Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Campaign and Laboratory Tests
2.3. Statistical Analysis and Data Processing
2.4. Pollution Assessment
2.5. Risk Assessment
3. Results
3.1. Physical–Chemical Characterization
3.2. Mineralogical Characterization
3.3. Statistical Analysis
3.4. Contamination Index
3.5. Risk Assessment
4. Discussion
4.1. Implications for Public Policies and Sustainability
4.2. Rehabilitation and Remediation of Abandoned Tailing Dams
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nungesser, S.L.; Pauliuk, S. Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains. Resources 2022, 11, 95. [Google Scholar] [CrossRef]
- Perdeli Demirkan, C.; Smith, N.M.; Duzgun, S. A Quantitative Sustainability Assessment for Mine Closure and Repurposing Alternatives in Colorado, USA. Resources 2022, 11, 66. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, H.; Chen, S.; Ai, W.; Dang, Y.; Ai, S.; Li, Z. Assessment of Heavy Metal Pollution and Preschool Children Health Risk in Urban Street Dusts from Different Functional Areas in a Typical Industrial and Mining City, NW China. Environ. Geochem. Health 2023, 45, 7199–7214. [Google Scholar] [CrossRef]
- Moulatlet, G.M.; Yacelga, N.; Rico, A.; Mora, A.; Hauser-Davis, R.A.; Cabrera, M.; Capparelli, M.V. A Systematic Review on Metal Contamination Due to Mining Activities in the Amazon Basin and Associated Environmental Hazards. Chemosphere 2023, 339, 139700. [Google Scholar] [CrossRef] [PubMed]
- Elwaleed, A.; Jeong, H.H.; Abdelbagi, A.H.; Quynh, N.T.; Agusa, T.; Ishibashi, Y.; Arizono, K. Human Health Risk Assessment from Mercury-Contaminated Soil and Water in Abu Hamad Mining Market, Sudan. Toxics 2024, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Din, I.U.; Muhammad, S.; Faisal, S.; ur Rehman, I.; Ali, W. Heavy Metal(Loid)s Contamination and Ecotoxicological Hazards in Coal, Dust, and Soil Adjacent to Coal Mining Operations, Northwest Pakistan. J. Geochem. Explor. 2024, 256, 107332. [Google Scholar] [CrossRef]
- Innis, S.; Ghahramani, N.; Rana, N.; McDougall, S.; Evans, S.G.; Take, W.A.; Kunz, N.C. The Development and Demonstration of a Semi-Automated Regional Hazard Mapping Tool for Tailings Storage Facility Failures. Resources 2022, 11, 82. [Google Scholar] [CrossRef]
- Salazar, J.P.; Saldarriaga, J.F.; Zapata, D.; López, J.E. Determination of Bioavailability, Potential Ecological and Human Health Risks, and Biomonitoring of Potential Toxic Elements in Gold Mine Tailings from Four Areas of Antioquia, Colombia. Water Air Soil Pollut. 2024, 235, 122. [Google Scholar] [CrossRef]
- Guzmán, F.; Arranz, J.C.; Ortega, M.; García, M.J.; Rodríguez, V. A New Ranking Scale for Assessing Leaching Potential Pollution from Abandoned Mining Wastes Based on the Mexican Official Leaching Test. J. Environ. Manag. 2020, 273, 111139. [Google Scholar] [CrossRef]
- Bartoszek, L.; Gruca-Rokosz, R.; Pękala, A.; Czarnota, J. Heavy Metal Accumulation in Sediments of Small Retention Reservoirs—Ecological Risk and the Impact of Humic Substances Distribution. Resources 2022, 11, 113. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, T.; Zhang, L.; Chen, Z.; Zhang, H.; Jia, X.; Jia, L.; Zhu, X.; Li, G. Mercury Pollution Risks of Agricultural Soils and Crops in Mercury Mining Areas in Guizhou Province, China: Effects of Large Mercury Slag Piles. Environ. Geochem. Health 2024, 46, 53. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Ren, W.; Tang, Y.; Liu, X.; He, M.; Sun, K.; Zhang, B.T.; Lin, C.; Ouyang, W. Comprehensive Insight into Mercury Contamination in Atmospheric, Terrestrial and Aquatic Ecosystems Surrounding a Typical Antimony-Coal Mining District. J. Hazard. Mater. 2024, 469, 133880. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Sinha, A.; Singh, D.B.; Pasupuleti, S. Source Apportionment and Health Risk Assessment in Chromite Mining Area: Insights from Entropy Water Quality Indexing and Monte Carlo Simulation. Process Saf. Environ. Prot. 2024, 184, 526–541. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Jiménez-Oyola, S.; Montoya, A.V.G.; Vizuete, D.D.C.; D’Orio, G.; Cedeño-Laje, J.; Straface, S. Assessment of Hg Pollution in Stream Waters and Human Health Risk in Areas Impacted by Mining Activities in the Ecuadorian Amazon. Environ. Geochem. Health 2023, 45, 7183–7197. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, F. Small-Scale Mining in Ecuador. Min. Miner. Sustain. Dev. 2001, 75, 28. [Google Scholar]
- Tarras-Wahlberg, N.H.; Flachier, A.; Lane, S.N.; Sangfors, O. Environmental Impacts and Metal Exposure of Aquatic Ecosystems in Rivers Contaminated by Small Scale Gold Mining: The Puyango River Basin, Southern Ecuador. Sci. Total Environ. 2001, 278, 239–261. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.E.; Betancourt, O.; Cueva, E.; Guimaraes, J.R.D. Mining and Seasonal Variation of the Metals Concentration in the Puyango River Basin—Ecuador. J. Environ. Prot. 2012, 3, 1542–1550. [Google Scholar] [CrossRef]
- Oviedo-Anchundia, R.; Moina-Quimí, E.; Naranjo-Morán, J.; Barcos-Arias, M. Contamination by Heavy Metals in the South of Ecuador Associated to the Mining Activity. Bionatura 2017, 2, 437–441. [Google Scholar] [CrossRef]
- MAE-PRAS. Programa de Reparación Ambiental y Social—Plan de Reparación Integral de La Cuenca Del Río Puyango; Quito, Ecuador. 2015. Available online: http://pras.ambiente.gob.ec/documents/228536/737569/LIBRO_PRI_PUYANGO.pdf/94bcfdb4-bf26-4d3a-afa3-d5e87cf7398b (accessed on 14 March 2023).
- Torres, W. Protesta en Perú por Contaminación de río por Minería en Ecuador. Available online: https://www.primicias.ec/noticias/economia/protesta-peru-contaminacion-rio-mineria-ecuador/ (accessed on 22 March 2023).
- Nuñez, S.; Zegarra, J. Estudio Geoambiental de La Cuenca Puyango—Tumbes; Instituto Geológico, Minero y Metalúrgico—INGEMMET: Lima, Peru, 2006. [Google Scholar]
- Mora, A.; Jumbo-Flores, D.; González-Merizalde, M.; Bermeo-Flores, S.A. Niveles de Metales Pesados En Sedimentos de La Cuenca Del Río Puyango, Ecuador. Rev. Int. Contam. Ambient. 2016, 32, 385–397. [Google Scholar] [CrossRef]
- Delgado, J.; Ayala, D.; Páez, H. Sistema de Tratamiento Para Mejorar La Calidad de Aguas de Drenaje de Pasivos Ambientales Mineros En La Cuenca Del Río Puyango (Ecuador). Soc. Geológica España 2018, 64, 63–66. [Google Scholar]
- Peña-Carpio, E.; Menéndez-Aguado, J.M. Environmental Study of Gold Mining Tailings in the Ponce Enriquez Mining Area (Ecuador). DYNA 2016, 83, 237–245. [Google Scholar] [CrossRef]
- Salgado-Almeida, B.; Falquez-Torres, D.A.; Romero-Crespo, P.L.; Valverde-Armas, P.E.; Guzmán-Martínez, F.; Jiménez-Oyola, S. Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador. Sustainability 2022, 14, 6089. [Google Scholar] [CrossRef]
- Betancourt, O.; Narváez, A.; Roulet, M. Small-Scale Gold Mining in the Puyango River Basin, Southern Ecuador: A Study of Environmental Impacts AndHuman Exposures. Ecohealth 2005, 2, 323–332. [Google Scholar] [CrossRef]
- INHAMI. Instituto Nacional de Meteorología e Hidrología|Ecuador. Available online: https://inamhi.wixsite.com/inamhi/novedades (accessed on 2 February 2022).
- Oviedo-Anchundia, R.; Moína-Quimí, E.; Naranjo-Morán, J.; Barcos-Arias, M. Contaminación por metales pesados en el sur del Ecuador asociada a la actividad minera. Bionatura 2017, 2, 437–441. [Google Scholar] [CrossRef]
- Carling, G.T.; Diaz, X.; Ponce, M.; Perez, L.; Nasimba, L.; Pazmino, E.; Rudd, A.; Merugu, S.; Fernandez, D.P.; Gale, B.K.; et al. Particulate and Dissolved Trace Element Concentrations in Three Southern Ecuador Rivers Impacted by Artisanal Gold Mining. Water. Air. Soil Pollut. 2013, 224, 1415. [Google Scholar] [CrossRef]
- Smith, K.S.; Ramsey, C.A.; Hageman, P.L. Sampling Strategy for the Rapid Screening of Mine-Waste Dumps on Abandoned Mine Lands. In Fifth. International Conference on Acid Rock Drainage; USGS: Denver, CO, USA, 2000; 9p. [Google Scholar]
- ASTM D1140-17; Standard Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing. ASTM International: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d1140-17.html (accessed on 11 March 2024).
- ASTM D422-63(2007); Standard Test Method for Particle-Size Analysis of Soils. American Society for Testing and Materials Standards: West Conshohocken, PA, USA, 2002. Available online: https://www3.epa.gov/hudson/pdf/sedc_2004-2005_append.pdf (accessed on 21 June 2023).
- Meier, A.L.; Grimes, D.J.; Ficklin, W.H. Inductively Coupled Plasma–Mass Spectrometry: A Powerful Tool for Mineral Resource and Environmental Studies. In USGS Research on Mineral Resources; Carter, L., Toth, M.I., Day, W.C., Eds.; U.S. Geological Survey: Reston, VA, USA, 1994; pp. 67–68. [Google Scholar] [CrossRef]
- Kurita, T. Principal Component Analysis (PCA) BT—Computer Vision: A Reference Guide; Springer International Publishing: Cham, Switerland, 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Arranz-González, J.C.; Guzmán-Martínez, F.; Tapia-Téllez, A.; Jiménez-Oyola, S.; García-Martínez, M.J. Polluting Potential from Mining Wastes: Proposal for Application a Global Contamination Index. Environ. Monit. Assess. 2022, 194, 792. [Google Scholar] [CrossRef] [PubMed]
- del Campo, A.; Arranz-González, J.; Rodríguez-Gómez, V.; Vadillo, L.; Rodríguez, V.; Fernández, F. Manual Para La Evaluación de Riesgos de Instalaciones de Residuos de Industrias Extractivas Cerradas o Abandonadas, 1st ed.; Ministerio de Agricultura, Alimentación y Medio Ambiente España, Instituto Geológico y Minero de España: Madrid, Spain, 2014. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants: Fourth Edition, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Hageman, P.L. US Geological Survey Field Leach Test for Assessing Water Reactivity and Leaching Potential of Mine Wastes, Soils, and Other Geologic and Environmental Materials. Geol. Surv. Tech. Methods B 2007, 5, 14. [Google Scholar]
- Gascón, R.C.; Soto, M.C.; Oblasser, A.; Calderón-Rosas, C.; Hoppe, J.; Farfán-Salazar, N.; Lavín, C.; Cruz, C.V.; Jorquera, J.R.; Guala, J.C.; et al. Methodological Guide for the Chemical Stability of Mining Works and Facilities; SERNAGEOMIN: Santiago, Chile, 2015. [Google Scholar]
- Lemos, M.; Valente, T.; Marinho Reis, P.; Fonseca, R.; Delbem, I.; Ventura, J.; Magalhães, M. Mineralogical and Geochemical Characterization of Gold Mining Tailings and Their Potential to Generate Acid Mine Drainage (Minas Gerais, Brazil). Minerals 2021, 11, 39. [Google Scholar] [CrossRef]
- Ramírez Morandé, N.A. Guía Técnica de Operación y Control de Depósitos de Relaves, National Geology and Mining Service: Santiago, Chile, December 2007.
- TULSMA. Texto Unificado de Legislación Secundaria Medio Ambiental. Ministerio de Ambiente de Ecuador, TULSMA: Quito, Ecuador, March 2015.
- Appleton, J.D.; Williams, T.M.; Orbea, H.; Carrasco, M. Fluvial Contamination Associated with Artisanal Gold Mining in the Ponce Enríquez, Portovelo-Zaruma and Nambija Areas, Ecuador. Water. Air. Soil Pollut. 2001, 131, 19–39. [Google Scholar] [CrossRef]
- Marshall, B.G.; Veiga, M.M.; Kaplan, R.J.; Adler Miserendino, R.; Schudel, G.; Bergquist, B.A.; Guimarães, J.R.D.; Sobral, L.G.S.; Gonzalez-Mueller, C. Evidence of Transboundary Mercury and Other Pollutants in the Puyango-Tumbes River Basin, Ecuador–Peru. Environ. Sci. Process. Impacts 2018, 20, 632–641. [Google Scholar] [CrossRef]
- Cogram, P. Jarosite. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Kirschbaum, A.; Murray, J.; Arnosio, M. Mining Environmental Liabilities in Northwest Argentina: Mineralogical, Geochemical Aspects and Environmental Consequences. Rev. Mex. Ciencias Geológicas 2012, 29, 248–264. [Google Scholar]
- Swayze, G.A.; Desborough, G.A.; Smith, K.S.; Lowers, H.A.; Hammarstrom, J.M.; Diehl, S.F.; Leinz, R.W.; Driscoll, R.L. Chapter B: Understanding Jarosite—From Mine Waste to Mars. In Understanding Contaminants Associated with Mineral Deposits; Verplanck, P.L., Ed.; U.S. Geological Survey: Denver, CO, USA, 2008; pp. 8–13. [Google Scholar]
- Arranz-González, J.C.; Rodríguez-Gómez, V.; Fernández-Naranjo, F.J.; Vadillo-Fernández, L. Assessment of the Pollution Potential of a Special Case of Abandoned Sulfide Tailings Impoundment in Riotinto Mining District (SW Spain). Environ. Sci. Pollut. Res. 2021, 28, 14054–14067. [Google Scholar] [CrossRef] [PubMed]
- Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Kornfeld, J.M. Secondary Sulfate Minerals Associated with Acid Drainage in the Eastern US: Recycling of Metals and Acidity in Surficial Environments. Chem. Geol. 2005, 215, 407–431. [Google Scholar] [CrossRef]
- Dold, B. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings. Minerals 2014, 4, 621–641. [Google Scholar] [CrossRef]
- Pi-Puig, T.; Solé, J.; Cruz, A.G. Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico). Minerals 2020, 10, 871. [Google Scholar] [CrossRef]
- Sasaki, K.; Haga, T.; Hirajima, T.; Kurosawa, K.; Tsunekawa, M. Distribution and Transition of Heavy Metals in Mine Tailing Dumps. Mater. Trans. 2002, 43, 2778–2783. [Google Scholar] [CrossRef]
- Rosario-Beltré, A.J.; Sánchez-España, J.; Rodríguez-Gómez, V.; Fernández-Naranjo, F.J.; Bellido-Martín, E.; Adánez-Sanjuán, P.; Arranz-González, J.C. Critical Raw Materials Recovery Potential from Spanish Mine Wastes: A National-Scale Preliminary Assessment. J. Clean. Prod. 2023, 407, 137163. [Google Scholar] [CrossRef]
- Lemos, M.G.; Valente, T.; Marinho-Reis, A.P.; Fonsceca, R.; Dumont, J.M.; Ferreira, G.M.M.; Delbem, I.D. Geoenvironmental Study of Gold Mining Tailings in a Circular Economy Context: Santa Barbara, Minas Gerais, Brazil. Mine Water Environ. 2021, 40, 257–269. [Google Scholar] [CrossRef]
- Borja, T.; Moreno, J. Estudio Para La Optimización de Un Circuito Flotación- Cianuración de Concentrados Sulfurosos En La Planta de Beneficio La López Para El Procesamiento Del Mineral de La Mina Jerusalén En El Cantón Camilo Ponce Enríquez, Escuela Superior Politécnica del Litoral. 2015. Available online: https://www.dspace.espol.edu.ec/handle/123456789/32270?locale=es (accessed on 20 March 2023).
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Asmaryan, S.; Saghatelyan, A. Continuous Impact of Mining Activities on Soil Heavy Metals Levels and Human Health. Sci. Total Environ. 2018, 639, 900–909. [Google Scholar] [CrossRef]
- Romero-Crespo, P.; Jiménez-Oyola, S.; Salgado-Almeida, B.; Zambrano-Anchundia, J.; Goyburo-Chávez, C.; González-Valoys, A.; Higueras, P. Trace Elements in Farmland Soils and Crops, and Probabilistic Health Risk Assessment in Areas Influenced by Mining Activity in Ecuador. Environ. Geochem. Health 2023, 45, 4549–4563. [Google Scholar] [CrossRef]
- González-Valoys, A.C.; Esbrí, J.M.; Campos, J.A.; Arrocha, J.; García-Noguero, E.M.; Monteza-Destro, T.; Martínez, E.; Jiménez-Ballesta, R.; Gutiérrez, E.; Vargas-Lombardo, M.; et al. Ecological and Health Risk Assessments of an Abandoned Gold Mine (Remance, Panama): Complex Scenarios Need a Combination of Indices. Int. J. Environ. Res. Public Health 2021, 18, 9369. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Han, L.; Liu, Z.; Zhao, Y.; Zhai, Y.; Li, R.; Xia, L. Analysis of Soil As Pollution and Investigation of Dominant Plants in Abandon Gold Mining Area. Minerals 2022, 12, 1366. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, G.; Zhang, D.; Lei, M. An Integrated Method for Source Apportionment of Heavy Metal(Loid)s in Agricultural Soils and Model Uncertainty Analysis. Environ. Pollut. 2021, 276, 116666. [Google Scholar] [CrossRef]
- Wu, J.; Jia, R.; Xuan, H.; Zhang, D.; Zhang, G.; Xiao, Y. Priority Soil Pollution Management of Contaminated Site Based on Human Health Risk Assessment: A Case Study in Southwest China. Sustainability 2022, 14, 3663. [Google Scholar] [CrossRef]
- Zeng, Q.; Shen, L.; Feng, T.; Hao, R. Investigation of the Distribution of Heavy Metals in the Soil of the Dahuangshan Mining Area of the Southern Junggar Coalfield, Xinjiang, China. Minerals 2022, 12, 1332. [Google Scholar] [CrossRef]
- Uugwanga, M.N.; Kgabi, N.A. Assessment of Metals Pollution in Sediments and Tailings of Klein Aub and Oamites Mine Sites, Namibia. Environ. Adv. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Demková, L.; Jezný, T.; Bobuľská, L. Assessment of Soil Heavy Metal Pollution in a Former Mining Area—Before and after the End of Mining Activities. Soil Water Res. 2017, 12, 229–236. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Ordoñez-Alcivar, R.; Arguello-Guadalupe, C.; Carrera-Silva, K.; D’orio, G.; Straface, S. History, Socioeconomic Problems and Environmental Impacts of Gold Mining in the Andean Region of Ecuador. Int. J. Environ. Res. Public Health 2022, 19, 1190. [Google Scholar] [CrossRef]
- Mestanza-ram, C.; Paz-mena, S.; Carlos, L.; Jimenez-gutierrez, M.; Herrera-morales, G.; Orio, G.D.; Straface, S. History, Current Situation and Challenges of Gold Mining in Ecuador’s Litoral Region. Land 2021, 10, 1220. [Google Scholar] [CrossRef]
- Arranz-González, J.; Rodríguez-Gómez, V.; Rodríguez-Pacheco, R.; Fernández-Naranjo, F.J.; Vadillo-Fernández, L.; Alberruche del Campo, E. Guía Para La Rehabilitación de Instalaciones Abandonadas de Residuos Mineros; Ministerio para la Transición Ecológica: Madrid, Spain, 2019; p. 620. [Google Scholar]
- Butler, L.; Mitchell, P.; Levin, E. International Review of Environmental Rehabilitation Approaches for Artisanal and Small-Scale Mining. A Review of Best Practices for Frugal Rehabilitation of ASM in Mongolia; The Asia Foundation: Ulaanbaatar, Mongolia, 2014. [Google Scholar]
Parameter | Criteria | Value |
---|---|---|
Proximity factor to water bodies (PR) | D ≤ 50 m | PR = 1.0 |
50 < D < 500 m | PR = −0.0022 × D + 1.1 | |
D ≥ 500 m | PR = 0.0 | |
Toxicity factor (FTOX) | AHQ ≤ 400 | FTOX = 0.0125 × AHQ |
AHQ > 400 | FTOX = 5 | |
Unprotected surface factor (FSD) * | SEX ≤ 2 ha | FSD = 0.5 × SEX |
SEX > 2 ha | FSD = 1 |
Parameter | MPL a | PM-01 | PM-02 | PM-03 | PM-04 | PM-05 | PM-06 | PM-07 | PM-08 |
---|---|---|---|---|---|---|---|---|---|
pH | 6–8 | 6.4 | 4.5 | 2.9 | 3.0 | 3.2 | 2.6 | 3.3 | 7.3 |
As | 12 | 23.6 | 129.6 | 4612 | 344.7 | 3940 | 418.1 | 470.3 | 5772 |
Cd | 0.5 | 0.7 | 0.2 | 1.1 | 0.7 | 3.3 | 3.9 | 0.5 | 96.2 |
Co | 10 | 23.0 | 6.9 | 22.1 | 11.6 | 14.9 | 2.8 | 2.4 | 42.9 |
Cr | 54 | 88.3 | 31.3 | 75.6 | 25.1 | 63.5 | 26.3 | 43.6 | 45.4 |
Cu | 25 | 64.9 | 119.9 | 1679 | 583.4 | 812.6 | 515.2 | 279.2 | 1834 |
Mo | 5 | 3.0 | 3.0 | 1.0 | 4.6 | 25.8 | 7.6 | 10.5 | 5.1 |
Ni | 19 | 42.4 | 6.2 | 19.6 | 6.7 | 15.4 | 3.1 | 6.7 | 23.3 |
Pb | 19 | 37.4 | 178.7 | 85.9 | 584.4 | 699.1 | 1353 | 474.2 | 6196 |
Sb | - | 14.6 | 25.3 | 93.8 | 36.7 | 156.9 | 166.1 | 72.8 | 78.7 |
Se | 1 | 1.2 | 10.9 | 5.5 | 14.1 | 9.7 | 5.4 | 9.8 | 7.3 |
V | 76 | 158.9 | 92.9 | 246.8 | 98.9 | 114.9 | 68.7 | 76.2 | 132.1 |
Zn | 60 | 106.8 | 141.8 | 148.4 | 196.3 | 332.8 | 589.2 | 113.1 | 18,392 |
PTE | As | Cd | Co | Cr | Cu | Mo | Ni | Pb | Sb | Se | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | 0.67 | |||||||||||
Co | 0.29 | 0.43 | ||||||||||
Cr | 0.19 | 0.05 | 0.64 | |||||||||
Cu | 0.90 * | 0.76 * | 0.43 | 0.05 | ||||||||
Mo | 0.26 | 0.33 | −0.33 | −0.19 | 0.12 | |||||||
Ni | 0.26 | 0.17 | 0.83 * | 0.86 * | 0.21 | −0.17 | ||||||
Pb | 0.52 | 0.74 | −0.05 | −0.48 | 0.57 | 0.64 | −0.29 | |||||
Sb | 0.67 | 0.74 | −0.14 | −0.10 | 0.62 | 0.48 | −0.26 | 0.62 | ||||
Se | −0.05 | −0.40 | −0.40 | −0.62 | 0.05 | 0.10 | −0.45 | 0.14 | −0.24 | |||
V | 0.26 | 0.17 | 0.88 * | 0.79 * | 0.36 | −0.50 | 0.86 * | −0.40 | −0.19 | 0.36 | ||
Zn | 0.62 | 0.88 * | 0.19 | −0.33 | 0.76 * | 0.36 | −0.19 | 0.90 * | 0.71 | 0.00 | −0.12 | |
pH | −0.07 | −0.19 | 0.48 | 0.36 | −0.17 | −0.05 | 0.57 | −0.07 | −0.62 | 0.02 | 0.29 | −0.21 |
Parameter | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
As | 0.368 | 0.089 | 0.313 | −0.232 |
Cd | 0.371 | 0.242 | −0.176 | 0.169 |
Co | 0.418 | −0.064 | −0.100 | 0.035 |
Cr | 0.164 | −0.478 | 0.228 | 0.126 |
Cu | 0.363 | 0.111 | 0.190 | −0.420 |
Mo | −0.061 | 0.175 | 0.558 | 0.382 |
Ni | 0.238 | −0.416 | −0.074 | 0.338 |
Pb | 0.343 | 0.306 | −0.141 | 0.210 |
Sb | 0.022 | 0.219 | 0.614 | 0.111 |
Se | −0.156 | 0.379 | −0.068 | −0.387 |
V | 0.233 | −0.377 | 0.136 | −0.481 |
Zn | 0.370 | 0.241 | −0.190 | 0.163 |
Eigenvalues | 5.304 | 3.084 | 1.824 | 1.033 |
% of variance | 44.20 | 25.70 | 15.20 | 8.60 |
Cumulative % | 44.20 | 69.90 | 85.10 | 93.70 |
Sample | Ip a | Is(PO) b | Is(NA) c | RI(PO) d | RI(NA) e | Risk Level |
---|---|---|---|---|---|---|
PM-01 | 0.067 | 3.406 | 3.00 | 0.229 | 0.202 | Low |
PM-02 | 0.015 | 2.892 | 2.94 | 0.043 | 0.044 | Low |
PM-03 | 0.002 | 0.000 | 2.82 | 0.000 | 0.006 | Low |
PM-04 | 0.000 | 0.000 | 2.45 | 0.000 | 0.000 | Low |
PM-05 | 0.081 | 2.870 | 2.93 | 0.232 | 0.237 | Low |
PM-06 | 0.086 | 2.899 | 2.91 | 0.251 | 0.251 | Low |
PM-07 | 0.015 | 2.892 | 2.94 | 0.043 | 0.044 | Low |
PM-08 | 0.000 | 3.119 | 2.22 | 0.000 | 0.000 | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado-Almeida, B.; Briones-Escalante, A.; Falquez-Torres, D.; Filián-Haz, K.; Guzmán-Martínez, F.; Escobar-Segovia, K.; Peña-Carpio, E.; Jiménez-Oyola, S. Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador. Resources 2024, 13, 105. https://doi.org/10.3390/resources13080105
Salgado-Almeida B, Briones-Escalante A, Falquez-Torres D, Filián-Haz K, Guzmán-Martínez F, Escobar-Segovia K, Peña-Carpio E, Jiménez-Oyola S. Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador. Resources. 2024; 13(8):105. https://doi.org/10.3390/resources13080105
Chicago/Turabian StyleSalgado-Almeida, Bryan, Arián Briones-Escalante, Daniel Falquez-Torres, Karla Filián-Haz, Fredy Guzmán-Martínez, Kenny Escobar-Segovia, Elizabeth Peña-Carpio, and Samantha Jiménez-Oyola. 2024. "Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador" Resources 13, no. 8: 105. https://doi.org/10.3390/resources13080105
APA StyleSalgado-Almeida, B., Briones-Escalante, A., Falquez-Torres, D., Filián-Haz, K., Guzmán-Martínez, F., Escobar-Segovia, K., Peña-Carpio, E., & Jiménez-Oyola, S. (2024). Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador. Resources, 13(8), 105. https://doi.org/10.3390/resources13080105