Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = IC-ICPOES

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3828 KB  
Article
Effects of Fluid Inclusion Component Release on Flotation Behavior of Fluorite Minerals
by Renji Zheng, Shilin Hong, Sheng Wang, Honghu Tang and Zhiyong Gao
Minerals 2025, 15(9), 912; https://doi.org/10.3390/min15090912 - 27 Aug 2025
Viewed by 588
Abstract
Fluid inclusions, ubiquitously present within fluorite during diagenesis and mineralization, are released as inevitable ionic components in the pulp during mineral crushing and grinding. This study, grounded in geochemistry, combined microstructural analysis, spectroscopy, and X-ray computed tomography (X-CT) to investigate the morphology and [...] Read more.
Fluid inclusions, ubiquitously present within fluorite during diagenesis and mineralization, are released as inevitable ionic components in the pulp during mineral crushing and grinding. This study, grounded in geochemistry, combined microstructural analysis, spectroscopy, and X-ray computed tomography (X-CT) to investigate the morphology and petrographic characteristics of fluid inclusions in fluorite minerals. Building on this foundation, inductively coupled plasma optical emission spectrometry (ICP-OES) and ion chromatography (IC) were employed to analyze the release patterns of fluid inclusion components and their impact on fluorite flotation. The results reveal that fluid inclusions within fluorite are predominantly liquid-rich, two-phase (vapor-liquid) inclusions, exhibiting a spatial distribution density as high as 14.1%. Furthermore, fluid components are released during fluorite grinding, particularly homonymous Ca2+ ions, which significantly influence fluorite flotation behavior. Low concentrations of Ca2+ can activate fluorite flotation, whereas high concentrations of Ca2+ consume the collector (sodium oleate) in solution through competitive adsorption. This competition inhibits the adsorption of sodium oleate onto the fluorite mineral surface. The findings of this research provide theoretical support for in-depth studies on fluid inclusions in minerals and their effects on mineral flotation behavior, thereby facilitating the clean and efficient recovery of strategic fluorite mineral resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 2678 KB  
Article
Mechanism of Carbon Monoxide (CO) Generation and Potential Human Health Hazard during Mechanized Tunnel Driving in Organic-Rich Rocks: Field and Laboratory Study
by Andre Baldermann, Ronny Boch, Volker Reinprecht and Claudia Baldermann
Sustainability 2024, 16(18), 8107; https://doi.org/10.3390/su16188107 - 17 Sep 2024
Cited by 1 | Viewed by 2051
Abstract
The monitoring of carbon emissions is increasingly becoming a sustainability issue worldwide. Despite being largely unnoticed, the toxic gas carbon monoxide (CO) is ubiquitous in mechanized tunnel driving, but the individual sources, release and enrichment mechanisms are often unknown. In this study, the [...] Read more.
The monitoring of carbon emissions is increasingly becoming a sustainability issue worldwide. Despite being largely unnoticed, the toxic gas carbon monoxide (CO) is ubiquitous in mechanized tunnel driving, but the individual sources, release and enrichment mechanisms are often unknown. In this study, the generation of CO from organic matter containing sedimentary rocks was investigated during mechanized tunnel driving and by reacting claystone and sandstone with 10 mM NaCl solutions for 2 months at 70 °C and 140 °C. The mineralogical and geochemical evolution of the solids and fluids was assessed by CO measurements and the XRD, DTA, TOC, IC and ICP-OES methods. The CO concentration in the atmosphere reached up to 1920 ppm (100 ppm on average) during tunnel driving, which is more than three times higher than the legal daily average dose for tunnellers, thus requiring occupational safety operations. Mineral-specific dissolution processes and the rapid decomposition of labile organic matter upon thermal alteration contributed to the liberation of CO and also carbon dioxide (CO2) from the host rocks. In mechanized tunnel driving, frictional heat and ‘cold’ combustion with temperatures reaching 50–70 °C at the drill head is an important mechanism for increased CO and CO2 generation, especially during drilling in sedimentary rocks containing significant amounts of OM and when the ventilation of the tunnel atmosphere and air mixing are limited. Under such conditions, human health damage due to CO exposure (HHDCO) can be 30 times higher compared to tunnel outlets, where CO is emitted from traffic. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

12 pages, 1029 KB  
Article
Inorganic Characterization of Feeds Based on Processed Animal Protein Feeds
by Paolo Inaudi, Luca Maria Mercurio, Daniela Marchis, Andrea Bosusco, Mery Malandrino, Ornella Abollino, Laura Favilli, Stefano Bertinetti and Agnese Giacomino
Molecules 2024, 29(16), 3845; https://doi.org/10.3390/molecules29163845 - 14 Aug 2024
Viewed by 1666
Abstract
The potential of utilizing inorganic constituents in processed animal proteins (PAPs) for species identification in animal feeds was investigated, with the aim of using these constituents to ensure the quality and authenticity of the products. This study aimed to quantify the inorganic content [...] Read more.
The potential of utilizing inorganic constituents in processed animal proteins (PAPs) for species identification in animal feeds was investigated, with the aim of using these constituents to ensure the quality and authenticity of the products. This study aimed to quantify the inorganic content across various PAP species and assess whether inorganic analysis could effectively differentiate between PAP species, ultimately aiding in the identification of PAP fractions in animal feeds. Four types of PAPs, namely bovine, swine, poultry, and fish-based, were analyzed and compared to others made up of feathers of vegetal-based feed. Also, three insect-based PAPs (Cricket, Silkworm, Flour Moth) were considered in this study to evaluate the differences in terms of the nutrients present in this type of feed. Ionic chromatography (IC) was used to reveal the concentrations of NO3, NO2, Cl, and SO42−, and inductively coupled plasma optical emission spectroscopy (ICP-OES) to detect Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Si, Sr, Ti, and Zn. The application of multivariate chemometric techniques to the experimental results allowed us to determine the identification capability of the inorganic composition to identify correlations among the variables and to reveal similarities and differences among the different species. The results show the possibility of using this component for discriminating between different PAPS; in particular, fish PAPs are high in Cd, Sr, Na, and Mg content; swine PAPs have lower metal content due to high fat; feathers and vegetal feed have similar Al, Si, and Ni, but feathers are higher in Fe and Zn; and insect PATs have nutrient levels comparable to PAPs of other origins but are very high in Zn, Cu, and K. Full article
Show Figures

Figure 1

16 pages, 1873 KB  
Article
Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador
by Bryan Salgado-Almeida, Arián Briones-Escalante, Daniel Falquez-Torres, Karla Filián-Haz, Fredy Guzmán-Martínez, Kenny Escobar-Segovia, Elizabeth Peña-Carpio and Samantha Jiménez-Oyola
Resources 2024, 13(8), 105; https://doi.org/10.3390/resources13080105 - 25 Jul 2024
Cited by 2 | Viewed by 3782
Abstract
Tailings are a significant concern due to their potential release of toxic elements into the environment, posing risks to ecosystems and human health. Therefore, understanding their polluting potential is crucial for effective mitigation strategies. This study evaluates the contaminating potential of eight tailing [...] Read more.
Tailings are a significant concern due to their potential release of toxic elements into the environment, posing risks to ecosystems and human health. Therefore, understanding their polluting potential is crucial for effective mitigation strategies. This study evaluates the contaminating potential of eight tailing dams in the upper basin of the Puyango River in southern Ecuador. A physicochemical and mineralogical characterization of the tailings was conducted. The contents of As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, Se, V, and Zn were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The contamination index (IC) and the risk (RI) to the environment and population were evaluated. As a result, it was found that As, Cu, Pb, Se, and Zn exceeded the maximum permissible limits in all the samples according to Ecuadorian regulations. Six of the eight tailing dams presented very high pollution levels (21.28 < IC < 298.61), indicating a severe contamination risk. As, Sb, and Se were the most significant contributors to the index, with 29%, 31%, and 20% contribution to the overall IC, respectively. However, the risk assessment indicated a low risk (RI < 5) to both the population and the natural environment, mainly due to the distance between the tailing dams and the potential receptors. While the present risk associated with the studied tailing dams is low, there exists potential for long-term escalation. Full article
Show Figures

Figure 1

12 pages, 5535 KB  
Article
Evaluation of Anti-Infection and Anti-Diabetic Activities in Methanolic and n-Hexane Plant Extracts of Indigenously Cultivated Chenopodium album
by Ijaz Hussain, Muhammad Ramzan Saeed Ashraf Janjua, Atta Ul Haq, Sadaf Ul Hassan, Faisal Miqad K. Albaqami, Meshari A. Alsuwat, Barakat M. Alrashdi, Sarah Alzwain and Syed Ali Raza Naqvi
Agronomy 2024, 14(7), 1340; https://doi.org/10.3390/agronomy14071340 - 21 Jun 2024
Cited by 4 | Viewed by 2045
Abstract
The Asian region of earth has a rich agriculture system that provides extensive opportunities to boost pharmaceutical and nutritional research to address the use of food crops for health benefits and potential clinical applications. The traditionally cropped green leaf vegetable indigenously known as [...] Read more.
The Asian region of earth has a rich agriculture system that provides extensive opportunities to boost pharmaceutical and nutritional research to address the use of food crops for health benefits and potential clinical applications. The traditionally cropped green leaf vegetable indigenously known as Bathu and botanically known as Chenopodium album (C. album) is traditionally used as a sedative, blood purifier, hepatoprotectant, diuretic, and antiscorbutic laxative. In this study, we investigated the anti-infection potential, anti-diabetic potential, and mineral composition of indigenously cultivated C. album plant extracts. Methanol and n-hexane solvents were used to extract phytochemicals at different extraction conditions. The maximum yield of 12.72 ± 0.36 g/100 g extract was obtained in methanol with 200 rpm shaking, 200 mL solvent, and an 8 h extraction period. Under the same conditions, n-hexane gave 2.09 ± 0.29 g/100 g extract. Good alpha-amylase inhibition efficiency was shown by the n-hexane extracts, while the methanol extracts showed good urease inhibition potential. The H6 extract had the lowest IC50 (8.16 ± 0.2 ug/mL) as compared to the standard acarbose (9.27 ± 0.6 ug/mL). Similarly, the M6 extract revealed a significant urease inhibitory potential, i.e., IC50 of 18.77 ± 0.6 ug/mL, which was close to the standard thiourea (IC50: 19.09 ± 0.7 ug/mL). Regarding the antibacterial study, the M6 extract showed 16.55 ± 0.57 mm ZOI against E. coli and 15.54 ± 0.55 mm in the case of S. aureus, as compared to the standard ciprofloxacin, which showed 26.08 ± 0.73 mm, and penicillin, which showed 21.12 ± 0.81 mm ZOI. Mineral profiling was investigated by ICP-OES, which showed significant amounts of Mg and Fe in all extracts. Our findings tend to show that systematic harvesting and utilization of this vegetable crop could be recommended as an alternative nutritional therapy in the management of internal infections and diabetes. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

15 pages, 1123 KB  
Article
Nanoparticle Effects on Ice Plant Mineral Accumulation under Different Lighting Conditions and Assessment of Hazard Quotients for Human Health
by Rūta Sutulienė, Aušra Brazaitytė, Martynas Urbutis, Simona Tučkutė and Pavelas Duchovskis
Plants 2024, 13(5), 681; https://doi.org/10.3390/plants13050681 - 28 Feb 2024
Cited by 2 | Viewed by 1610
Abstract
Nanotechnologies can improve plant growth, protect it from pathogens, and enrich it with bioactive and mineral substances. In order to fill the lack of knowledge about the combined environmental effects of lighting and nanoparticles (NPs) on plants, this study is designed to investigate [...] Read more.
Nanotechnologies can improve plant growth, protect it from pathogens, and enrich it with bioactive and mineral substances. In order to fill the lack of knowledge about the combined environmental effects of lighting and nanoparticles (NPs) on plants, this study is designed to investigate how different HPS and LED lighting combined with CuO and ZnO NPs influence the elemental composition of ice plants (Mesembryanthemum crystallinum L.). Plants were grown in hydroponic systems with LED and HPS lighting at 250 ± 5 μmol m−2 s−1 intensity, sprayed with aqueous suspensions of CuO (40 nm, 30 ppm) and ZnO (35–45 nm, 800 ppm) NPs; their elemental composition was measured using an ICP–OES spectrometer and hazard quotients were calculated. LED lighting combined with the application of ZnO NPs significantly affected Zn accumulation in plant leaves. Cu accumulation was higher when plants were treated with CuO NPs and HPS illumination combined. The calculated hazard quotients showed that the limits are not exceeded when applying our selected concentrations and growth conditions on ice plants. In conclusion, ice plants had a more significant positive effect on the accumulation of macro- and microelements under LED lighting than HPS. NPs had the strongest effect on the increase in their respective microelements. Full article
(This article belongs to the Special Issue Light and Plant Nutrition)
Show Figures

Figure 1

22 pages, 42889 KB  
Article
Hydrogeochemistry and Water Quality Index for Groundwater Sustainability in the Komadugu-Yobe Basin, Sahel Region
by Abdulrahman Shuaibu, Robert M. Kalin, Vernon Phoenix, Limbikani C. Banda and Ibrahim Mohammed Lawal
Water 2024, 16(4), 601; https://doi.org/10.3390/w16040601 - 18 Feb 2024
Cited by 15 | Viewed by 3885
Abstract
The assessment of hydrochemical characteristics and groundwater quality is crucial for environmental sustainability in developing economies. This study employed hydrogeochemical analysis, geospatial analysis, and groundwater quality index to assess hydrogeochemical processes and quality of groundwater in the Komadugu-Yobe basin. The pH, total dissolved [...] Read more.
The assessment of hydrochemical characteristics and groundwater quality is crucial for environmental sustainability in developing economies. This study employed hydrogeochemical analysis, geospatial analysis, and groundwater quality index to assess hydrogeochemical processes and quality of groundwater in the Komadugu-Yobe basin. The pH, total dissolved solids (TDS), and electrical conductivity (EC) were assessed in situ using a handheld portable electrical conductivity meter. The concentrations of the major cations (Na+, Ca2+, Mg2+, and K+), were analyzed using inductively coupled plasma optical emission spectroscopy (ICP-OES). The major anions (chloride, fluoride, sulfate, and nitrate) were analyzed via ion chromatography (IC). Total alkalinity and bicarbonate were measured in situ using a HACH digital alkalinity kit by the titrimetric method. Hydrochemical results indicate some physicochemical properties of the groundwater samples exceeded the maximum permissible limits as recommended by the World Health Organization guidelines for drinking water. Gibbs diagrams indicate rock–water interaction/rock weathering processes are the dominant mechanisms influencing the groundwater chemistry. Groundwater is predominantly Ca2+-Mg2+-HCO3 water type, constituting 59% of the groundwater samples analyzed. The groundwater quality index (GWQI) depicted 63 and 27% of the groundwater samples as excellent and good water types for drinking purposes, respectively. This study further relates the interaction between geology, hydrochemical characteristics, and groundwater quality parameters. The results are essential to inform a sustainable management strategy and protection of groundwater resources. Full article
Show Figures

Figure 1

13 pages, 3984 KB  
Article
Study on the Interaction Mechanism between Residual Coal and Mine Water in Goaf of Coal Mine Underground Reservoir
by Binbin Jiang, Ze Zhao, Deqian Liu, Zhiguo Cao, Jiawei Tang, Min Wu, Haiqin Zhang, Peng Li and Dingcheng Liang
Sustainability 2023, 15(20), 15106; https://doi.org/10.3390/su152015106 - 20 Oct 2023
Cited by 7 | Viewed by 1682
Abstract
In this paper, the coal pillar dam body of the underground reservoir in Daliuta coal mine, along with the residual coal and the mine water present in the goaf, were taken as research subjects, and a dynamic simulation experiment device was constructed to [...] Read more.
In this paper, the coal pillar dam body of the underground reservoir in Daliuta coal mine, along with the residual coal and the mine water present in the goaf, were taken as research subjects, and a dynamic simulation experiment device was constructed to simulate the actual process of a coal mine underground reservoir (CMUR). The composition and structure of middling coal during the experiment were determined by X-ray diffraction analysis (XRD) and X-ray fluorescence spectrometry (XRF), while changes in ion content in the mine water were assessed through ion chromatography (IC) and inductively coupled plasma emission spectrometry (ICP-OES). Based on both the composition and structure of coal as well as variations in ion concentrations in water, the interaction mechanism between coal and mine water was explored. The results showed that the water–coal interaction primarily arose from the dissolution of minerals, such as rock salt and gypsum, within coal. Additionally, coal samples in mine water exhibited adsorption and precipitation of metal ions, along with cation exchange reaction. Na+ in mine water predominantly originated from the dissolution of rock salt (sodium chloride) in coal, while Ca2+ and SO42 were released through the dissolution of gypsum and other minerals in coal. In the process of the water–coal interaction, Ca2+ in the water body was adsorbed and immobilized by the coal sample, leading to the formation and deposition of CaCO3 on the surface of the coal, thereby increasing the calcite content. These processes collectively contributed to a decrease in the concentration of Ca2+ in the water body. Moreover, the cation exchange reaction occurred between Ca2+ and Mg2+ in mine water and Na+ in the coal sample. The presence of Ca2+ and Mg2+ resulted in their displacement of Na+ within the coal matrix, consequently elevating Na+ concentration in the mine water while reducing both the Ca2+ and Mg2+ concentrations. On this basis, combined with insights from the water–rock interaction, it can be inferred that the adsorption mechanisms involving rocks played a dominant role in the decrease of Ca2+ concentration during the water–rock interactions. Meanwhile, the dissolution processes of minerals both in the water–rock and water–coal interactions predominantly contributed to the increase of Na+ and Cl concentrations. Full article
Show Figures

Figure 1

15 pages, 3689 KB  
Article
Comparison between the Nature and Activity of Silver Nanoparticles Produced by Active and Inactive Fungal Biomass Forms on Cervical Cancer Cells
by Parastoo Pourali, Mahnaz Nouri, Tana Heidari, Niloufar Kheirkhahan and Behrooz Yahyaei
Nanomanufacturing 2023, 3(2), 248-262; https://doi.org/10.3390/nanomanufacturing3020016 - 9 Jun 2023
Cited by 2 | Viewed by 2127
Abstract
Silver nanoparticles (SNPs) can be produced by active and inactive forms of biomass, but their properties have not been compared. Recent research is attempting to reveal their differences in shape, size, amount, antibacterial activity, cytotoxicity, and apoptosis induction. The biomass of Fusarium oxysporum [...] Read more.
Silver nanoparticles (SNPs) can be produced by active and inactive forms of biomass, but their properties have not been compared. Recent research is attempting to reveal their differences in shape, size, amount, antibacterial activity, cytotoxicity, and apoptosis induction. The biomass of Fusarium oxysporum was divided into four groups and pretreated in the following devices: room temperature (RT) and refrigerator (for preparation of active biomass forms), autoclave, and hot air oven (for preparation of inactive biomass forms). Samples were floated in ddH2O, and SNPs were produced after the addition of 0.1699 g/L AgNO3 in the ddH2O solution. SNP production was confirmed by visible spectrophotometry, transmission electron microscopy (TEM) and X-ray diffraction (XRD). SNPs were washed, and their concentration was determined by measuring atomic emission spectroscopy with inductively coupled plasma (ICP-OES). For antibacterial activity, the plate-well diffusion method was used. MTT and Annexin V-FITC/propidium iodide assays were used for cytotoxicity and apoptosis induction, respectively. The maximum absorbance peaks for SNPs pretreated in RT, refrigerator, autoclave, and hot air oven were 404, 402, 412, and 412 nm, respectively. The SNPs produced were almost the same shape and size, and the XRD results confirmed the presence of SNPs in all samples. Due to the differences in the type of bacterial strains used, the SNPs produced showed some differences in their antibacterial activity. The MTT assay showed that the amounts of SNPs in their IC50 dose based on the results of ICP-OES were 0.40, 0.45, 0.66, and 0.44 ppm for the samples pretreated in the hot air oven, autoclave, and refrigerator, and RT, respectively. The apoptosis induction results showed that the biologically engineered SNPs induced more apoptosis (about 34.25%) and less necrosis (about 13.25%). In conclusion, the type and activity of SNPs produced by the active and inactive forms of fungal biomass did not change. Therefore, use of the inactive form of biomass in the future to avoid environmental contamination is reccommended. Full article
Show Figures

Figure 1

18 pages, 6382 KB  
Article
Resistance of Pastes from Carbonated, Low-Lime Calcium Silica Cements to External Sulfate Attack
by Raikhan Tokpatayeva, Jan Olek and Sadananda Sahu
Materials 2023, 16(12), 4276; https://doi.org/10.3390/ma16124276 - 9 Jun 2023
Cited by 2 | Viewed by 1388
Abstract
This paper presents the results of a study on the evaluation of resistance of pastes from carbonated, low-lime calcium silica cements to external sulfate attack. The extent of chemical interaction between sulfate solutions and paste powders was assessed by quantifying the amount of [...] Read more.
This paper presents the results of a study on the evaluation of resistance of pastes from carbonated, low-lime calcium silica cements to external sulfate attack. The extent of chemical interaction between sulfate solutions and paste powders was assessed by quantifying the amount of species that leached out from carbonated pastes using ICP-OES and IC techniques. In addition, the loss of carbonates from the carbonated pastes exposed to sulfate solutions and the corresponding amounts of gypsum formed were also monitored by using the TGA and QXRD techniques. The changes in the structure of silica gels were evaluated using FTIR analysis. The results of this study revealed that the level of resistance of carbonated, low-lime calcium silicates to external sulfate attack was affected by the degree of crystallinity of calcium carbonate, the type of calcium silicate, and the type of cation present in the sulfate solution. Full article
(This article belongs to the Special Issue Building Materials Engineering and Innovative Sustainable Materials)
Show Figures

Figure 1

7 pages, 3606 KB  
Proceeding Paper
Sulfate Resistance in Carbonated Low-Calcium Silicate Cement Pastes
by Raikhan Tokpatayeva, Jan Olek and Sadananda Sahu
Mater. Proc. 2023, 13(1), 22; https://doi.org/10.3390/materproc2023013022 - 15 Feb 2023
Cited by 2 | Viewed by 1632
Abstract
This paper focuses on the evaluation of sulfate resistance in carbonated pastes prepared from low-lime calcium silicates (CCS). The chemical interaction between the sulfate solution and paste powders was assessed by monitoring the leaching of the Ca and Si species, reduction in the [...] Read more.
This paper focuses on the evaluation of sulfate resistance in carbonated pastes prepared from low-lime calcium silicates (CCS). The chemical interaction between the sulfate solution and paste powders was assessed by monitoring the leaching of the Ca and Si species, reduction in the content of carbonates and formation of gypsum. The analytical techniques used in the study included TGA, ICP-OES and IC. The results of the study revealed that the level of the resistance to the chemical effect of the sulfates depends on the type of the calcium silicate, degree of crystallinity of calcium carbonate, and the type of cation present in the sulfate solution. Full article
(This article belongs to the Proceedings of 10th MATBUD’2023 Scientific-Technical Conference)
Show Figures

Figure 1

14 pages, 4289 KB  
Article
Behavior of Sludge Dewaterability and Nutrient Contents after Treatment with Cellulose-Based Flocculants with Combined PTS and Catalytic Behavior of Sludge towards Tetracycline Degradation
by Jannatul Rumky, Ekaterina Bandina and Eveliina Repo
Resources 2023, 12(2), 17; https://doi.org/10.3390/resources12020017 - 17 Jan 2023
Cited by 4 | Viewed by 3280
Abstract
Wastewater treatment plants are increasingly interested in adopting inorganic coagulants and organic flocculants in their sludge treatment process since sludge disposal costs more than half of the overall operational costs. This study synthesized poly titanium sulfate (PTS) by different molar ratios and used [...] Read more.
Wastewater treatment plants are increasingly interested in adopting inorganic coagulants and organic flocculants in their sludge treatment process since sludge disposal costs more than half of the overall operational costs. This study synthesized poly titanium sulfate (PTS) by different molar ratios and used the best one with cellulose-based flocculants for sludge conditioning. PTS synthesized with a 1:2 molar ratio showed the lowest capillary suction time (CST) of sludge and was selected for further studies with cellulose-based flocculants. As bio-based flocculants have gained popularity due to current environmental problems, cationized cellulose-based flocculants (Ce-CTA) were used in this work with or without PTS for sludge treatment. After coagulation–flocculation, dewaterability of sludge enhanced, and the Lowry and Anthrone method was used to assess proteins and polysaccharides. Next, metal content and nutrients such as total phosphorus, phosphate, and nitrate were measured by ICP-OES and IC, and we found promising results of phosphate especially at pH 3. Higher total phosphorus content was found at pH 3 and 9, and even at pH 6 after PTS or PTS+Ce-CTA treatment. In addition, PTS-treated sludge materials also showed catalytic behavior, suggesting a new research avenue for future development. Based on this study, the PTS+Ce-CTA combination is promising for sludge treatment and nutrient recovery, along with the possibility for the further valorization of the sludge materials. Full article
(This article belongs to the Special Issue Metal Recovery from the Secondary Resources)
Show Figures

Figure 1

15 pages, 1564 KB  
Article
Quality of Phosphate Rocks from Various Deposits Used in Wet Phosphoric Acid and P-Fertilizer Production
by Urszula Ryszko, Piotr Rusek and Dorota Kołodyńska
Materials 2023, 16(2), 793; https://doi.org/10.3390/ma16020793 - 13 Jan 2023
Cited by 46 | Viewed by 8791
Abstract
Phosphate rocks (PRs) play a crucial role in ensuring the availability of phosphorous for the world’s food needs. PRs are used to manufacture phosphoric acid in the wet process as well as P-fertilizers. The chemical and mineralogical compositions of PRs from Djebel Onk [...] Read more.
Phosphate rocks (PRs) play a crucial role in ensuring the availability of phosphorous for the world’s food needs. PRs are used to manufacture phosphoric acid in the wet process as well as P-fertilizers. The chemical and mineralogical compositions of PRs from Djebel Onk (Algeria), Khneifiss (Syria), Negev (Israel), Bou Craa (Morocco), and Khouribga (Morocco) are discussed in this study. PRs were characterized by inductively coupled plasma optical emission spectrometry (ICP-OES), cold vapor atomic absorption spectrometry (CVAAS), ion chromatography (IC), and X-ray diffraction (XRD), as well as gravimetric and potentiometric methods. All PRs were mainly composed of CaO, P2O5, SiO2, F, SO3, Na2O, MgO, Al2O3, Fe2O3, SrO, and K2O at the level of wt.%. The P2O5 content accounted for 28.7–31.2%, which indicates that these are beneficial rocks to a marketable product. The degree of PR purity expressed by the minor elements ratio index (MER index) varied from 2.46% to 10.4%, and the CaO/P2O5 weight ratio from 1.6 to 1.9. In addition, the occurrence of trace elements such as As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Ti, V, U, and Zn, as well as Cr(VI) and Cl ions at the level of mg∙kg−1 was found. Since PRs will be used to produce P-fertilizers, their composition was compared with the regulatory parameters set up by EU Regulation 2019/1009 related to the heavy metals (As, Cd, Pb, Ni, Hg, Cu, Zn) and Cr(VI) contents in inorganic fertilizers. The heavy metals and Cr(VI) content in all PRs did not exceed the limit values. XRD analysis revealed that fluorapatite, hydroxyapatite, carbonate fluorapatite, and carbonate hydroxyapatite were the dominant minerals. The accuracy and precision of the used methods were evaluated by analysis of standard reference materials (SRM) for Western Phosphate Rock (NIST 694). The recovery was 85.3% for U and 109% for K2O, and the RSD ranged from 0.67% to 12.8%. Full article
Show Figures

Figure 1

18 pages, 5683 KB  
Article
Removal Mechanism of Mineral Impurities in Molybdenum Concentrate Treatment Process
by Qihang Liu, Ruilin Liu, Shuangping Yang, Weiguo Feng and Miao Wang
Minerals 2023, 13(1), 35; https://doi.org/10.3390/min13010035 - 26 Dec 2022
Cited by 1 | Viewed by 3521
Abstract
The removal of impurities in molybdenum concentrate has become a new challenge for enterprises due to the cancellation of pickling. Whether impurity minerals can be converted into soluble ions during roasting is important for the impurity removal by current water washing. In this [...] Read more.
The removal of impurities in molybdenum concentrate has become a new challenge for enterprises due to the cancellation of pickling. Whether impurity minerals can be converted into soluble ions during roasting is important for the impurity removal by current water washing. In this work, the interaction between various impurity elements in the treatment process of molybdenum concentrate was studied by process simulation experiments combined with X-ray fluorescence (XRF) and X-ray diffraction (XRD), inductively coupled plasma-optical emission spectrometer (ICP-OES), ion chromatography (IC), scanning electron microscope-energy dispersive spectrometry (SEM-EDS), the use of FactSage7.0 modeling and the mineral liberation analyzer (MLA). The results show that most of the impurity elements such as K, Si and Al exist in the form of alkaline minerals with large molecular weight. In the roasting process of molybdenum concentrate, K-containing minerals, such as muscovite and orthoclase, can be transformed into K+, Al3+ and other soluble ions, and then can be removed by water washing. Humidification increased the conversion degree of orthoclase to soluble ions, which was conducive to the removal of impurities by the washing process. The results of MLA microscopic analysis confirmed that impurities such as FeS2, CaSO4, SiO2, and especially FeS2, would form a high density mixture with MoO3 during the high temperature roasting process, and thus reduced the leaching rate of Mo. Therefore, the humidification and control of the molybdenum concentrate is an effective measure to remove impurities. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

22 pages, 1554 KB  
Article
Phytochemical Profiling, Mineral Elements, and Biological Activities of Artemisia campestris L. Grown in Algeria
by Wafa Zahnit, Ouanissa Smara, Lazhar Bechki, Chawki Bensouici, Mohammed Messaoudi, Naima Benchikha, Imane Larkem, Chinaza Godswill Awuchi, Barbara Sawicka and Jesus Simal-Gandara
Horticulturae 2022, 8(10), 914; https://doi.org/10.3390/horticulturae8100914 - 6 Oct 2022
Cited by 49 | Viewed by 5254
Abstract
Artemisia campestris L. is commonly used in folk medicine due to its antioxidant, antidiabetic, nutritional, and culinary properties. Our study assessed the total phenolics contents, antioxidant, and pharmacological activities of various organic extracts prepared from the aerial parts of Artemisia campestris, and [...] Read more.
Artemisia campestris L. is commonly used in folk medicine due to its antioxidant, antidiabetic, nutritional, and culinary properties. Our study assessed the total phenolics contents, antioxidant, and pharmacological activities of various organic extracts prepared from the aerial parts of Artemisia campestris, and its mineral elements and chemical profile were analyzed. ICP-OES was used to analyze the mineral profile and the LC-MS/MS analysis was used to characterize the phytochemical profiling. A series of antioxidant tests were carried out using DPPH, ABTS, beta-carotene, GOR, RP, CUPRAC, and O-Phenanthroline assays. In vitro potent inhibitory actions of A. campestris extracts were investigated to evaluate their anti-cholinesterase, anti-lipase and anti-diabetic activities. The photoprotective effect of the plant was measured by the sun protection factor. The most powerful inhibitor of α-amylase was AcPEE (IC50 = 11.79 ± 0.14 μg/mL), which also showed a significant butyrylcholinesterase inhibitory effect (IC50 = 93.50 ± 1.60 μg/mL). At IC50 = 23.16 ± 0.19 μg/mL, AcEAE showed the most powerful inhibitory effects on acetylcholinesterase. A. campestris was found to have a strong photoprotective ability, absorbing UV radiations with SPF values ranging from 26.07 ± 0.22 to 40.76 ± 0.11. The results showed that A. campestris extract has strong antioxidant activity in all the test samples except for the carotene bleaching assay. The LC/MS-MS results showed that AcDE, AcEAE, and AcBE identified 11 compounds belonging to Polyphenols Compounds. Our result also showed that A. campestris contains a high concentration of essential minerals, including macro-and micro-elements with their values close to the FAO’s recommended concentration. A. campestris has the capacity to improve pharmaceutical formulations, health, and medical research, due to its compositions and potent biological properties. Full article
Show Figures

Figure 1

Back to TopTop