Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,041)

Search Parameters:
Keywords = Hsp70 proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 902 KiB  
Review
Neuroaxonal Degeneration as a Converging Mechanism in Motor Neuron Diseases (MNDs): Molecular Insights into RNA Dysregulation and Emerging Therapeutic Targets
by Minoo Sharbafshaaer, Roberta Pepe, Rosaria Notariale, Fabrizio Canale, Alessandro Tessitore, Gioacchino Tedeschi and Francesca Trojsi
Int. J. Mol. Sci. 2025, 26(15), 7644; https://doi.org/10.3390/ijms26157644 - 7 Aug 2025
Abstract
Motor Neuron Diseases (MNDs) such as Amyotrophic Lateral Sclerosis (ALS), Primary Lateral Sclerosis (PLS), Hereditary Spastic Paraplegia (HSP), Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1), Multisystem Proteinopathy (MSP), Spinal and Bulbar Muscular Atrophy (SBMA), and ALS associated to Frontotemporal Dementia (ALS-FTD), [...] Read more.
Motor Neuron Diseases (MNDs) such as Amyotrophic Lateral Sclerosis (ALS), Primary Lateral Sclerosis (PLS), Hereditary Spastic Paraplegia (HSP), Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1), Multisystem Proteinopathy (MSP), Spinal and Bulbar Muscular Atrophy (SBMA), and ALS associated to Frontotemporal Dementia (ALS-FTD), have traditionally been studied as distinct entities, each one with unique genetic and clinical characteristics. However, emerging research reveals that these seemingly disparate conditions converge on shared molecular mechanisms that drive progressive neuroaxonal degeneration. This narrative review addresses a critical gap in the field by synthesizing the most recent findings into a comprehensive, cross-disease mechanisms framework. By integrating insights into RNA dysregulation, protein misfolding, mitochondrial dysfunction, DNA damage, kinase signaling, axonal transport failure, and immune activation, we highlight how these converging pathways create a common pathogenic landscape across MNDs. Importantly, this perspective not only reframes MNDs as interconnected neurodegenerative models but also identifies shared therapeutic targets and emerging strategies, including antisense oligonucleotides, autophagy modulators, kinase inhibitors, and immunotherapies that transcend individual disease boundaries. The diagnostic and prognostic potential of Neurofilament Light Chain (NfL) biomarkers is also emphasized. By shifting focus from gene-specific to mechanism-based approaches, this paper offers a much-needed roadmap for advancing both research and clinical management in MNDs, paving the way for cross-disease therapeutic innovations. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

16 pages, 1898 KiB  
Article
Screening of qPCR Reference Genes in Quinoa Under Cold, Heat, and Drought Gradient Stress
by Qiuwei Lu, Xueying Wang, Suxuan Dong, Jinghan Fu, Yiqing Lin, Ying Zhang, Bo Zhao and Fuye Guo
Plants 2025, 14(15), 2434; https://doi.org/10.3390/plants14152434 - 6 Aug 2025
Abstract
Quinoa (Chenopodium quinoa), a stress-tolerant pseudocereal ideal for studying abiotic stress responses, was used to systematically identify optimal reference genes for qPCR normalization under gradient stresses: low temperatures (LT group: −2 °C to −10 °C), heat (HT group: 39° C to [...] Read more.
Quinoa (Chenopodium quinoa), a stress-tolerant pseudocereal ideal for studying abiotic stress responses, was used to systematically identify optimal reference genes for qPCR normalization under gradient stresses: low temperatures (LT group: −2 °C to −10 °C), heat (HT group: 39° C to 45 °C), and drought (DR group: 7 to 13 days). Through multi-algorithm evaluation (GeNorm, NormFinder, BestKeeper, the ΔCt method, and RefFinder) of eleven candidates, condition-specific optimal genes were established as ACT16 (Actin), SAL92 (IT4 phosphatase-associated protein), SSU32 (Ssu72-like family protein), and TSB05 (Tryptophan synthase beta-subunit 2) for the LT group; ACT16 and NRP13 (Asparagine-rich protein) for the HT group; and ACT16, SKP27 (S-phase kinase), and NRP13 for the DR group, with ACT16, NRP13, WLIM96 (LIM domain-containing protein), SSU32, SKP27, SAL92, and UBC22 (ubiquitin-conjugating enzyme E2) demonstrating cross-stress stability (global group). DHDPS96 (dihydrodipicolinate synthase) and EF03 (translation elongation factor) showed minimal stability. Validation using stress-responsive markers—COR72 (LT), HSP44 (HT), COR413-PM (LT), and DREB12 (DR)—confirmed reliability; COR72 and COR413-PM exhibited oscillatory cold response patterns, HSP44 peaked at 43 °C before declining, and DREB12 showed progressive drought-induced upregulation. Crucially, normalization with unstable genes (DHDPS96 and EF03) distorted expression profiles. This work provides validated reference standards for quinoa transcriptomics under abiotic stresses. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

20 pages, 7055 KiB  
Article
Cardiopulmonary Bypass-Induced IL-17A Aggravates Caspase-12-Dependent Neuronal Apoptosis Through the Act1-IRE1-JNK1 Pathway
by Ruixue Zhao, Yajun Ma, Shujuan Li and Junfa Li
Biomolecules 2025, 15(8), 1134; https://doi.org/10.3390/biom15081134 - 6 Aug 2025
Abstract
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose [...] Read more.
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose deprivation/reoxygenation (OGD/R) cellular model, we demonstrated that IL-17A levels were markedly elevated in the hippocampus post-CPB, correlating with endoplasmic reticulum stress (ERS)-mediated apoptosis. Transcriptomic analysis revealed the enrichment of IL-17 signaling and apoptosis-related pathways. IL-17A-Neutralizing monoclonal antibody (mAb) and the ERS inhibitor 4-phenylbutyric acid (4-PBA) significantly attenuated neurological deficits and hippocampal neuronal damage. Mechanistically, IL-17A activated the Act1-IRE1-JNK1 axis, wherein heat shock protein 90 (Hsp90) competitively regulated Act1-IRE1 interactions. Co-immunoprecipitation confirmed the enhanced Hsp90-Act1 binding post-CPB, promoting IRE1 phosphorylation and downstream caspase-12 activation. In vitro, IL-17A exacerbated OGD/R-induced apoptosis via IRE1-JNK1 signaling, reversible by IRE1 inhibition. These findings identify the hippocampus as a key vulnerable region and delineate a novel IL-17A/Act1-IRE1-JNK1 pathway driving ERS-dependent apoptosis. Targeting IL-17A or Hsp90-mediated chaperone switching represents a promising therapeutic strategy for CPB-associated neuroprotection. This study provides critical insights into the molecular crosstalk between systemic inflammation and neuronal stress responses during cardiac surgery. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 1899 KiB  
Article
Heterologous Watermelon HSP17.4 Expression Confers Improved Heat Tolerance to Arabidopsis thaliana
by Yajie Hong, Yurui Li, Jing Chen, Nailin Xing, Wona Ding, Lili Chen, Yunping Huang, Qiuping Li and Kaixing Lu
Curr. Issues Mol. Biol. 2025, 47(8), 606; https://doi.org/10.3390/cimb47080606 - 1 Aug 2025
Viewed by 158
Abstract
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce [...] Read more.
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce the pCAMBIA1391b-GFP overexpression vector encoding the heat tolerance-related gene ClaHSP17.4 from watermelon into Arabidopsis thaliana, and we obtained ClaHSP17.4-overexpressing Arabidopsis plants. Under normal conditions, the phenotypes of transgenic and wild-type (WT) Arabidopsis plants were largely similar. Following exposure to heat stress, however, the germination rates (96%) of transgenic Arabidopsis plants at the germination stages were significantly higher than those of wild-type idopsis (17%). Specifically, the malondialdehyde (MDA) content of transgenic Arabidopsis was half that of the control group, while the activities of peroxidase (POD) and superoxide dismutase (SOD) were 1.25 times those of the control group after exposure to high temperatures for 12 h at the seedling stages. The proline content in ClaHSP17.4-overexpressing transgenic Arabidopsis increased by 17% compared to WT plants (* p < 0.05), while the soluble sugar content rose by 37% (* p < 0.05). These results suggest that ClaHSP17.4 overexpression indirectly improves the antioxidant capacity and osmotic regulatory capacity of Arabidopsis seedlings, leading to improved survival and greater heat tolerance. Meanwhile, the results of this study provide a reference for further research on the function of the ClHSP17.4 gene and lay a foundation for breeding heat-tolerant watermelon varieties and advancing our understanding of plant adaptation to environmental stress. Full article
Show Figures

Figure 1

14 pages, 2239 KiB  
Article
Marsupenaeus japonicus HSP90’s Function Under Low Temperature Stress
by Xueqiong Bian, Xianyun Ren, Shaoting Jia, Tian Gao, Junxia Wang, Jiajia Wang, Ping Liu, Jian Li and Jitao Li
Biology 2025, 14(8), 966; https://doi.org/10.3390/biology14080966 - 1 Aug 2025
Viewed by 206
Abstract
Molecular chaperones, especially heat shock proteins (HSPs) have vital functions in cells’ responses to stress. Here, we cloned and sequenced the complete complementary DNA encoding HSP90 (MjHSP90) from the shrimp Marsupenaeus japonicus. The MjHSP90 cDNA comprised 3162 bp, including a [...] Read more.
Molecular chaperones, especially heat shock proteins (HSPs) have vital functions in cells’ responses to stress. Here, we cloned and sequenced the complete complementary DNA encoding HSP90 (MjHSP90) from the shrimp Marsupenaeus japonicus. The MjHSP90 cDNA comprised 3162 bp, including a 2172 bp coding region encoding a 724 amino acid-protein (predicted molecular mass = 83.12 kDa). Homology and phylogenetic analyses showed that MjHSP90 was highly conserved and most homologous to Litopenaeus vannamei HSP90. MjHSP90 is expressed in all tested tissues, with high expression in gill tissue and the hepatopancreas. Cold stress significantly upregulated MjHSP90 expression in the gill and hepatopancreas (p < 0.05). Following RNA interference knockdown of MjHSP90, the cold stress-related death rate of the shrimp increased significantly, accompanied by significantly upregulated expression of apoptosis-related genes Mjcaspase-3 and Mjbcl-2 (p < 0.05) and an increase in the number of apoptotic cells. The results indicated that MjHSP90 might play a pivotal role in the shrimp’s immune response to cold stress. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

13 pages, 935 KiB  
Article
The Physiological Response of the Fiddler Crab Austruca lactea to Anthropogenic Low-Frequency Substrate-Borne Vibrations
by Soobin Joo, Jaemin Cho and Taewon Kim
Biology 2025, 14(8), 962; https://doi.org/10.3390/biology14080962 - 31 Jul 2025
Viewed by 146
Abstract
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations [...] Read more.
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations at 120 Hz and 250 Hz (~100 dB re 1 µm/s2), and physiological indicators were measured. Lactate and ATP concentrations in the leg muscle were measured, and heat shock protein 70 kDa (HSP70) gene expression in the hepatopancreas was analyzed using RT-PCR with newly designed primers. At 120 Hz, ATP and lactate levels in the leg muscle did not differ significantly between the exposure and control groups. However, at 250 Hz, ATP levels were lower and lactate levels were higher in the exposure group compared to the control. HSP70 gene expression in the hepatopancreas did not differ significantly between the exposure and control groups at either frequency, although one individual exposed to 250 Hz exhibited markedly elevated expression, inducing higher expression variability in the exposed group. These results suggest that anthropogenic vibrational pollution may induce physiological stress in A. lactea, and that such physiological indices could serve as biomarkers for assessing vibroacoustic pollution on marine animals. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

14 pages, 6123 KiB  
Article
Effects of Near-Infrared Diode Laser Irradiation on Pain Relief and Neuropeptide Markers During Experimental Tooth Movement in the Periodontal Ligament Tissues of Rats: A Pilot Study
by Kanako Okazaki, Ayaka Nakatani, Ryo Kunimatsu, Isamu Kado, Shuzo Sakata, Hirotaka Kiridoshi and Kotaro Tanimoto
Int. J. Mol. Sci. 2025, 26(15), 7404; https://doi.org/10.3390/ijms26157404 - 31 Jul 2025
Viewed by 169
Abstract
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin [...] Read more.
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin gene-related peptide (CGRP), contribute to the transmission and maintenance of inflammatory pain. Heat shock protein (HSP) 70 plays a protective role against various stresses, including orthodontic forces. This study aimed to examine the effects of diode laser irradiation on neuropeptides and HSP 70 expression in periodontal tissues induced by experimental tooth movement (ETM). For inducing ETM for 24 h, 50 g of orthodontic force was applied using a nickel–titanium closed-coil spring to the upper left first molar and the incisors of 20 male Sprague Dawley rats (7 weeks old). The right side without ETM treatment was considered the untreated control group. In 10 rats, diode laser irradiation was performed on the buccal and palatal sides of the first molar for 90 s with a total energy of 100.8 J/cm2. A near-infrared (NIR) laser with a 808 nm wavelength, 7 W peak power, 560 W average power, and 20 ms pulse width was used for the experiment. We measured the number of facial groomings and vacuous chewing movements (VCMs) in the ETM and ETM + laser groups. Immunohistochemical staining of the periodontal tissue with SP, CGRP, and HSP 70 was performed. The number of facial grooming and VCM periods significantly decreased in the ETM + laser group compared to the ETM group. Moreover, the ETM + laser group demonstrated significant suppression of SP, CGRP, and HSP 70 expression. These results suggest that the diode laser demonstrated analgesic effects on ETM-induced pain by inhibiting SP and CGRP expression, and decreased HSP 70 expression shows alleviation of cell damage. Thus, although further validation is warranted for human applications, an NIR diode laser can be used for reducing pain and neuropeptide markers during orthodontic tooth movement. Full article
(This article belongs to the Special Issue Advances in Photobiomodulation Therapy)
Show Figures

Figure 1

26 pages, 9475 KiB  
Article
Microalgae-Derived Vesicles: Natural Nanocarriers of Exogenous and Endogenous Proteins
by Luiza Garaeva, Eugene Tolstyko, Elena Putevich, Yury Kil, Anastasiia Spitsyna, Svetlana Emelianova, Anastasia Solianik, Eugeny Yastremsky, Yuri Garmay, Elena Komarova, Elena Varfolomeeva, Anton Ershov, Irina Sizova, Evgeny Pichkur, Ilya A. Vinnikov, Varvara Kvanchiani, Alina Kilasoniya Marfina, Andrey L. Konevega and Tatiana Shtam
Plants 2025, 14(15), 2354; https://doi.org/10.3390/plants14152354 - 31 Jul 2025
Viewed by 330
Abstract
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs [...] Read more.
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs for biomedical applications. In this study, the extracellular vesicles isolated from the culture medium of two unicellular microalgae, Chlamydomonas reinhardtii (Chlamy-EVs) and Parachlorella kessleri (Chlore-EVs), were characterized by atomic force microscopy (AFM), cryo-electronic microscopy (cryo-EM), and nanoparticle tracking analysis (NTA). The biocompatibility with human cells in vitro (HEK-293T, DF-2 and A172) and biodistribution in mouse organs and tissues in vivo were tested for both microalgal EVs. An exogenous therapeutic protein, human heat shock protein 70 (HSP70), was successfully loaded to Chlamy- and Chlore-EVs, and its efficient delivery to human glioma and colon carcinoma cell lines has been confirmed. Additionally, in order to search for potential therapeutic biomolecules within the EVs, their proteomes have been characterized. A total of 105 proteins were identified for Chlamy-EVs and 33 for Chlore-EVs. The presence of superoxide dismutase and catalase in the Chlamy-EV constituents allows for considering them as antioxidant agents. The effective delivery of exogenous cargo to human cells and the possibility of the particle yield optimization by varying the microalgae growth conditions make them favorable producers of EVs for biotechnology and biomedical application. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

12 pages, 1515 KiB  
Article
Expression of Heat Shock Protein 90 Genes Induced by High Temperature Mediated Sensitivity of Aphis glycines Matsumura (Hemiptera: Aphididae) to Insecticides
by Xue Han, Yulong Jia, Changchun Dai, Xiaoyun Wang, Jian Liu and Zhenqi Tian
Insects 2025, 16(8), 772; https://doi.org/10.3390/insects16080772 - 28 Jul 2025
Viewed by 361
Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), [...] Read more.
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), which are upregulated in response to heat stress to protect aphid development, also confer tolerance to other abiotic stressors, including insecticides. To investigate the role of HSPs in insecticide resistance in A. glycines, we analyzed the expression profiles of three AgHsp90 genes (AgHsp75, AgHsp83, and AgGrp94) following exposure to high temperatures and insecticides. Functional validation was performed using RNA interference (RNAi) to silence AgHsp90 genes. Our results demonstrated that AgHsp90 genes were significantly upregulated under both heat and insecticide stress conditions. Furthermore, after feeding on dsRNA of AgHsp90 genes, mortality rates of A. glycines significantly increased when exposed to imidacloprid and lambda-cyhalothrin. This study provides evidence that AgHsp90 genes play a crucial role in mediating thermal tolerance and insecticide resistance in A. glycines. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

13 pages, 643 KiB  
Review
Heat Shock Protein 70 in Cold-Stressed Farm Animals: Implications for Viral Disease Seasonality
by Fanzhi Kong, Xinyue Zhang, Qi Xiao, Huilin Jia and Tengfei Jiang
Microorganisms 2025, 13(8), 1755; https://doi.org/10.3390/microorganisms13081755 - 27 Jul 2025
Viewed by 377
Abstract
The seasonal patterns of viral diseases in farm animals present significant challenges to global livestock productivity, with cold stress emerging as a potential modulator of host–pathogen interactions. This review synthesizes current knowledge on the expression dynamics of heat shock protein 70 (HSP70) in [...] Read more.
The seasonal patterns of viral diseases in farm animals present significant challenges to global livestock productivity, with cold stress emerging as a potential modulator of host–pathogen interactions. This review synthesizes current knowledge on the expression dynamics of heat shock protein 70 (HSP70) in farm animals under cold-stress conditions and its potential roles as (1) a viral replication facilitator and (2) an immune response regulator. This review highlights cold-induced HSP70 overexpression in essential organs, as well as its effects on significant virus life cycles, such as porcine epidemic diarrhea virus (PEDV), porcine reproductive and respiratory syndrome virus (PRRSV), and bovine viral diarrhea virus (BVDV), through processes like viral protein chaperoning, replication complex stabilization, and host defense modulation. By integrating insights from thermophysiology, virology, and immunology, we suggest that HSP70 serves as a crucial link between environmental stress and viral disease seasonality. We also discuss translational opportunities targeting HSP70 pathways to break the cycle of seasonal outbreaks, while addressing key knowledge gaps requiring further investigation. This article provides a framework for understanding climate-driven disease patterns and developing seasonally adjusted intervention strategies. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

13 pages, 1599 KiB  
Article
Differential Expression of Hsp100 Gene in Scrippsiella acuminata: Potential Involvement in Life Cycle Transition and Dormancy Maintenance
by Fengting Li, Lixia Shang, Hanying Zou, Chengxing Sun, Zhangxi Hu, Ying Zhong Tang and Yunyan Deng
Diversity 2025, 17(8), 519; https://doi.org/10.3390/d17080519 - 26 Jul 2025
Viewed by 193
Abstract
Protein degradation plays a fundamental role in maintaining protein homeostasis and ensures proper cellular function by regulating protein quality and quantity. Heat shock protein 100 (Hsp100), found in bacteria, plants, and fungi, is a unique chaperone family responsible for rescuing misfolded proteins from [...] Read more.
Protein degradation plays a fundamental role in maintaining protein homeostasis and ensures proper cellular function by regulating protein quality and quantity. Heat shock protein 100 (Hsp100), found in bacteria, plants, and fungi, is a unique chaperone family responsible for rescuing misfolded proteins from aggregated states in an ATP-dependent manner. To date, they are primarily known to mediate heat stress adaptation and enhance cellular survival under extreme conditions in higher plants and algae. Resting cyst formation in dinoflagellates is widely recognized as a response to adverse conditions, which offers an adaptive advantage to endure harsh environmental extremes that are unsuitable for vegetative cell growth and survival. In this study, based on a full-length cDNA sequence, we characterized an Hsp100 gene (SaHsp100) from the cosmopolitan bloom-forming dinoflagellate Scrippsiella acuminata, aiming to examine its life stage-specific expression patterns and preliminarily explore its potential functions. The qPCR results revealed that Hsp100 transcript levels were significantly elevated in newly formed resting cysts compared to vegetative cells and continued to increase during storage under simulated marine sediment conditions (darkness, low temperature, and anoxia). Parallel reaction monitoring (PRM)-based quantification further confirmed that Hsp100 protein levels were significantly higher in resting cysts than in vegetative cells and increased after three months of storage. These findings collectively highlighted the fundamental role of Hsp100 in the alteration of the life cycle and dormancy maintenance of S. acuminata, likely by enhancing stress adaptation and promoting cell survival through participation in proteostasis maintenance, particularly under natural sediment-like conditions that trigger severe abiotic stress. Our work deepens the current understanding of Hsp family members in dinoflagellates, paving the way for future investigations into their ecological relevance within this ecologically significant group. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

16 pages, 3054 KiB  
Article
Naringenin Inhibits Enterotoxigenic Escherichia coli-Induced Ferroptosis via Targeting HSP90 in IPEC-J2 Cells
by Pengxin Jiang, Kangping Liu, Yanan Cui, Puyu Liu, Xutao Wang, Zijuan Hou, Jiamei Cui, Ning Chen, Jinghui Fan, Jianguo Li, Yuzhu Zuo and Yan Li
Antioxidants 2025, 14(8), 914; https://doi.org/10.3390/antiox14080914 - 25 Jul 2025
Viewed by 333
Abstract
Enterotoxigenic Escherichia coli (ETEC) leads to severe diarrhea in piglets. Naringenin (Nar), a natural flavonoid compound, is known for its antibacterial and anti-antioxidant properties. However, the protective effects of Nar against ETEC-induced diarrhea have not been reported yet. This study investigated the protective [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) leads to severe diarrhea in piglets. Naringenin (Nar), a natural flavonoid compound, is known for its antibacterial and anti-antioxidant properties. However, the protective effects of Nar against ETEC-induced diarrhea have not been reported yet. This study investigated the protective mechanisms of Nar against ETEC infection in porcine intestinal epithelial cells (IPEC-J2). ETEC infection induced oxidative stress and ferroptosis in IPEC-J2 cells by elevating intracellular iron content and ROS accumulation, increasing MDA levels, downregulating SOD activity and GPX4 expression, and upregulating the transcription of CHAC1 and SLC7A11. In contrast, Nar suppressed ETEC-induced ferroptosis of IPEC-J2 cells by inhibiting the SLC7A11/GPX4 pathway. Specifically, Nar mitigated mitochondrial damage, reduced intracellular iron levels and ROS accumulation, and ultimately reversed the oxidative stress. Network pharmacology and molecular docking identified heat-shock protein 90 (HSP90) as a potential target of Nar. Overexpression and knockdown experiments revealed that ETEC-induced ferroptosis was mediated by upregulation of HSP90, while the protective effects of Nar against ETEC-induced ferroptosis were dependent on the downregulation of HSP90. In conclusion, Nar targets host HSP90 to protect IPEC-J2 cells from ferroptosis caused by ETEC infection. This study demonstrates that Nar is a potent antioxidant natural compound with potential for preventing ETEC-induced intestinal damage. Full article
(This article belongs to the Special Issue Oxidative Stress in Livestock and Poultry—3rd Edition)
Show Figures

Figure 1

14 pages, 1664 KiB  
Article
Depletion of IGFALS Serum Level up to 3 Months After Cardiac Surgery, with Exploration of Potential Relationships to Surrogates of Organ Failures and Clinical Outcomes
by Krzysztof Laudanski, Mohamed A. Mahmoud, Hossam Gad and Daniel A. Diedrich
Curr. Issues Mol. Biol. 2025, 47(8), 581; https://doi.org/10.3390/cimb47080581 - 23 Jul 2025
Viewed by 250
Abstract
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients [...] Read more.
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients undergoing elective cardiac surgery with implementation of cardiopulmonary bypass had their serum isolated at baseline, 24 h, seven days, and three months postoperatively to assess serum concentrations of IGFALS and insulin growth factor 1 (IGF-1). Markers of perioperative injury included troponin I (TnI), high-mobility group box 1 (HMGB-1), and heat shock protein 60 (Hsp-60). Inflammatory status was assessed via interleukin-6 (IL-6) and interleukin-8 (IL-8). Additionally, we measured in vitro cytokine production to viral stimulation of whole blood and monocytes. Surrogates of neuronal distress included neurofilament light chain (NF-L), total tau (τ), phosphorylated tau at threonine 181 (τp181), and amyloid β40 and β42. Renal impairment was defined by RIFLE criteria. Cardiac dysfunction was denoted by serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Serum IGFALS levels declined significantly after surgery and remained depressed even at 3 months. Administration of acetaminophen and acetylsalicylic acid differentiated IGFALS levels at the 24 h postoperatively. Serum IGFALS 24 h post-operatively correlated with production of cytokines by leukocytes after in vitro viral stimulation. Serum amyloid-β1-42 was significantly associated with IGFALS at baseline and 24 h post-surgery Patients discharged home had higher IGFALS levels at 28 days and 3 months than those discharged to healthcare facilities or who died. These findings suggest that IGFALS may serve as a prognostic biomarker for recovery trajectory and postoperative outcomes in cardiac surgery patients. Full article
(This article belongs to the Special Issue The Role of Neuroinflammation in Neurodegenerative Diseases)
Show Figures

Figure 1

26 pages, 1310 KiB  
Review
Combination Strategies with HSP90 Inhibitors in Cancer Therapy: Mechanisms, Challenges, and Future Perspectives
by Yeongbeom Kim, Su Yeon Lim, Hyun-Ouk Kim, Suk-Jin Ha, Jeong-Ann Park, Young-Wook Won, Sehyun Chae and Kwang Suk Lim
Pharmaceuticals 2025, 18(8), 1083; https://doi.org/10.3390/ph18081083 - 22 Jul 2025
Viewed by 553
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that plays a pivotal role in the stabilization and functional activation of numerous oncoproteins and signaling molecules essential for cancer cell survival and proliferation. Despite the extensive development and clinical evaluation of HSP90 inhibitors, [...] Read more.
Heat shock protein 90 (HSP90) is a molecular chaperone that plays a pivotal role in the stabilization and functional activation of numerous oncoproteins and signaling molecules essential for cancer cell survival and proliferation. Despite the extensive development and clinical evaluation of HSP90 inhibitors, their therapeutic potential as monotherapies has been limited by suboptimal efficacy, dose-limiting toxicity, and the emergence of drug resistance. Recent studies have demonstrated that combination therapies involving HSP90 inhibitors and other anticancer agents such as chemotherapeutics, targeted therapies, and immune checkpoint inhibitors can enhance anticancer activity, overcome resistance mechanisms, and modulate the tumor microenvironment. These synergistic effects are mediated by the concurrent degradation of client proteins, the disruption of signaling pathways, and the enhancement of antitumor immunity. However, the successful clinical implementation of such combination strategies requires the careful optimization of dosage, administration schedules, toxicity management, and patient selection based on predictive biomarkers. In this review, we provide a comprehensive overview of the mechanistic rationale, preclinical and clinical evidence, and therapeutic challenges associated with HSP90 inhibitor-based combination therapies. We also discuss future directions leveraging emerging technologies including multi-omics profiling, artificial intelligence, and nanoparticle-mediated delivery for the development of personalized and effective combination regimens in oncology. Full article
Show Figures

Graphical abstract

21 pages, 2144 KiB  
Article
In Vitro Release and In Vivo Study of Recombinant TGF-β and EGCG from Dual Self-Cross-Linked Alginate-Di-Aldehyde In Situ Injectable Hydrogel for the Repair of a Degenerated Intervertebral Disc in a Rat Tail
by Bushra Begum, Seema Mudhol, Baseera Begum, Syeda Noor Madni, Sharath Honganoor Padmanabha, Vazir Ashfaq Ahmed and N. Vishal Gupta
Gels 2025, 11(8), 565; https://doi.org/10.3390/gels11080565 - 22 Jul 2025
Viewed by 268
Abstract
Background and Objective: Intervertebral disc degeneration (IVDD) is a leading cause of lower back pain with limited regenerative treatments. Among emerging regenerative approaches, growth factor-based therapies, such as recombinant human transforming growth factor-beta (Rh-TGF-β), have shown potential for disc regeneration but are [...] Read more.
Background and Objective: Intervertebral disc degeneration (IVDD) is a leading cause of lower back pain with limited regenerative treatments. Among emerging regenerative approaches, growth factor-based therapies, such as recombinant human transforming growth factor-beta (Rh-TGF-β), have shown potential for disc regeneration but are hindered by rapid degradation and uncontrolled release by direct administration. Additionally, mechanical stress elevates heat shock protein 90 (HSP-90), impairing cell function and extracellular matrix (ECM) production. This study aimed to investigate a dual self-cross-linked alginate di-aldehyde (ADA) hydrogel system for the sustained delivery of Rh-TGF-β and epigallocatechin gallate (EGCG) to enhance protein stability, regulate release, and promote disc regeneration by targeting both regenerative and stress-response pathways. Methods: ELISA and UV-Vis spectrophotometry assessed Rh-TGF-β and EGCG release profiles. A rat tail IVDD model was established with an Ilizarov-type external fixator for loading, followed by hydrogel treatment with or without bioactive agents. Disc height, tissue structure, and protein expression were evaluated via radiography, histological staining, immunohistochemistry, and Western blotting. Results: The hydrogel demonstrated a biphasic release profile with 100% Rh-TGF-β released over 60 days and complete EGCG release achieved within 15 days. Treated groups showed improved disc height, structural integrity, and proteoglycan retention revealed by histological analysis and elevated HSP-90 expression by immunohistochemistry. In contrast, Western blot analysis confirmed that EGCG effectively downregulated HSP-90 expression, suggesting a reduction in mechanical stress-induced degeneration. Conclusions: ADA hydrogel effectively delivers therapeutic agents, offering a promising strategy for IVDD treatment. Full article
Show Figures

Figure 1

Back to TopTop