Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = Hyphantria cunea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1994 KiB  
Article
Fall Webworm Host Plant Preferences Generate a Reduced Predation Enemy-Free Space in Its Interaction with Parasitoids
by Lina Pan, Wenfang Gao, Zhiqin Song, Xiaoyu Li, Yipeng Wei, Guangyan Qin, Yiping Hu, Zeyang Sun, Cuiqing Gao, Penghua Bai, Gengping Zhu, Wenjie Wang and Min Li
Insects 2025, 16(8), 804; https://doi.org/10.3390/insects16080804 (registering DOI) - 4 Aug 2025
Abstract
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here [...] Read more.
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here we investigated whether the host plant preference of Hyphantria cunea correlates with the attractiveness of these plants to Chouioia cunea, a parasitoid wasp that serves as the primary natural enemy of H. cunea. We found Morus alba was the preferred host plant for female H. cunea. Although M. alba provided suboptimal nutritional value for H. cunea growth and development compared to other plants, it attracted fewer C. cunea relative to alternative host plants. Gas chromatography–mass spectrometry (GC–MS) coupled with gas chromatography–electroantennographic detection (GC-EAD) analysis identified six distinct compounds among the herbivore-induced plant volatiles (HIPVs) produced following H. cunea feeding. Notably, M. alba was the sole plant species that did not emit tridecane. These results suggest that H. cunea utilizes M. alba as a reduced predation enemy-free space, thereby minimizing parasitization by C. cunea. Our research emphasizes the importance of considering adaptive responses of herbivores within the context of multi-trophic relationships, rather than solely focusing on optimizing herbivore growth on the most nutritionally suitable plant host. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Graphical abstract

10 pages, 1638 KiB  
Article
Overexpression of PagLAR3 in Populus alba × P. glandulosa Promotes Resistance to Hyphantria cunea
by Zhibin Fan, Luxuan Hou, Zheshu Wang and Lijuan Wang
Agronomy 2025, 15(6), 1347; https://doi.org/10.3390/agronomy15061347 - 30 May 2025
Viewed by 545
Abstract
Poplar is a vital ecological and economic tree species. In recent years, poplar plantations in China have been increasingly threatened by the fall webworm (Hyphantria cunea). Developing resistant varieties through genetic engineering is an environmentally friendly and cost-effective approach to controlling [...] Read more.
Poplar is a vital ecological and economic tree species. In recent years, poplar plantations in China have been increasingly threatened by the fall webworm (Hyphantria cunea). Developing resistant varieties through genetic engineering is an environmentally friendly and cost-effective approach to controlling this pest. Although some exogenous toxic genes have been used in insect-resistant poplar breeding, endogenous defense genes remain scarce. This study focused on tannins, key defensive metabolites in poplar, and explored the role of PagLAR3, a gene encoding a crucial enzyme in condensed tannin biosynthesis, in poplar’s defense against the fall webworm. The findings revealed that overexpression of PagLAR3 significantly increased levels of catechin, gallocatechin, procyanidin B3, and procyanidin C2 in poplar leaves. Feeding assays with fall webworm larvae demonstrated that, compared with an 84 K (P. alba × P. glandulosa) control, transgenic lines overexpressing PagLAR3 significantly reduced larval and pupal weight, prolonged larval duration, and caused a decrease in adult emergence. Development retardation caused by overexpression of PagLAR3 in fall webworm is expected to effectively control the pest population, thereby mitigating damage to poplar trees. PagLAR3 represents a potential target for enhancing poplar resistance to the fall webworm. Full article
Show Figures

Figure 1

17 pages, 8723 KiB  
Article
Research on the Economic Loss Model of Invasive Alien Species Based on Multidimensional Data Spatialization—A Case Study of Economic Losses Caused by Hyphantria cunea in Jiangsu Province
by Cheng Li, Yongbin Zhou, Cong Wang, Xubin Pan, Ying Wang, Xiaofeng Qi and Fanghao Wan
Biology 2025, 14(5), 552; https://doi.org/10.3390/biology14050552 - 15 May 2025
Viewed by 496
Abstract
IAS imposes significant impacts on native ecosystems and economies. Current assessment methods for economic losses predominantly rely on habitat suitability estimation and database extrapolation, often lacking integration of causal inference and dynamic spatial drivers. H. cunea, a pervasive invasive pest in Jiangsu [...] Read more.
IAS imposes significant impacts on native ecosystems and economies. Current assessment methods for economic losses predominantly rely on habitat suitability estimation and database extrapolation, often lacking integration of causal inference and dynamic spatial drivers. H. cunea, a pervasive invasive pest in Jiangsu Province, China, exemplifies this challenge through its rapid spread and multi-sector economic impacts. To address these limitations, we innovatively integrated three models: (1) Difference-in-Differences (DID) quantified causal economic impacts through spatiotemporal comparison of infested/non-infested areas; (2) GeoDetector identified key spatial drivers via stratified heterogeneity analysis; (3) MaxEnt projected ecological suitability under climate scenarios. The synergy enabled dynamic loss attribution: GeoDetector optimized DID’s variable selection, while MaxEnt constrained loss extrapolation to ecologically plausible zones, achieving multi-scale causal–spatial–climate integration absent in conventional approaches. In Jiangsu Province, H. cunea caused CNY 89.2 million in primary sector losses in 2022, with forestry disproportionately impacted, accounting for 58.3% of the total losses. The DID model revealed nonlinear temporal impacts indicating a loss of 0.163 forestry per 30 m2 grid, while MaxEnt projected 22% habitat contraction under the SSP5–8.5 scenario by 2060, which corresponds to climate-adjusted losses of CNY 147 million. Spatial prioritization identified northern Jiangsu (e.g., Xuzhou, Lianyungang) as high-risk zones requiring immediate intervention. The framework enables spatially explicit prioritization of containment efforts—grids identified as high-risk necessitate a tripling of funding in comparison to low-risk areas. And SSP-specific loss projections support dynamic budget planning under climate uncertainty. By integrating causal attribution, ecological realism, and climate resilience, this model transforms IAS management from reactive firefighting to proactive, data-driven governance. It provides a replicable toolkit for balancing ecological preservation and economic stability in the Anthropocene. Full article
(This article belongs to the Special Issue Risk Assessment for Biological Invasions)
Show Figures

Figure 1

18 pages, 4864 KiB  
Article
The Complete Mitochondrial Genome of Red Costate Tiger Moth (Aloa lactinea [Cramer, 1777]), and Phylogenetic Analyses of the Subfamily Arctiinae
by Chengrong Pan, Sheng Xu, Yu Shu and Jie Fang
Genes 2025, 16(5), 554; https://doi.org/10.3390/genes16050554 - 30 Apr 2025
Viewed by 453
Abstract
Background/Objectives: Aloa lactinea, class Insecta, order Lepidoptera, superfamily Noctuoidea, family Erebidae, and subfamily Arctiinae, is a polytrophic agricultural pest. However, there are still many sequences missing for Arctiinae from mitochondrial whole-genome sequences. Methods: In this study, we determined and analyzed the complete [...] Read more.
Background/Objectives: Aloa lactinea, class Insecta, order Lepidoptera, superfamily Noctuoidea, family Erebidae, and subfamily Arctiinae, is a polytrophic agricultural pest. However, there are still many sequences missing for Arctiinae from mitochondrial whole-genome sequences. Methods: In this study, we determined and analyzed the complete mitochondrial genome sequence of A. lactinea. Furthermore, based on the sequencing results, we used the Bayesian inference, maximum likelihood, and maximum reduction methods to analyze the phylogenies of 18 species of the Hypophora subfamily. Results: The mitochondrial genome was found to be a circular double-stranded DNA with a length of 15,380 bp and included 13 protein-coding genes (PCGS), 22 tRNA genes, 2 rRNA genes, and one control region. With the exception of tRNASer(AGC), all the tRNA genes could form conventional clover structures. There were 23 intergenic spacer regions with lengths of 1–52 bp and six gene overlaps with lengths of 1–8 bp. The control region was located between rrnS and tRNAMet genes and comprised 303 bp and an AT content of 74.25%. Conclusions: The results showed that A. lactinea is closely related to Hyphantria cunea. Our results suggest that Syntomini is phylogenetically distinct from Arctiini and may warrant separate tribal status within Arctiinae. This study is dedicated to researching the mitochondrial genome and phylogenetic relationships of A. lactinea, providing a molecular basis for its classification. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 4441 KiB  
Article
Effects of Larval Starvation Stress on the Life History and Adult Fitness of Fall Webworm, Hyphantria Cunea
by Yuan Zhang, Lin Zhang, Junchao Zheng, Tongpu Li and Lvquan Zhao
Insects 2025, 16(4), 410; https://doi.org/10.3390/insects16040410 - 14 Apr 2025
Viewed by 922
Abstract
Insects often encounter starvation stress, especially during invasion spread or population outbreaks. The fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), is an important invasive pest in China, and the starvation resistance of its larvae determines population spread and resulting outbreak threat. In this [...] Read more.
Insects often encounter starvation stress, especially during invasion spread or population outbreaks. The fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), is an important invasive pest in China, and the starvation resistance of its larvae determines population spread and resulting outbreak threat. In this study, we investigated the starvation resistance of H. cunea larvae and the effects of starvation stress on their life history and adult fitness. Larval starvation resistance increased along with the instar stage, and the second-day sixth instar molt was critical for starvation resistance. The response to starvation stress was reflected in multiple biological indicators observed in H. cunea. Complete food deprivation reduced the pupation survival rate of sixth instar larvae, prolonged their developmental duration, reduced pupal and adult body mass, shortened adult forewing length and lifespan, and reduced female egg production. The sixth instar larvae showed a certain ability to recover after refeeding. However, negative impacts of the starvation period on larval life history traits, such as pupation survival rate, pupal and adult body mass, adult longevity, and fecundity, were still observed even after refeeding, and the effects of refeeding were affected by larval starvation duration and refeeding mode. These results suggested that H. cunea larvae were highly resistant to starvation, that starvation stress negatively affected their larval life history and adult fitness, and that the pattern of the effects of post-starvation refeeding on larval and adult fitness was related to the duration of starvation and the refeeding mode. The results of this study offer important insights into understanding the physiological response mechanisms of invasive insects under starvation stress. Full article
(This article belongs to the Special Issue Arthropod Reproductive Biology)
Show Figures

Figure 1

14 pages, 2692 KiB  
Article
Synergistic Insecticidal Activity Against Hyphantria cunea by Cry9Aa3 Mutants and Cry1Ah Combinations
by Pengdan Xu, Zeyu Wang, Ying Zhang, Jiaxing Han, Changlong Shu, Min Liao, Jie Zhang and Lili Geng
Int. J. Mol. Sci. 2025, 26(8), 3497; https://doi.org/10.3390/ijms26083497 - 8 Apr 2025
Viewed by 496
Abstract
The larvae of Hyphantria cunea feed on plant leaves, causing significant losses to forestry and agricultural production. At present, cry1 genes such as cry1Ac and cry1Ah are mainly used to control H. cunea. To delay the problem of pest resistance induced by [...] Read more.
The larvae of Hyphantria cunea feed on plant leaves, causing significant losses to forestry and agricultural production. At present, cry1 genes such as cry1Ac and cry1Ah are mainly used to control H. cunea. To delay the problem of pest resistance induced by a single insecticidal gene, it is crucial to discover and develop new insecticidal genes or gene combinations. This study found cry9Aa3 and cry9Aa4 showed insecticidal activity against H. cunea. The toxicity of 14 mutants of Cry9Aa3 was analyzed and the LC50 of the triple-amino-acid substitution mutant 316LRG318AAA was 3.69 μg/g, which represents a 1.49-fold increase in insecticidal activity compared to Cry9Aa3. Additionally, enhanced stability of this mutant was detected in the midgut juice of H. cunea. Cry9Aa3 and 316LRG318AAA, in combination with Cry1Ah, demonstrated synergistic effects against H. cunea, with synergistic factors of 4.76 and 8.33, respectively. This study has identified the mutant 316LRG318AAA and its combination with Cry1Ah as exhibiting high toxicity against H. cunea, providing valuable genetic resources for the development of transgenic poplars and holding significant importance for delaying resistance in this pest. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1170 KiB  
Article
Developmental Thresholds and Thermal Requirements of Two Pupal Parasitoids of the Invasive Fall Webworm
by Mustafa Said Bayram, Gülay Kaçar, Luca Rossini and Nuray Baser
Insects 2025, 16(3), 284; https://doi.org/10.3390/insects16030284 - 8 Mar 2025
Viewed by 837
Abstract
The fall webworm is an injurious pest for many host plants in agriculture, forest, and urban environments. Recent observations showed that the faster spread of this pest can be supported by temperature increases, with a subsequent higher severity of the outbreaks and higher [...] Read more.
The fall webworm is an injurious pest for many host plants in agriculture, forest, and urban environments. Recent observations showed that the faster spread of this pest can be supported by temperature increases, with a subsequent higher severity of the outbreaks and higher impact on the environment. Traditional chemical control is not effective on this pest, while biological control is a valuable alternative, especially if native natural enemies are used. In this study, the performance of Turkish populations of two parasitoids—Chouioia cunea and Psychophagus omnivorus—at different temperatures is evaluated. Laboratory trials were conducted in climatic chambers under five constant temperatures (10, 15, 20, 25, and 30 °C) and cold storage conditions (6 and 12 °C) for periods of 15, 30, and 45 days. The optimal developmental temperature and the upper thermal threshold of the two parasitoids were similar, while C. cunea showed a lower thermal threshold temperature. Both species could develop and survive between 20 and 30 °C, whereas development below 20 °C for C. cunea, and below 15 °C for P. omnivorus was not possible, respectively. Chouioia cunae was less tolerant to temperature changes than P. omnivorus in terms of offspring survival, development, reproduction, and parasitism. Under cold storage temperatures, the two species did not develop into adults. This study provided relevant eco-biological information that can further support biological control programmes. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 3428 KiB  
Article
Ultrastructure of the Eggs, Larvae, and Pupae of Hyphantria cunea (Lepidoptera: Erebidae)
by Han Xue, Xinqian Liang, Qi Xie, Liu’er Yang, Mengcheng Wan and Cuiqing Gao
Insects 2025, 16(2), 157; https://doi.org/10.3390/insects16020157 - 3 Feb 2025
Viewed by 1047
Abstract
Hyphantria cunea is a widespread pest that causes significant issues in forestry and agriculture, with a far-reaching global impact. However, ultramorphological studies of H. cunea, especially in terms of ultramorphological changes, are far from in-depth. Therefore, we investigated the ultrastructure of its [...] Read more.
Hyphantria cunea is a widespread pest that causes significant issues in forestry and agriculture, with a far-reaching global impact. However, ultramorphological studies of H. cunea, especially in terms of ultramorphological changes, are far from in-depth. Therefore, we investigated the ultrastructure of its eggs, larvae, and pupae using scanning electron microscopy, focusing on ultrastructural changes in larvae across different instars. The eggs have rough surfaces, and the micropylar region consists of rosette cells. The larval head chaetotaxy is symmetrically arranged, and there are three types of sensilla on the antennae and mouthparts. The abdominal and anal prolegs feature a uniordinal heteroideus midband of crochets. The pupal abdomen has ten segments; in females, the genital slit (Fgs) is located at the anterior edge of abdominal segment VIII, while in males, the genital slit (Mgs) is situated in the middle of abdominal segment IX. First-instar larvae exhibit only primary setae, and secondary setae emerge in the second instar. As the larvae mature, the head, thoracic legs, and abdominal and anal prolegs all become larger overall. The surface of the verrucae is initially smooth, with microtrichia appearing from the fourth instar onwards, and the setae on the verrucae gradually increase in size. These findings provide additional features for larval species identification and contribute to the morphological study of H. cunea. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

9 pages, 953 KiB  
Article
Inheritance and Fitness Cost of Laboratory-Selected Resistance to Cry1Ab in Hyphantria cunea Drury (Lepidoptera: Arctiidae)
by Laipan Liu, Wenjing Shen, Zhentao Ren, Zhixiang Fang, Li Zhang, Xin Yin, Qi Yu and Biao Liu
Insects 2024, 15(11), 861; https://doi.org/10.3390/insects15110861 - 4 Nov 2024
Viewed by 1196
Abstract
Transgenic poplars have been used to control quarantine pests worldwide, such as the fall webworm (Hyphantria cunea, FW). However, the studies on the resistance mechanism of FW to Cry toxins are limited. This study obtained an FW strain with 45-fold resistance [...] Read more.
Transgenic poplars have been used to control quarantine pests worldwide, such as the fall webworm (Hyphantria cunea, FW). However, the studies on the resistance mechanism of FW to Cry toxins are limited. This study obtained an FW strain with 45-fold resistance to Cry1Ab toxin by continuous screening in the laboratory. The resistance to Cry1Ab was autosomally completely recessive, and it had approximately 40-fold cross-resistance to Cry1Ac but no cross-resistance to Cry2Ab toxin. Analysis of indoor population life tables for the resistant and susceptible strains found no significant difference in the net reproduction rate (R0) between the two strains. The resistant strain had an insignificantly longer larval development duration and a comparable pupation rate, pupal weight, emergence rate, eggs laidper female, and egg hatching rate compared to the susceptible strain. This indicated that there was no fitness cost for Cry1Ab resistance. Our study helps in evaluating the risk of resistance to Cry1Ab toxin and the mechanisms of resistance to Cry1Ab toxin in FW. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 2903 KiB  
Article
Host Species Affects Gut Microbial Community and Offspring Developmental Performances in the Pupal Parasitoid Chouioia cunea Yang (Hymenoptera: Eulophidae)
by Lina Pan, Jiamin Liao, Yiping Hu, Rui Ren, Wei Chen, Zixin Liang, Fan Lu, Meidi Sun, Zhiqin Song, Xiaoyu Li, Weiyi Zhang, Wenfang Gao, Chuncai Yan and Min Li
Insects 2024, 15(9), 722; https://doi.org/10.3390/insects15090722 - 20 Sep 2024
Viewed by 1166
Abstract
Chouioia cunea are known to exploit in varying degrees a wide range of lepidopteran species and its offspring development may vary with host species. This study examined its preimaginal development and larval gut microbiota in parasitizing five folivorous lepidopteran hosts including Hyphantria cunea [...] Read more.
Chouioia cunea are known to exploit in varying degrees a wide range of lepidopteran species and its offspring development may vary with host species. This study examined its preimaginal development and larval gut microbiota in parasitizing five folivorous lepidopteran hosts including Hyphantria cunea (referred to thereafter as CcHc), Antherea pernyi (CcAp), Helicoverpa armigera (CcHa), Spodoptera exigua (CcSe), and Spodoptera frugiperda (CcSf). Though rates of parasitism and offspring eclosion did not change with host species, the development period and number of offspring eclosed varied with hosts, with the shortest period in CcSf and the highest number from CcAp. For offspring larval gut microbiota, though phylum Proteobacteria was dominant for attacking CcAp, Firmicutes was so for the other hosts. All microbial genera except Enterococcus were less abundant for CcSf than the other hosts. The database-based predictions indicate a significant positive correlation between Cutibacterium and Aureimonas with the relative number of wasp emergence, while Blastomonas exhibits a strong positive association with the developmental period. Our results imply the potential relevance of the gut microbial community in offspring larvae to host species attacked by C. cunea. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

14 pages, 9059 KiB  
Article
Dynamic Metabolic Responses of Resistant and Susceptible Poplar Clones Induced by Hyphantria cunea Feeding
by Zheshu Wang, Liangjian Qu, Zhibin Fan, Luxuan Hou, Jianjun Hu and Lijuan Wang
Biology 2024, 13(9), 723; https://doi.org/10.3390/biology13090723 - 14 Sep 2024
Cited by 1 | Viewed by 1282
Abstract
Poplar trees are significant for both economic and ecological purposes, and the fall webworm (Hyphantria cunea Drury) poses a major threat to their plantation in China. The preliminary resistance assessment in the previous research indicated that there were differences in resistance to [...] Read more.
Poplar trees are significant for both economic and ecological purposes, and the fall webworm (Hyphantria cunea Drury) poses a major threat to their plantation in China. The preliminary resistance assessment in the previous research indicated that there were differences in resistance to the insect among these varieties, with ‘2KEN8’ being more resistant and ‘Nankang’ being more susceptible. The present study analyzed the dynamic changes in the defensive enzymes and metabolic profiles of ‘2KEN8’ and ‘Nankang’ at 24 hours post-infestation (hpi), 48 hpi, and 96 hpi. The results demonstrated that at the same time points, compared to susceptible ‘Nankang’, the leaf consumption by H. cunea in ‘2KEN8’ was smaller, and the larval weight gain was slower, exhibiting clear resistance to the insect. Biochemical analysis revealed that the increased activity of the defensive enzymes in ‘2KEN8’ triggered by the feeding of H. cunea was significantly higher than that of ‘Nankang’. Metabolomics analysis indicated that ‘2KEN8’ initiated an earlier and more intense reprogramming of the metabolic profile post-infestation. In the early stages of infestation, the differential metabolites induced in ‘2KEN8’ primarily included phenolic compounds, flavonoids, and unsaturated fatty acids, which are related to the biosynthesis pathways of phenylpropanoids, flavonoids, unsaturated fatty acids, and jasmonates. The present study is helpful for identifying the metabolic biomarkers for inductive resistance to H. cunea and lays a foundation for the further elucidation of the chemical resistance mechanism of poplar trees against this insect. Full article
(This article belongs to the Special Issue Ecological Regulation of Forest and Grassland Pests)
Show Figures

Figure 1

19 pages, 2699 KiB  
Article
Sex Differences in Antennal Transcriptome of Hyphantria cunea and Analysis of Odorant Receptor Expression Profiles
by Weichao Ma, Yaning Li, Lina Yang and Shanchun Yan
Int. J. Mol. Sci. 2024, 25(16), 9070; https://doi.org/10.3390/ijms25169070 - 21 Aug 2024
Cited by 1 | Viewed by 1496
Abstract
Insects rely on olfaction for mating, finding oviposition sites, and locating hosts. Hyphantria cunea is a serious pest that severely damages forests. Differential expression analysis of olfactory-related genes between males and females is the basis for elucidating the functions of olfactory-related proteins in [...] Read more.
Insects rely on olfaction for mating, finding oviposition sites, and locating hosts. Hyphantria cunea is a serious pest that severely damages forests. Differential expression analysis of olfactory-related genes between males and females is the basis for elucidating the functions of olfactory-related proteins in H. cunea. In this study, Illumina HiSeqTM 4000 high-throughput sequencing technology was used to perform transcriptome sequencing of the antennal tissues of adult male and female H. cunea. Functional annotation was conducted using the NR, Swiss-Prot, KOG, KEGG, and GO databases, and the results showed that the antennal transcriptome of adult H. cunea contained 50,158 unigenes. Differential expression analysis identified 3923 genes that were significantly differentially expressed between male and female antennae. A total of 221 olfactory-related genes were annotated, and 96 sex-biased genes were identified, including 13 odorant receptors (ORs), 48 odorant binding proteins (OBPs), 7 chemosensory proteins (CSPs), 10 ionotropic receptors (IRs), 10 sensory neuron membrane proteins (SNMPs), 2 gustatory receptors (GRs), and 6 odorant-degrading enzymes (ODEs), indicating that there were differences in olfaction between male and female H. cunea. Quantitative real-time PCR was used to verify the expression levels of 21 putative general odorant receptor genes in male and female antennae. HcunOR4 and HcunOR5 showed female-biased expression; HcunOR48, HcunOR49 and HcunOR50 showed male-biased expression. The results were consistent with the transcriptome differential analysis. The screening of male-biased odorant receptor genes might provide a theoretical basis for the functional characterization of odorant receptors for recognizing sex pheromones in H. cunea. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

13 pages, 1690 KiB  
Article
Extrinsic and Intrinsic Competition between Chouioa cunea Yang and Tetrastichus septentrionalis (Hymenoptera: Eulophidae), Two Pupal Parasitoids of the Fall Webworm, Hyphantria cunea (Lepidoptera: Erebidae)
by Zhixin Li, Liyuan Yang, Xi Ma, Xudan Liu, Yiran Cheng and Shouhui Sun
Insects 2024, 15(8), 617; https://doi.org/10.3390/insects15080617 - 15 Aug 2024
Viewed by 1298
Abstract
The endoparasitoids Chouioa cunea Yang and Tetrastichus septentrionalis Yang (Hymenoptera: Eulophidae) are both gregarious pupal parasitoids of the fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Erebidae). In order to analyze the competitive interactions between both parasitoids exploiting H. cunea, we assessed both extrinsic [...] Read more.
The endoparasitoids Chouioa cunea Yang and Tetrastichus septentrionalis Yang (Hymenoptera: Eulophidae) are both gregarious pupal parasitoids of the fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Erebidae). In order to analyze the competitive interactions between both parasitoids exploiting H. cunea, we assessed both extrinsic and intrinsic competition. The search time, oviposition duration, and oviposition frequency were used as evaluation criteria for extrinsic competition. The number of survival days, female ratio, and number of parasitoids emerging from the host were used as evaluation criteria for intrinsic competition. The results indicated that both parasitoid species were able to parasitize hosts that were already parasitized by competitors. The first released species consistently emerged as the superior competitor in multiparasitized hosts. Both parasitoid release orders and time intervals between oviposition affect the competition of parasitoids and the parasitic efficiency. The results emphasize the parasitic abilities of both parasitoid species and provide a basis for future research on competition mechanisms and biological control of H. cunea. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

13 pages, 3866 KiB  
Article
Identification and Functional Analysis of V-ATPaseA and C Genes in Hyphantria cunea
by Xiaojie Wang, Dan Zhao, Qian Wang, Yanan Liu, Xiujun Lu and Wei Guo
Insects 2024, 15(7), 515; https://doi.org/10.3390/insects15070515 - 10 Jul 2024
Cited by 3 | Viewed by 1482
Abstract
Vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps that play multifaceted roles across various organisms. Despite their widespread significance, the functional implications of V-ATPase genes in Hyphantria cunea, an invasive forest pest with a global presence, have yet to be elucidated. [...] Read more.
Vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps that play multifaceted roles across various organisms. Despite their widespread significance, the functional implications of V-ATPase genes in Hyphantria cunea, an invasive forest pest with a global presence, have yet to be elucidated. In this study, two specific V-ATPase genes from H. cunea were identified and analyzed, namely HcV-ATPase A (accession number: OR217451) and HcV-ATPase C (accession number: OR217452). Phylogenetic analysis and multiple sequence alignment reveal that HcV-ATPase A shares the highest amino acid sequence similarity with SfV-ATPase A, while HcV-ATPase C is most similar to HaV-ATPase C. Spatiotemporal expression profiles, determined via RT-qPCR, demonstrate that both HcV-ATPase A and HcV-ATPase C are expressed throughout all larval developmental stages, with HcV-ATPase A predominantly expressed in the midgut and HcV-ATPase C showing high expression in the epidermis. RNA interference (RNAi) targeting of these genes significantly suppressed their expression by 62.7% and 71.0% 120 h post-injection, leading to halted larval growth and increased mortality rates of 61.7% and 46.7%, respectively. Further investigations using immunohistochemistry, hematoxylin and eosin (HE) staining, and transmission electron microscopy (TEM) revealed that gene silencing induced vesiculation and subsequent losses or sloughing of intestinal parietal cells, alongside an increase in the number of autophagic cells. Additionally, the silencing of HcV-ATPase A and C genes resulted in a reduced gut epidermal cell layer thickness and further increases in goblet cell numbers. Importantly, RNAi of HcV-ATPase A and C did not affect the expression levels of one another, suggesting independent functional pathways. This study provides foundational insights into the role of V-ATPase in H. cunea and identifies potential targets for the biocontrol of its larvae, contributing to the understanding of V-ATPase mechanisms and their application in pest management strategies. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 5634 KiB  
Article
Exendin-4 Caused Growth Arrest by Regulating Sugar Metabolism in Hyphantria cunea (Lepidoptera: Erebidae) Larvae
by Wenhui Shi, Lu Zhang, Yuecheng Zhao and Xingpeng Li
Insects 2024, 15(7), 503; https://doi.org/10.3390/insects15070503 - 5 Jul 2024
Cited by 1 | Viewed by 1446
Abstract
Insects’ growth and development are highly dependent on energy supply, with sugar metabolism playing a pivotal role in maintaining homeostasis and regulating physiological processes. The present study investigated the effects of exendin-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, on the growth, development, glycolysis, [...] Read more.
Insects’ growth and development are highly dependent on energy supply, with sugar metabolism playing a pivotal role in maintaining homeostasis and regulating physiological processes. The present study investigated the effects of exendin-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, on the growth, development, glycolysis, and energy metabolism of fourth-instar larvae of the fall webworm, Hyphantria cunea. We determined the impact of exendin-4 on larval growth and nutritional indices, analyzed the responses of glycolytic and metabolic pathways, and revealed the underlying regulatory mechanisms. Exendin-4 treatment significantly decreased growth and nutritional indices, influenced the activity of digestive enzymes, and induced changes in metabolite profiles, particularly affecting energy substance metabolism. We observed an increase in the glycogen content and a decrease in glucose and trehalose levels in the hemolymph, suggesting a regulatory effect on blood sugar homeostasis. Furthermore, exendin-4 promoted glycolysis by enhancing the activities and expressions of key glycolytic enzymes, leading to an increase in pyruvate production. This was accompanied by a reduction in ATP levels and the activation of AMP-activated protein kinase (AMPK), which may underlie the growth arrest in larvae. Our findings provide novel insights into the effects of exendin-4 on insect responses from an energy metabolism perspective and may contribute to the development of GLP-1R agonists for pest management. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

Back to TopTop