system, focusing on the monitoring and publishing of the selected electrical and mechanical measurements from a selected wind turbine generator unit (WTGU) on the LSWPP side through the IEC 61850 standard network, and on the behavior of the monitoring and protection system under initial and increased load conditions through monitoring of differential and restraint currents. The overall monitoring and protection system was tested under both initial and increased load conditions, confirming its capability to reliably publish analog values from WTGU13 for availability on the IEC 61850 standard network while maintaining secure protection operation. Quantitatively, the measured differential (operate) and restraint currents were 0.32 PU and 4.38 PU under initial loading, and 1.96 PU and 6.20 PU under increased loading, while total fault clearance times were 606.667 ms and 706.667 ms for faults under initial load and increased load demand conditions, respectively. These results confirm that the developed framework provides accurate real-time monitoring and reliable operation for faults, while demonstrating a practical and replicable solution for monitoring and protection at transmission-level PCCs within renewable-integrated networks. Full article
(This article belongs to the Special Issue Planning, Operation, and Control of New Power Systems: 2nd Edition)
Show Figures

Figure 1

10 pages, 2374 KB  
Proceeding Paper
Design and Development of RDI Monitoring System of RSU’s Funded Research Projects
by Preexcy B. Tupas, Nova Marie F. Rosas, Ana G. Gervacio and Garry Vanz V. Blancia
Eng. Proc. 2025, 107(1), 13; https://doi.org/10.3390/engproc2025107013 - 22 Aug 2025
Viewed by 697
Abstract
This paper presents the design, development, and evaluation of the REDI Monitoring System, a web-based platform aimed at enhancing the management and monitoring of funded research projects at Romblon State University (RSU). The system provides streamlined functionalities for proposal creation, submission, collaborator management, [...] Read more.
This paper presents the design, development, and evaluation of the REDI Monitoring System, a web-based platform aimed at enhancing the management and monitoring of funded research projects at Romblon State University (RSU). The system provides streamlined functionalities for proposal creation, submission, collaborator management, and administrative oversight, tailored to the needs of both students and faculty members. The development process adhered to established software engineering standards to ensure robustness and usability. A comprehensive testing phase was conducted with 50 participants, including students and faculty, following the ISO/IEC/IEEE 29119 software testing framework. Results demonstrated high user satisfaction, with over 90% of participants finding the system user-friendly and reliable. Minor areas for improvement were identified in notification delivery and interface responsiveness for faculty users. The REDI Monitoring System presents an effective and efficient solution that supports RSU’s research administration processes, fostering greater collaboration and transparency in funded research activities. Full article
Show Figures

Figure 1

30 pages, 18910 KB  
Article
Evaluating 5G Communication for IEC 61850 Digital Substations: Historical Context and Latency Challenges
by Hafiz Zubyrul Kazme, Per Westerlund and Math H. J. Bollen
Energies 2025, 18(16), 4387; https://doi.org/10.3390/en18164387 - 18 Aug 2025
Cited by 2 | Viewed by 2962
Abstract
Digital substation technology adhering to the IEC 61850 standard has provided several opportunities and flexibility for the rapid growth and complexity of the present and future electrical grid. The communication infrastructure allows complete interoperability between legacy and modern devices. The emergence of 5G [...] Read more.
Digital substation technology adhering to the IEC 61850 standard has provided several opportunities and flexibility for the rapid growth and complexity of the present and future electrical grid. The communication infrastructure allows complete interoperability between legacy and modern devices. The emergence of 5G wireless communication and its utilization in substation operation presents significant advantages in terms of cost and scalability, while also introducing challenges. This paper identifies research gaps in the literature and offers valuable insights for future analysis by providing a simulation study using an empirical latency dataset of a 5G network to illustrate three aspects of substation operational challenges: coordination of protection schemes, sequential reception of packet data streams, and time synchronization processes. The findings show a mean latency of 8.5 ms for the 5G network, which is significantly higher than that of a wired Ethernet network. The results also indicate that the high latency and jitter compromise the selectivity of protection schemes. The variability in latency disrupts the sequence of arriving data packets such that the packet buffering and processing delay increases from around 1.5 ms to 11.0 ms and the buffer size would need to increase by 6 to 10 times to handle out-of-sequence packets. Additionally, a time synchronization success rate of 14.3% within a 0.1 ms accuracy range found in this study indicates that the IEEE 1588 protocol is severely affected by the latency fluctuations. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

23 pages, 1032 KB  
Article
Performance Optimization of Grounding System for Multi-Voltage Electrical Installation
by Md Tanjil Sarker, Marran Al Qwaid, Md Sabbir Hossen and Gobbi Ramasamy
Appl. Sci. 2025, 15(15), 8600; https://doi.org/10.3390/app15158600 - 2 Aug 2025
Cited by 2 | Viewed by 3481
Abstract
Grounding systems are critical for ensuring electrical safety, fault current dissipation, and electromagnetic compatibility in power installations across different voltage levels. This research presents a comparative study on the optimization of grounding configurations for 400 V, 10 kV, and 35 kV electrical installations, [...] Read more.
Grounding systems are critical for ensuring electrical safety, fault current dissipation, and electromagnetic compatibility in power installations across different voltage levels. This research presents a comparative study on the optimization of grounding configurations for 400 V, 10 kV, and 35 kV electrical installations, focusing on key performance parameters such as grounding resistance, step and touch voltages, and fault current dissipation efficiency. The study employs computational simulations using the finite element method (FEM) alongside empirical field measurements to evaluate the influence of soil resistivity, electrode materials, and grounding configurations, including rod electrodes, grids, deep-driven rods, and hybrid grounding systems. Results indicate that soil resistivity significantly affects grounding efficiency, with deep-driven rods providing superior performance in high-resistivity conditions, while grounding grids demonstrate enhanced fault current dissipation in substations. The integration of conductive backfill materials, such as bentonite and conductive concrete, further reduces grounding resistance and enhances system reliability. This study provides engineering insights into optimizing grounding systems based on installation voltage levels, cost considerations, and compliance with IEEE Std 80-2013 and IEC 60364-5-54. The findings contribute to the development of more resilient and cost-effective grounding strategies for electrical installations. Full article
Show Figures

Figure 1

19 pages, 4860 KB  
Article
Load-Flow-Based Calculation of Initial Short-Circuit Currents for Converter-Based Power System
by Deepak Deepak, Anisatur Rizqi Oetoyo, Krzysztof Rudion, Christoph John and Hans Abele
Energies 2025, 18(15), 4045; https://doi.org/10.3390/en18154045 - 30 Jul 2025
Viewed by 1834
Abstract
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These [...] Read more.
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These units have different fault current characteristics due to their physical properties and operation strategies. Consequently, the network’s short-circuit current profile is changing, both in terms of magnitude and injection time. Therefore, accurately estimating fault currents is crucial for reliable power system planning and operation. Traditionally, two calculation methods are employed: the equivalent voltage source (IEC 60909/VDE 0102) and the superimposition (complete) method. In this work, the assumptions, simplifications, and limitations from both types of methods are addressed. As a result, a new load-flow-based method is presented, improving the static modeling of generating units and the accuracy in the estimation of short-circuit currents. The method is tested for mixed generation types comprising of synchronous generators, and grid-following (current source) and grid-forming (voltage source before and current source after the current limit) converters. All methods are compared against detailed time-domain RMS simulations using a modified IEEE-39 bus system and a real network from ENTSO-E. It is shown that the proposed method provides the best accuracy in the calculation of initial short-circuit currents for converter-based power systems. Full article
Show Figures

Figure 1

45 pages, 9147 KB  
Article
Decision Analysis Data Model for Digital Engineering Decision Management
by Gregory S. Parnell, C. Robert Kenley, Devon Clark, Jared Smith, Frank Salvatore, Chiemeke Nwobodo and Sheena Davis
Systems 2025, 13(7), 596; https://doi.org/10.3390/systems13070596 - 17 Jul 2025
Cited by 2 | Viewed by 2975
Abstract
Decision management is the systems engineering life cycle process for making program/system decisions. The purpose of the decision management process is: “…to provide a structured, analytical framework for objectively identifying, characterizing and evaluating a set of alternatives for a decision at any point [...] Read more.
Decision management is the systems engineering life cycle process for making program/system decisions. The purpose of the decision management process is: “…to provide a structured, analytical framework for objectively identifying, characterizing and evaluating a set of alternatives for a decision at any point in the life cycle and select the most beneficial course of action”. Systems engineers and systems analysts need to inform decisions in a digital engineering environment. This paper describes a Decision Analysis Data Model (DADM) developed in model-based systems engineering software to provide the process, methods, models, and data to support decision management. DADM can support digital engineering for waterfall, spiral, and agile development processes. This paper describes the decision management processes and provides the definition of the data elements. DADM is based on ISO/IEC/IEEE 15288, the INCOSE SE Handbook, the SE Body of Knowledge, the Data Management Body of Knowledge, systems engineering textbooks, and journal articles. The DADM was developed to establish a decision management process and data definitions that organizations and programs can tailor for their system life cycles and processes. The DADM can also be used to assess organizational processes and decision quality. Full article
Show Figures

Figure 1

19 pages, 4714 KB  
Article
Robust Model-Free Control for MMC Inverters in Cold Ironing Systems
by Cheikh Abdel Kader, Nadia Aït-Ahmed, Azeddine Houari, Mourad Aït-Ahmed, Gang Yao and Menny El-Bah
Appl. Sci. 2025, 15(13), 7343; https://doi.org/10.3390/app15137343 - 30 Jun 2025
Viewed by 714
Abstract
Power quality is a key issue in cold ironing (CI) systems, where a stable, clean power supply is essential to meet the needs of moored vessels. According to IEC/ISO/IEEE 80005-1, these systems must deliver high power at standardized voltages (6.6 kV or 11 [...] Read more.
Power quality is a key issue in cold ironing (CI) systems, where a stable, clean power supply is essential to meet the needs of moored vessels. According to IEC/ISO/IEEE 80005-1, these systems must deliver high power at standardized voltages (6.6 kV or 11 kV) with minimal harmonic distortion in the presence of vessel load variability. This study proposes a model-free control strategy based on an intelligent proportional–integral (iPI) corrector with adaptive gain, applied to a three-phase modular multilevel converter (MMC) equipped with an LC filter. This architecture, adapted to distributed infrastructures, reduces the number of transformers required while guaranteeing high output voltages. The iPI strategy improves system robustness, dynamically compensates for disturbances, and ensures better power quality. A comparative analysis of three control strategies, proportional–integral (PI), intelligent proportional–integral (iPI), and intelligent proportional–integral adaptive (iPIa), performed in MATLAB/Simulink and complemented by experimental tests on the OPAL-RT platform, revealed a significant THD reduction of 1.18%, in accordance with the IEC/ISO/IEEE 80005-1 standard. These results confirm the effectiveness of the proposed method in meeting the requirements of CI systems. Full article
Show Figures

Figure 1

Back to TopTop