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Abstract: Transient stability of the electric power system still heavily rests on a timely and correct
operation of the relay protection of individual power generators. Power swings and generator pole
slips, following network short-circuit events, can initiate false relay activations, with negative reper-
cussions for the overall system stability. This paper will examine the generator’s underimpedance
(21G) and out-of-step (78) protection functions and will propose a machine learning based classifier
for supporting and reinforcing their decision-making logic. The classifier, based on a support vector
machine, will aid in blocking the underimpedance protection during stable generator swings. It will
also enable faster tripping of the out-of-step protection for unstable generator swings. Both protection
functions will feature polygonal protection characteristics. Their implementation will be based on
European practice and IEC standards. Classifier will be trained and tested on the data derived from
simulations of the IEEE New England 10-generator benchmark power system.

Keywords: generator; impedance trajectory; relay protection; machine learning; power swing;
transient stability

1. Introduction

Maintaining a transient stability of the electric power system remains one of the
fundamental, and increasingly more important, preconditions for the reliable operation of
high-voltage electric grids [1]. This crucial ability still heavily rests on a timely and correct
operation of the relay protection of individual power generators [2]. The emphasis is on the
correct operation, which presumes proper setting and coordination of different generator
relay protection functions and absence of false activations. The foremost significant here
are the underimpedance (21G) and the out-of-step (78) relay protections, where correct
operation above all precludes spurious generator trips during (stable) power swings [3].
Accurate detection and correct distinction between stable and unstable power swings,
by these relay protection functions, is seen as a critical precondition for valid generator
tripping. With the reduced system inertia, this task becomes even more influential [4].
Consequently, the intention of this paper is to enhance these generator relay protections by
supporting their traditional decision-making logic (where it exists) with a machine learning
based classifier, in order to strengthen them against erroneous trips due to (stable) generator
swings. If the power swing detection logic is absent from the relay protection function, then
the classifier can supply it. The classifier will specifically aid and support relay decisions
for blocking the underimpedance protection during stable swings. It will also expedite
trip decisions of the out-of-step protection during unstable swings. It needs to be stated
here that the implementation and configuration of these generator protections will be in
accordance with the IEC standards and will be primarily seen from the European practice,
which differs considerably from that found in the United States (US); see, e.g., Siemens
7UM62 [5] and ABB REG 670 [6] manuals for more information. This also means that both
of these protections will feature polygonal trip characteristics (and not MHO-based circles
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used extensively in the US). Implementation will consider numerical protection relays from
Siemens AG.

Generator underimpedance relay protection (also known as the impedance or dis-
tance protection, ANSI 21G) is intended for the protection of generator and its step-up
transformer, along with everything in-between them (i.e., high-current bus duct connec-
tions and equipment), from damage due to short-circuit events. In its standard two-zone
configuration, it protects (part of) the generator’s stator winding and both windings of
the step-up transformer from phase-to-phase short-circuit faults [5]. It supplements a
differential protection of the generator and its step-up transformer (ANSI 87T) and serves
as its main backup protection. And, unlike differential protection, it can further serve as a
backup protection for the incident transmission lines. However, since it has open-ended
protection zones, it needs to be coordinated with the relay protection of transmission lines.
The extent of the protection coverage (i.e., reach) for different zones (and different fault
types), along with their backup protection scope, can vary considerably between different
implementations. Furthermore, this protection is considered superior to the various gen-
erator overcurrent protection schemes (e.g., overcurrent with undervoltage seal-in) and
preferred for large machines. However, it needs to be carefully guarded against spurious
generator trips during stable swings, initiated by the faults within the power system [7].
This is where the proposed classifier comes into play, by strengthening reliability (and
credibility) of the decisions made by the traditional underimpedance protection swing
detection logic.

Generator out-of-step protection (also known as the pole-slip protection, ANSI 78) is
intended not only for the protection of the generator from damage emanating from the pole
slipping events, where it needs to timely disconnect the generator from the rest of the power
system, but also for preventing instability from spreading to other portions of the system.
Namely, the sudden and unexpected loss of generating capacity during a disturbance can
precipitate major power system outage. In its standard two-zone configuration, out-of-
step protection fully covers the generator, its step-up transformer and extends into the
power system [5,6]. The extent of the out-of-step protection reach into the power system,
and subsequent coverage of the incident transmission lines, depends primarily on the
zone settings. This protection, first and foremost, needs to make consistently reliable and
trustworthy decisions regarding unrecoverable (i.e., unstable) generator swings [5]. As
such, this function can benefit from the support of the proposed classifier as well.

Machine learning (ML) has been applied for supporting and extending (and, in some
cases, even completely replacing) various traditional protection functions [8,9]. A general
review of the power system protection with the aid of ML techniques has been presented
in [10]. More specifically, multidimensional relay protection, based on support vector ma-
chine, was proposed in [11]. Overcurrent relays were replaced by XGBoost classifiers in [12].
Li et al. in [13] recommended an ML based identification of the impedance trajectory for the
generator out-of-step protection. Another approach to the adaptive generator out-of-step
protection, this incorporating the phasor measurement units (PMU), was suggested in [14].
Furthermore, detecting the loss of excitation condition of synchronous generators has been
tackled by applying ML methods as well, e.g., [15–17]. Detection of islanding by means of
the ML was proposed by Meera et al. in [18]. Also, ML has been applied in connection with
the distance protection of high-voltage transmission lines (TL), e.g., [19,20], including the
use of artificial neural networks [21]. However, very few papers deal with the ML support
of the generator underimpedance relay protection.

This paper will introduce a support vector machine (SVM) classifier for detecting
generator swings (from the generator transient stability assessment). It will be trained
and tested on the IEEE New England 10-generator benchmark power system. It will use
PMU-type signals taken from the generator terminals and will be interfaced with the
generator relay protection logic. It will reinforce relay decisions regarding blocking of the
underimpedance protection during stable generator swings. Likewise, it will also enhance
the out-of-step relay protection, by allowing faster generator tripping for unrecoverable
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swings. Numerical relays that do not possess power swing detection logic (such as the
REG 670 from ABB) can be retrofitted with this classifier. We believe that the proposed
approach presents a novel contribution to the state-of-art of generator relay protection.

The paper is organized in the following manner. Section 2, first briefly introduces these
two impedance-based generator protection functions, then describes the classifier building
process and its interfacing with the generator protection. Application of the classifier in the
IEEE New England 10-generator power system is provided in Section 3, which is followed
by conclusion in Section 4.

2. Generator Relay Protection

A brief introduction to the generator’s underimpedance and out-of-step relay protec-
tion, as seen from the European practice, will be provided here, since we will not be dealing
with MHO-type relays (that are extensively used in the US). For those interested in the US
practice, however, there is an excellent book [3]. Next, SVM classifier will be introduced
and its interface with the generator protection functions will be explained.

2.1. Underimpedance Protection Function

We consider that the underimpedance protection is connected to the current trans-
formers (CT) in the generator neutral point and voltage transformers (VT) at the generator
terminals. This means that the faults in the generator’s stator winding will be detected
in the third quadrant of the R–X complex plane, while those on the power system will
be detected in the first quadrant; see, e.g., Siemens 7UM62 relay manual for additional
information [5]. It is important to note that this is different from the way impedance is
seen from the self-polarized MHO relay at the generator, [3]. Moreover, the protection
characteristic is polygonal and can be either a square (Siemens 7UM6x) or a rectangle
(Siemens 7UM8x), centered around the origin of the R–X complex plane.

We will also consider that the underimpedance protection will provide backup for
the incident transmission lines and can have up to three independent protection zones
(Siemens 7UM85), [22]. The first zone will cover part of the generator impedance (in the
third quadrant) and will reach up to 70% of the step-up transformer impedance in the
first quadrant. The second zone will cover the rest of the step-up transformer impedance
and must overreach the high-voltage (HV) bus. The third zone, when used, will cover the
(longest) incident TL [22]. Obviously, second (and third) zones must be coordinated with
the relay protections of TLs. Relay connection, along with the extent of different protection
zones, is graphically illustrated in Figure 1. Out-of-step protection, with its polygonal
two-zone characteristic, is superimposed on the figure as well.

Figure 1. Relay connection, extent of underimpedance protection zones (blue), their coordination
with distance protection of the incident TL (gray), along with their respective polygonal protection
characteristics. Out-of-step protection zones and characteristic (orange) are superimposed as well.

Generator underimpedance zone settings calculation is based on the following general
rules (reactances in primary Ohm values) [5,22]:
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• Zone Z1:
Z1 = 70% · Ztr (1)

• Zone Z2:
Z2 = 100% · Ztr (2)

• Zone Z3:

Z3 = max
{

0.9 · (Ztr +
1

R2
tr
· Z1L); Ztr

}
(3)

where: Ztr and Rtr are, respectively, impedance and the transformation ratio of the step-up
transformer, while Z1L is the (direct) impedance of the incident transmission line.

We will also further consider that the step-up transformer has a vector group YNd5
(which is typical for the European practice) and introduces a 150-degree rotation. It is well
known that the fault impedance measured by the underimpedance protection is influenced
by the vector rotation and that the relay will have a wrong measurement for certain fault
types on the HV side of the step-up transformer [3]. For this particular vector group YNd5,
underimpedance protection will have an overreach (i.e., the fault location is seen as being
farther away than it actually is) for single-phase short circuits at the HV side of the step-up
transformer; see Siemens 7UM85 relay manual [22] for more information.

Finally, we consider that the generator underimpedance protection has an internal
power swing detection logic. In case of the 7UM62 relay, it is based on the speed mea-
surement of the impedance vector (∆Z/∆t) as it enters the protection characteristic [5]. In
case of the 7UM85, it is more sophisticated and measures trajectory monotony, continuity
and uniformity [22]. It may be interesting to note that the underimpedance protection of
the REG 670 from ABB does not have any internal power swing detection logic [6]; see
also [23] for an in-depth analysis. Power swing blocking of the generator underimpedance
protection may be imposed by transmission system operator (TSO) requirements. Even
if it is not strictly required by regulations, it is extremely important to mitigate possible
erroneous generator trips due to stable power swings, which can have significant (negative)
repercussions on the overall stability of the power system.

2.2. Out-of-Step Protection Function

We consider that the generator out-of-step protection is based on the two-zone polyg-
onal impedance characteristic (see Figure 1) [5]. It is connected to the CT and VT at the
generator’s terminals. Typically, its first zone covers the generator (in the third quadrant)
and up to 90% of the step-up transformer (in the first quadrant). Second zone will cover
the (longest) incident TL and, depending on the network strength, may extend further into
the power system [5,6].

Generator out-of-step zone settings calculation is based on the following general rules
(reactances in primary Ohm values) [5,22]:

• Zone 1:
Zbc = X′

g + 90% · Ztr (4)

• Zone 2:
Zcd = 10% · Ztr + Z1L (5)

where X′
g is the transient reactance of the generator. Extent of the polygon in the R–direction

(for the swing angle of δ = 120◦) is calculated from [5]:

Za =
Zbc + Zcd

2 · tan(δ/2)
(6)

The maximum detectable swing frequency can now be estimated using the following
approximate formula (where T = 20 ms for a 50 Hz system), [5]:

fmax =
4
π

· 1
T
· Za

Zbc + Zcd
(7)
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However, detailed adaptation of the out-of-step protection characteristic to the par-
ticular generator, in terms of the critical swing angle, is very difficult. Namely, swing
impedance trajectory is influenced by many factors, including governor action, mechanical
damping of nearby units, shunt loads, shunt capacitance effects, generator saliency, type of
excitation, manual or automatic voltage regulation, etc. According to [3], the best way to
determine the critical swing angle is to model the power system using a transient stability
analysis software. The system representation must include loads, generators, their voltage
regulators and governor controls in a large area surrounding the machine in question. The
system would then be tested by applying faults at critical points (using maximum antici-
pated clearing times). These faults would be applied at various load levels and generation
mix to determine the most severe survivable swing for the unit in question. The impedance
trajectories generated from these test cases would then be used to set and fine-tune the
out-of-step relay protection [3].

Out-of-step protection trips the generator in the second zone only after three to four
power swings; see, e.g., 7UM62 relay manual [5] for manufacturer suggested settings. The
protection function features a counter, which increases with each detected power swing
(that can also be reset to zero). If the counter reaches a preset number of swings, the relay
trips the generator. Each pole slip is associated with a strong stator current pulse, which
causes severe torque transients in the turbine generator shaft. The fatigue life of the shaft
can be used-up after a few pole slip events [3]. Depending on the electrical center of the
swing, these stator currents approach levels of three-phase short circuit current for a fault at
generator terminals (which is the maximum current the machine is designed to withstand).
On a strong power system, electrical center of the swing trajectory will move into the
generator, thus exacerbating the situation and raising the importance of the out-of-step
protection. Finally, it needs to be mentioned here that the generator tripping due to pole
slip events also imposes significant stress on the circuit breaker, in terms of the transient
recovery voltage (TRV). Namely, opening a breaker across an out-of-phase network exposes
the breaker to the maximum TRV of 4.0 p.u. voltage across the contacts, which is double
that normally encountered [3].

2.3. Power Swing Classification with a Support Vector Machine

Classification of power swings (as seen from the generator terminals), emanating
from short-circuit events within the network, is tackled by means of the SVM binary
classifier. It uses a radial basis function (RBF) kernel and distinguishes between stable
and unstable generator swings from the PMU signals measured at the generator terminals.
Figure 2 depicts connection of the relay and a PMU to the generator. The PMU collects
phase voltage (V), active (Pe) and reactive (Qe) power and rotor angle deviation (dδ), as
time-domain signals.

Figure 2. Connection of the PMU and its interface with the generator relay protection.

Features are then created from these signals for training the classifier. Two time stamps
are extracted from each of the time-domain signals, first at the pickup time and second
at the trip time of the second zone of the incident TL distance protection. A short-circuit
in the first zone of the distance protection will be tripped 0.1 s after the pickup time and
that in the second zone will be tripped 0.4 s after the pickup time; see [24] for additional
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information regarding distance protection (ANSI 21) of TLs. This means that the classifier
is trained using only eight features (two per each signal). It should be mentioned that there
is no communication between the distance protection of TLs and generator relay functions.

Training and test sets are then created using the stratified shuffle split strategy, so that
80% of data is used for training and remaining 20% for testing. Stratified shuffling preserves
class imbalance while randomly distributing instances. The last data preparation step
considers standardization of features (i.e., centering and scaling to unit variance). Figure 3
graphically represents training and test phases of the model building process. The SVM
classifier has two hyperparameters that need to be fine-tuned during training. These are the
classifier’s regularization (C) and the RBF kernel coefficient (γ). Classifier regularization
(as a squared ℓ2 penalty) trades off misclassification of training examples against simplicity
of the decision surface [25]. Kernel coefficient defines how much influence a single training
example has on the overall decision boundary. Both hyperparameters are initially drawn
from exponential distributions: C ∼ Exp(λ = 0.01), γ ∼ Exp(λ = 0.1) and optimized
using a random search (for 200 iterations) with a three-fold cross validation on the training
data set. Class weight balancing is used during training, where class weights are adjusted
inversely proportional to class frequencies in the input data.

Figure 3. Process of supervised training (left) and subsequent testing (right) of the SVM classifier.

Furthermore, due to the class imbalance, a so-called Matthews correlation coefficient
[−1, +1] is used for scoring models during training [25]:

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(8)

where: TP is the number of true positives, TN the number of true negatives, FP the number
of false positives and FN the number of false negatives. These values can be obtained from
the confusion matrix. An MCC value close to +1 indicates a high performing classifier.
Now, binary predictions are obtained from the following expression:

ŷ(x) = sign

(
β + ∑

i∈SV
αi · e−γ·∥x−x′∥2

)
, (9)

where summation is performed over the space of support vectors (SV) using αi weights,
while β is the intercept.

Model performance is tested using a separate test set (not seen during training) and
model score is reported from a three-fold cross validation (Figure 3). Furthermore, false
positive (FP) results (type I errors) and false negative (FN) results (type II errors) will
not have equal importance for both protection functions. Consequently, it is important
for the classifier’s performance to fine-tune its decision probability threshold by further
comparing and contrasting the precision and recall metrics [25]. Since the positive class
here represents unstable swing events, false negative results are more of a concern for the
out-of-step protection. Hence, the classifier decision probability threshold will be different
between underimpedance and the out-of-step protection functions, and each will have
its own individual setting. However, there will be only one SVM classifier, serving both
protection functions.
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Generator relay settings calculation, as mentioned, ordinarily involves carrying out
numerical simulations of different short-circuit events, which are also part of the machine’s
transient stability study. All data generated during these simulations should be used for
(offline) training of the SVM classifier. This will ensure that the classifier is fine-tuned to
the particular swing trajectories of the generator at hand.

2.3.1. SVM Supporting Underimpedance Protection

Interfacing SVM classifier with the generator underimpedance protection is proposed
on the bases of 7UM62 numerical relay [5]. Figure 4 depicts a schematic connection of
the SVM classifier’s decision binary input to the internal power swing detection logic
of the underimpedance protection. Provided connection is intended for blocking of the
second zone (“Zone Z2”) during stable power swings. Firstly, after the pickup has been
activated, relay calculates the impedance (as seen from the relay position) by selecting an
appropriate measurement loop. This means that, due to the YNd5 vector group of the
step-up transformer, a two-phase short circuit at the HV transformer terminals will be seen
as a three-phase short circuit at the generator side (with unequal fault-current distribution
in the three phases). Also, in this case, only a single phase-to-ground loop (that with the
largest fault current) will have a correct measurement. However, a single-phase short
circuit at the HV transformer terminals will not only be seen as a two-phase short circuit at
the generator side (necessitating correct loop selection), but will also have an inevitable
measuring error which cannot be corrected [22]. Setting of the zone extent and time grading
is carried out by means of the “Zone Z2” and “Zone T2” parameters [5].

&

&

&

Loop

Selection

Power

Swing

SVM

Pickup
Zone Z2 Zone T2

T2
Z

Blk.Z2Swing

Power Swing

Stable Swing

Z2< Trip
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UL1, UL2, UL3
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U1

I2
Zpos
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Pe, Qe

dδ
{
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{

P
M

U

SVM Thr. Z<

Figure 4. Proposed SVM connection to the underimpedance protection, in support of the internal
power swing detection logic which is blocking the second zone during stable generator swings.
Scheme is based on the 7UM62 relay from Siemens [5].

Power swing detection logic of the 7UM62 relay, in particular, is based on measuring
the speed of an impedance vector trajectory during its crossing between two polygonal
characteristics [5]. This logic is here reinforced by introducing another external binary signal
from the SVM classifier (Figure 4), which means that the underimpedance protection is
blocked only during stable swings (and not during all swings). A stable swing is determined
by combining decisions from the traditional relay power swing detection logic (based on a
polygonal characteristic and impedance trajectory) with that of the SVM classifier (which
distinguishes between stable and unstable power swings based on PMU measurements).
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This increases the decision’s validity, because of its need to satisfy conditions imposed by
two independent sources. In addition, parameter “SVM Thr. Z<” enables user to set the
classifier’s decision probability threshold level in order to minimize type I errors.

It needs to be emphasized that the traditional power swing detection logic of the
7UM62 cannot by itself distinguish between stable and unstable power swings; it can only
recognize that there is a swing and not a short-circuit event within its (second) protection
zone [5]. Hence, an introduction of the SVM classifier brings in new information to the relay
and enables clearly identifying any power swing as stable or unstable. In addition, output
of this protection function now includes an additional independent signal (“Stable Swing”),
which authenticates the stable power swing by combining the trajectory information with
the classifier output. This makes it more reliable than the traditional “Power Swing” output
(that relies on trajectory information only). Furthermore, user can activate and deactivate
(by means of the new parameter “Blk.Z2Swing”) SVM classifier’s support to the traditional
power swing detection logic (see Figure 4). Hence, the SVM classifier may be inactive
during the relay commissioning phase, providing only the “Stable Swing” signal which
can be compared to the existing “Power Swing” output.

2.3.2. SVM Supporting Out-of-Step Protection

Interfacing SVM classifier with the generator out-of-step protection is again proposed
on the bases of 7UM62 numerical relay [5]. Figure 5 depicts a schematic connection of the
SVM classifier’s decision binary input to the out-of-step protection. It is here intended as
a support for a faster generator tripping during unstable swings in the second protection
zone (“Zone Z2”) only.

CT2

VT

&

T-Holding

Rep.Char. 2

SVM Thr. O/S

Z O/S det. char. 2

O/S Trip char. 2

U1

I1

Zone Z2

Characteristic

n = n + 1

n = 0 n ≥ 1

n ≥ n2

R
e
s
e
t

Increment

Trip char. 2

Unstable swing

UL1

UL2

UL3

IL1

IL2

IL3

SVM
V

Pe, Qe

dδ
{

{

{

P
M

U

Figure 5. Proposed SVM connection to the out-of-step protection for faster generator tripping in the
second zone. Scheme is based on the 7UM62 relay from Siemens [5].

When the out-of-step protection function determines that there is a power swing
(i.e., impedance trajectory is crossing through the second zone of its polygonal character-
istic), the associated counter will be incremented (n ≥ 1), [5]. Parameter “T-Holding” is
used for resetting this counter. At the same time, if the SVM classifier decides that this is
an unstable generator swing (from which there can be no recovery), there is no need to
continue exposing the generator to mechanical stresses associated with subsequent swings
(i.e., additional two or three swings) as defined by the parameter “Rep.Char.2”), [5]. In this
way, by incorporating decision from the SVM classifier, out-of-step protection can trip the
generator in the second zone after a single swing (instead of a total of three or four), which
would considerably decrease the mechanical stresses of the machine (especially if the swing
locus is close to the generator). Furthermore, any trip decision arising from the SVM deci-
sion support activates independent output signal “Trip char. 2” (see Figure 5). During relay
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commissioning phase, signal “Trip char. 2” can be used as an indicator only (and compared
with the “O/S Trip char. 2” output for reference). In this way the commissioning period
may be utilized for final fine-tuning of the classifier with actual measurements. Parameter
“SVM Thr. O/S” enables the user to set the classifier decision probability threshold level
in order to minimize type II errors. Finally, protection function provides an additional
“Unstable swing” signal which can be used as a general zone-independent indication of an
unstable power swing event.

3. IEEE New England 10-Generator Power System Example

A well-known IEEE New England 10-generator power system is taken as a basis for
classifier training and testing. This power system features ten synchronous machines,
in addition to transmission lines, three-phase transformers and loads [26]. One of the
generators serves as a surrogate of the external power system. Each machine includes an
excitation system control, automatic voltage regulator, power system stabilizer and turbine
governor control. Loads are represented as simple R-L-C branches. Transmission lines
are modeled as three-phase Π–section blocks. A complete electro–mechanical transient
simulation of the power system is carried out for different load levels and three different
short-circuit types scattered throughout the network; see [27] for additional information. A
total of 9360 time-domain simulations were performed, which created the dataset.

As an example of the simulation output, two time-domain signals of the generator
voltage and rotor angle deviations are presented in Figure 6, which demonstrate strong
influence of the incident TL distance relay trip time on the transient stability of the generator.
Distinction between stable and unstable generator swing is clearly visible from the rotor
angle deviation. In addition, Figure 7 graphically presents a trajectory of the unstable
generator swing, following a single-phase short circuit on the incident TL. A trajectory in the
P–Q plane can be readily transformed into the R–X plane while retaining its circular shape.

Figure 6. Example of generator voltage (left) and rotor angle deviation (right), during single-phase
short-circuits on the incident TL that were cleared in the first (0.1 s) and second (0.4 s) distance
protection zones.

Figure 7. Example of trajectories for an unstable generator swing during single-phase short circuit on
the incident TL. Left side shows trajectory of generator power (in the P–Q coordinate system). Right
side shows trajectory of stator current and voltage (in the d–q coordinate system). Pickup and trip
times of the associated distance protection are indicated for reference (∆t = 0.4 s).
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Features, extracted from the dataset of time-domain systematic simulations (see
Subsection 2.3), can be visually depicted using the process of low-dimensional embed-
ding. We show the results of this process here by using the kernel principal component
analysis (kPCA) while projecting the original features space into the three-dimensional
embedding [25]. Consequently, Figure 8 graphically depicts different short-circuit events
(from all parts of the network) in 3D (left side) and 2D (right side) coordinate systems of
principal components. Furthermore, SVM classifier predictions (i.e., stable and unstable
generator swings), arising from these events, are also graphically depicted using the same
kPCA embedding and displayed in Figure 9. By comparing Figures 8 and 9, it can be clearly
seen that the main source of unstable generator swings are the three-phase (SC 3) short
circuit events. At the same time, single-phase (SC 1) short circuit events are far less prone
to cause generator’s loss of stability. This is completely expected.

Figure 8. Different short-circuit events seen in the 3D (left) and 2D (right) coordinate systems of
principal components (produced from the kPCA embedding); single-phase (SC 1), double-phase
(SC 2) and three-phase (SC 3) faults.

Figure 9. Different short-circuit events seen in the 3D (left) and 2D (right) coordinate systems
of principal components (produced from the kPCA embedding) in terms of generator stable or
unstable swings.

The classifier’s performance is gauged by means of the scores obtained from the test
set. For example, the Matthews correlation coefficient of the classifier, using the 3–fold cross
validation on the test set, yields: 0.957 ± 0.028. In addition, classifier’s performance can be
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further examined by contrasting its precision and recall metrics [25]. Precision is defined
as a ratio between a number of true positives and a number of predicted positive results.
Recall is defined as a ratio between a number of true positives and an actual number
of positive cases. Classifier will balance these two opposing metrics. Table 1 presents
classifier’s individual precision and recall measures obtained from the test set. Although
these values can vary between different runs, due to randomness involved in data shuffling
and model training (i.e., random search for optimal hyperparameters), it can be seen from
the presented results that the proposed SVM classifier obtained high scores across several
important metrics. We were also able to consistently reproduce this level of performance
between runs.

Table 1. Classifier’s precision and recall for stable and unstable cases, obtained from the test set.

Swing Case Precision Recall F1–Score Support

Stable 0.998 0.988 0.993 1267
Unstable 0.976 0.995 0.985 605

Additionally, in order to examine the influence of the dataset size on the classifier’s
performance, we used only 1000 (stratified) random samples from the original dataset
(again 80% for training and 20% for testing), which constitutes only cca. 10% of the original
data. Training the classifier with only 800 samples yields a Matthews correlation coefficient
of 0.914 ± 0.037 (from the 3–fold cross validation on the test set of 200 samples). It also
yields an area under the receiver operating characteristic (ROC) curve of 0.982 ± 0.006.
Table 2 presents more complete results obtained by using this small dataset. It can be
seen that, even with only cca. 10% of the original dataset, the classifier was still able to
achieve very good performance with relatively high scores. This is a reassuring finding,
which means that a dataset can be purposefully built each time, as part of the relay settings
calculations, using simulation results from the (extended) machine stability studies.

Table 2. Classifier’s precision and recall for stable and unstable cases, obtained using the subset of
1000 samples (i.e., from the test set of 200 samples).

Swing Case Precision Recall F1–Score Support

Stable 0.985 0.948 0.966 135
Unstable 0.901 0.969 0.933 65

Fine-tuning of the classifier’s decision probability threshold, as a final step in the
training process, can be carried-out using the precision–recall curves [25]. For that purpose,
Figure 10 presents precision and recall curves, obtained from predictions on the test set of
200 samples, as a function of the decision probability thresholds. It can be seen that as the
precision is increased, recall will inevitably decrease, and vice versa. It is desirable for the
SVM threshold supporting underimpedance protection to have higher recall (lower type
II errors), while that of the out-of-step protection to have higher precision (lower type I
errors). These different thresholds—for the same SVM classifier—can be independently
determined from the precision–recall curves (where threshold is related to the selectable
parameters “SVM Thr. Z<” and “SVM Thr. O/S” from Figures 4 and 5, respectively).
Selected probability threshold level, at the same time, defines the classifier’s confidence
score regarding the class predictions. For example, setting the probability threshold level
at 0.8, in relation to the out-of-step protection, means that the classifier will be reporting
unstable power swing cases with an 80% confidence. Unstable power swings that turn out
to be associated with a confidence that is lower than the 80% would not be influencing
out-of-step relay decisions. This ensures that only very confident predictions can interact
with the traditional relay protection logic.
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Figure 10. Precision and recall of the SVM classifier as a function of the decision probability thresh-
old value. A particular threshold value at the intersection of the precision and recall curves is
marked for reference. Classifier was trained using 800 and tested on 200 random samples from the
original dataset.

Influence of the decision threshold value on the type I and II errors is further presented
graphically, by means of the confusion matrices in Figure 11, again for this test set of
200 samples. If the threshold is selected at the intersection of precision and recall curves,
the number of type I and type II errors would be exactly the same. Confusion matrix, at
the same time, enables deriving several other useful metrics, such as: Youden’s J–statistic,
Jaccard’s index, F–measures (Fβ, F1), Fowlkes–Mallows index, and others. These can be
employed as a means of further examining the classifier’s performance. For example,
the Jaccard’s score on the test set of 200 samples (using 3–fold cross validation) yields:
0.889 ± 0.045.
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Figure 11. Classifier’s confusion matrices obtained from the small test set of 200 samples with two
different decision probability threshold levels: Thr. = 0.6 (left) and Thr. = 0.2 (right).

In addition, a confusion matrix forms a basis for the so-called “net benefit” analysis,
which weighs the relative harms (i.e., costs) of false-positive and false-negative predictions
across different threshold probabilities; see [28] for more information. The net benefit of
the presented SVM model, for any probability threshold level t ∈ [0, 1], can be calculated
from the following relation:

Bt =
1
N

·
(

TP − FP · t
1 − t

)
(10)

with N being the total number of samples. A net benefit can acquire values from the minus
infinity up to the value that is equal to the incidence of the positive class. A model provides
utility only when its net benefit value is greater than zero. If the net benefit is calculated
for different (ascending) threshold values, the resulting curve (that relates the net benefit
values with associated thresholds) is known as a decision curve. It can be used to assess
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model’s usefulness, to select the appropriate probability threshold level and to compare
different models [28]. Figure 12 presents a decision curve for the SVM classifier at hand,
obtained from the small dataset of 1000 samples. It can be seen that the net benefit of the
model is positive.

Figure 12. Decision curve based on the net benefit analysis for the SVM classifier trained on the
small dataset.

Finally, it should be stated that the SVM classifier was trained on a synthetic data
generated by numerical simulations. Considering the importance of the power system,
further testing of the classifier is recommended, preferably using the actual (measured)
generator data. This, however, could be difficult to achieve, since the participation (and
permission) of the machine owner would be required.

4. Conclusions

The massive integration of power electronic converters, along with the continuous
displacement of synchronous generators, is fundamentally changing the dynamic character-
istics of power systems, which imposes new challenges on the stable and resilient operation
of power grids. Since the generator relay protections are directly facing these challenges,
strengthening their decision-making logic may be seen as a prudent step in the direction
of securing the system stability. Hence, this paper introduced a support vector machine
based (binary) classifier for supporting the synchronous generator underimpedance (21G)
and out-of-step (78) relay protection functions, which are based on the IEC standards and
European practice. Both protection functions are impedance-based and feature polygonal
characteristics (i.e., they do not employ MHO-type circles, which is a standard practice in
the US). As a side note, it could be mentioned that Siemens’ implementation of the under-
excitation protection (i.e., loss-of-field protection, ANSI 40) does not feature MHO-type
offset circle either (which is again very different from the US practice); instead, it is based
on a special three-lines characteristic, presented in the admittance (G, B) plane and applied
directly on top of the generator’s capability curve.

The proposed classifier was trained on the dataset of PMU-type signals obtained
from time-domain numerical simulations of the IEEE New England 10-generator test
power system, following a standard practice used in many research papers. It is then
proposed as a support for the internal relay logic, for blocking of the underimpedance
protection during stable power swings. It is also intended as a support for faster generator
tripping, by the out-of-step protection, during unstable generator swings. In both cases,
it is meant to reinforce second zone (i.e., overreaching) of both underimpedance and
out-of-step protection functions, since these are “looking” into the network. In case that
the underimpedance protection features a third zone, it could be used with it as well.
Furthermore, in case that the underimpedance relay protection function does not provide
internal power swing detection logic (as is the case with, e.g., REG 670 from ABB), the
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classifier could be used as an independent source of external swing detection (binary) signal
for blocking the protection during stable swings.

It ought to be mentioned that it is important to train the classifier using transient
simulation data obtained directly from the machine stability studies, which are often
performed as part of the protection relay settings calculation. This data set does not have to
be very large, as shown previously, since the SVM classifier is easy to train (i.e., it has only
two hyperparameters). This will also ensure that the classifier is familiar with particular
swing trajectories of the machine at hand. As part of this training process, the classifier can
also be fine-tuned by selecting decision probability threshold levels that are appropriate for
minimizing prediction errors.

Finally, considering the importance of generator protections for the power system
stability—particularly in these evolving circumstances emanating from the large-scale
integration of renewable energy sources—further testing of the classifier is recommended.
Hence, future work envisions, among others, increasing the class imbalance with new
network contingencies and introducing different types of (artificial) noise and measurement
errors into the dataset for testing the classifier robustness and performance under these
adverse conditions. Also, testing the classifier with changing generation mix and reduced
system inertia is seen as another important future research direction.

Author Contributions: Conceptualization, P.S.; methodology, P.S.; software, P.S.; validation, P.S.
and D.L.; investigation, D.L.; resources, P.S. and D.L.; data curation, D.L.; writing—original draft
preparation, P.S.; writing—review and editing, D.L.; visualization, P.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset is made available under the CC-BY license and deposited
on Zenodo with a https://doi.org/10.5281/zenodo.4521886, accessed on 1 March 2024.

Acknowledgments: The authors kindly acknowledge the contribution of our colleague A. Kunac for
carrying out extensive numerical simulations that created the original dataset.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ANSI American national standards institute
ANSI 21 transmission line distance protection
ANSI 21G generator (under)impedance protection
ANSI 78 generator loss of synchronism (i.e., out-of-step) protection
ANSI 40 generator underexcitation (i.e., loss-of-field) protection
ANSI 87T differential protection of generator and its step-up transformer
IEEE Institute of electrical and electronics engineers
IEC International electrotechnical commission
CT current transformer
VT voltage transformer
TL transmission line
ML machine learning
HV high voltage
TP number of true positives
TN number of true negatives
FP number of false positives
FN number of false negatives
MCC Mathews correlation coefficient
PMU phasor measurement unit
SVM support vector machine
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RBF radial basis function
ROC receiver operating characteristic
TRV transient recovery voltage
TSO transmission system operator
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