Inheritance and Fitness Cost of Laboratory-Selected Resistance to Cry1Ab in Hyphantria cunea Drury (Lepidoptera: Arctiidae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Toxins
2.2. Bioassay
2.3. Assessing the Inheritance of Resistance
2.4. Establishing a Life Table and Observing the Physiological Parameters of FW
2.5. Calculating the Net Reproductive Rate R0 and Relative Fitness
2.6. Data Analysis
3. Results
3.1. Inheritance of Resistance
3.2. Cross Resistance Spectrum in RQ1Ab Strain
3.3. Fitness of the RQ1Ab Strain
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Edosa, T.T.; Jo, Y.H.; Keshavarz, M.; Anh, Y.S.; Noh, M.Y.; Han, Y.S. Current status of the management of fall webworm, Hyphantria cunea: Towards the integrated pest management development. J. Appl. Entomol. 2019, 143, 1–10. [Google Scholar] [CrossRef]
- Hu, J.; Yang, M.; Lu, M. Advances in biosafety studies on transgenic insect-resistant poplars in China. Biodivers. Sci. 2010, 18, 336–345. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 2017, 35, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Gassmann, A.J.; Crowder, D.W.; Carrière, Y. Insect resistance to Bt crops: Evidence versus theory. Nat. Biotechnol. 2008, 26, 199–202. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Fabrick, J.A.; Carrière, Y. Global patterns of insect resistance to transgenic Bt crops: The first 25 years. J. Econ. Entomol. 2023, 116, 297–309. [Google Scholar] [CrossRef]
- Carrière, Y.; Crickmore, N.; Tabashnik, B.E. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. Biotechnol. 2015, 33, 161–168. [Google Scholar] [CrossRef]
- Carrière, Y.; Fabrick, J.A.; Tabashnik, B.E. Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol. 2016, 34, 291–302. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Brévault, T.; Carrière, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef]
- Carrière, Y.; Crowder, D.W.; Tabashnik, B.E. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 2010, 3, 561–573. [Google Scholar] [CrossRef]
- Liu, L.; Gao, M.; Yang, S.; Liu, S.; Wu, Y.; Carrière, Y.; Yang, Y. Resistance to bacillus thuringiensis toxin cry2ab and survival on single-toxin and pyramided cotton in cotton bollworm from China. Evol. Appl. 2017, 10, 170–179. [Google Scholar] [CrossRef]
- Liu, Y.; Tabashnik, B.E. Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl. Environ. Microbiol. 1997, 63, 2218–2223. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.F. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull. World Health Organ. 1968, 38, 325–326. [Google Scholar] [PubMed]
- Payton, M.E.; Greenstone, M.H.; Schenker, N. Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance? J. Insect Sci. 2003, 3, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Van Rensburg, J.B.J.V.; Carrière, Y. Field-evolved insect resistance to Bt crops: Definition, theory, and data. J. Econ. Entomol. 2009, 102, 2011–2025. [Google Scholar] [CrossRef] [PubMed]
- Downes, S.; Mahon, R.J.; Rossiter, L.; Kauter, G.; Leven, T.; Fitt, G.; Baker, G. Adaptive management of pest resistance by Helicoverpa species (Noctuidae) in Australia to the Cry2Ab Bt toxin in Bollgard II® cotton. Evol. Appl. 2010, 3, 574–584. [Google Scholar] [CrossRef]
- Ferre, J.; Van Rie, J.; MacIntosh, S.C. Insecticidal genetically modified crops and insect resistance management (IRM). In Progress in Biological Control; Romeis, J., Shelton, A.M., Kennedy, G.G., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 5, pp. 41–85. [Google Scholar]
- Campagne, P.; Kruger, M.; Pasquet, R.; Le Ru, B.; Van den Berg, J. Dominant inheritance of field-evolved resistance to Bt corn in Busseola fusca. PLoS ONE 2013, 8, e69675. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Carrière, Y.; Wu, Y.D.; Fabrick, J.A. Global perspectives on field-evolved resistance to transgenic Bt crops: A special collection. J. Econ. Entomol. 2023, 116, 269–274. [Google Scholar] [CrossRef]
- Welch, K.L.; Unnithan, G.C.; Degain, B.A.; Wei, J.; Zhang, J.; Li, X.; Tabashnik, B.E.; Carrière, Y. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea. J. Invertebr. Pathol. 2015, 132, 149–156. [Google Scholar] [CrossRef]
- Muraro, D.S.; Garlet, C.G.; Godoy, D.N.; Cossa, G.E.; Rodrigues Junior, G.L.S.; Stacke, R.F.; Medeiros, S.L.P.; Guedes, J.V.C.; Bernardi, O. Laboratory and field survival of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Bt and non-Bt maize and its susceptibility to insecticides. Pest Manag. Sci. 2019, 75, 2202–2210. [Google Scholar] [CrossRef]
- Jin, L.; Wei, Y.; Zhang, L.; Yang, Y.; Tabashnik, B.E.; Wu, Y. Dominant resistance to B t cotton and minor cross-resistance to B t toxin C ry2Ab in cotton bollworm from China. Evol. Appl. 2013, 6, 1222–1235. [Google Scholar] [CrossRef]
- Carrière, Y.; Tabashnik, B.E. Negative association between host plant suitability and the fitness cost of resistance to Bacillus thuringiensis (Bacillales: Bacillaceae). J. Econ. Entomol. 2024, 117, toae077. [Google Scholar] [CrossRef] [PubMed]
- Vélez, A.M.; Spencer, T.A.; Alves, A.P.; Crespo, A.L.B.; Siegfried, B.D. Fitness costs of C ry1F resistance in fall armyworm, Spodoptera frugiperda. J. Appl. Entomol. 2014, 138, 315–325. [Google Scholar] [CrossRef]
- Santos-Amaya, O.F.; Tavares, C.S.; Rodrigues, J.V.C.; Campos, S.O.; Guedes, R.N.C.; Alves, A.P.; Pereira, E.J.G. Fitness costs and stability of Cry1Fa resistance in Brazilian populations of Spodoptera frugiperda. Pest Manag. Sci. 2017, 73, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.; Head, G.P.; Price, P.A.; Huang, F.N. Fitness costs and inheritance of Cry2Ab2 resistance in Spodoptera frugiperda (J.E. Smith). J. Invertebr. Pathol. 2017, 149, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kruger, M.; Van Rensburg, J.B.J.; Van den Berg, J. No fitness costs associated with resistance of Busseola fusca (Lepidoptera: Noctuidae) to genetically modified Bt maize. Crop Prot. 2014, 55, 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Zhang, T.; Bai, S.; Wang, Z.; He, K. Inheritance and fitness costs of Vip3Aa19 resistance in Mythimna separata. Toxins 2022, 14, 388. [Google Scholar] [CrossRef]
- Carrière, Y.; Degain, B.; Unnithan, G.C.; Tabashnik, B.E. Inheritance and fitness cost of laboratory-selected resistance to Vip3Aa in Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 2023, 116, 1804–1811. [Google Scholar] [CrossRef]
- Orozco-Restrepo, S.M.; Santos-Amaya, O.F.; Miranda, M.S.; Tavares, C.S.; Pereira, E.J.G. Fall armyworm (Lepidoptera: Noctuidae): Practical resistance of 2 Brazilian populations to Cry1A.105 + Cry2Ab and Cry1F Bt maize. J. Econ. Entomol. 2024, 117, toae082. [Google Scholar] [CrossRef]
Generation | LC50 (95% FL) a (µg/cm2) | Slope ± SE | RR b |
---|---|---|---|
0 | 0.48 (0.37–0.60) | 1.53 ± 0.14 | / |
2 | 2.56 (2.00–3.26) | 1.62 ± 0.17 | 5.3 |
4 | 6.56 (5.06–8.63) | 1.48 ± 0.17 | 13.7 |
6 | 17.83 (12.51–24.98) | 1.70 ±0.18 | 37.1 |
8 | 21.62 (15.56–30.37) | 1.66 ± 0.17 | 45.0 |
Population | LC50 (95% FL) (µg/cm2) | Slope ± SE | n | RR | Dominance | |
---|---|---|---|---|---|---|
D Value a | h b | |||||
Strain | ||||||
RQ | 0.48 (0.37–0.60) | 1.53 ± 0.14 | 432 | 1 | ||
RQ1Ab | 21.62 (15.56–30.37) | 1.66 ± 0.17 | 384 | 45 | ||
F1 | ||||||
RQ1Ab♂ × RQ ♀ | 0.70 (0.57–0.87) | 1.62 ± 0.13 | 432 | 1.5 | −0.80 | 0 |
RQ♂ × RQ1Ab ♀ | 0.61 (0.49–0.77) | 1.63 ± 0.14 | 432 | 1.3 | −0.87 | 0 |
Strain | Toxin | LC50 (95% FL) (μg/cm2) | Slope ± SE | Number | RR a |
---|---|---|---|---|---|
RQ1Ab (Selected) | Cry1Ab | 21.62 (15.56–30.37) | 1.66 ± 0.17 | 384 | 45 |
Cry1Ac | 26.40 (20.95–33.53) | 1.71 ± 0.18 | 384 | 40 | |
Cry2Ab | 0.95 (0.76–1.19) | 1.71 ± 0.16 | 432 | 1 | |
RQ (CK) | Cry1Ab | 0.48 (0.37–0.60) | 1.53 ± 0.14 | 432 | |
Cry1Ac | 0.66 (0.51–0.85) | 1.41 ± 0.14 | 432 | ||
Cry2Ab | 0.81 (0.62–1.07) | 1.29 ± 0.13 | 432 |
Life History Parameter | RQ (SS) | RQ1Ab (RR) | F1 Progeny (RS) | ||
---|---|---|---|---|---|
RR♂ × SS♀ | SS♂ × RR♀ | Pooled | |||
Number of neonates | 90 (×3) | 90 (×3) | 90 (×3) | 90 (×3) | 90 (×3) |
Number of pupae | 65 ± 5 a | 63 ± 6 a | 63 ± 3 a | 64 ± 3 a | 63 ± 3 a |
Number of adults | 58 ± 3 a | 55 ± 3 a | 55 ± 3 a | 56 ± 3 a | 56 ± 2 a |
Number of female moths | 31 ± 3 a | 30 ± 5 a | 30 ± 2 a | 30 ± 2 a | 30 ± 2 a |
Mean eggs laid per female | 389 ± 17 a | 381 ± 12 a | 380 ± 13 a | 383 ± 9 a | 382 ± 10 a |
Egg viability (%) | 89.6 ± 3.0 a | 90.0 ± 2.1 a | 89.9 ± 2.8 a | 89.4 ± 3.4 a | 89.6 ± 2.8 a |
Predicted neonate number in the next generation | 10,909 ± 993 a | 10,420 ± 1655 a | 10,349 ± 516 a | 10,377 ± 479 a | 10,363 ± 445 a |
Net reproductive rate (R0) | 121 ± 11 a | 116 ± 18 a | 115 ± 6 a | 115 ± 5 a | 115 ± 5 a |
Relative fitness b | 1.00 ± 0.00 a | 0.95 ± 0.10 a | 0.96 ± 0.14 a | 0.96 ± 0.13 a | 0.96 ± 0.12 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Shen, W.; Ren, Z.; Fang, Z.; Zhang, L.; Yin, X.; Yu, Q.; Liu, B. Inheritance and Fitness Cost of Laboratory-Selected Resistance to Cry1Ab in Hyphantria cunea Drury (Lepidoptera: Arctiidae). Insects 2024, 15, 861. https://doi.org/10.3390/insects15110861
Liu L, Shen W, Ren Z, Fang Z, Zhang L, Yin X, Yu Q, Liu B. Inheritance and Fitness Cost of Laboratory-Selected Resistance to Cry1Ab in Hyphantria cunea Drury (Lepidoptera: Arctiidae). Insects. 2024; 15(11):861. https://doi.org/10.3390/insects15110861
Chicago/Turabian StyleLiu, Laipan, Wenjing Shen, Zhentao Ren, Zhixiang Fang, Li Zhang, Xin Yin, Qi Yu, and Biao Liu. 2024. "Inheritance and Fitness Cost of Laboratory-Selected Resistance to Cry1Ab in Hyphantria cunea Drury (Lepidoptera: Arctiidae)" Insects 15, no. 11: 861. https://doi.org/10.3390/insects15110861
APA StyleLiu, L., Shen, W., Ren, Z., Fang, Z., Zhang, L., Yin, X., Yu, Q., & Liu, B. (2024). Inheritance and Fitness Cost of Laboratory-Selected Resistance to Cry1Ab in Hyphantria cunea Drury (Lepidoptera: Arctiidae). Insects, 15(11), 861. https://doi.org/10.3390/insects15110861