Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = Holy basil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2562 KiB  
Article
Comparative Stability and Anesthetic Evaluation of Holy Basil Essential Oil Formulated in SNEDDS and Microemulsion Systems in Cyprinus carpio var. Koi
by Kantaporn Kheawfu, Chuda Chittasupho, Surachai Pikulkaew, Wasana Chaisri and Taepin Junmahasathien
Pharmaceutics 2025, 17(8), 997; https://doi.org/10.3390/pharmaceutics17080997 (registering DOI) - 31 Jul 2025
Viewed by 36
Abstract
Background/Objectives: Holy basil (Ocimum tenuiflorum L.) essential oil exhibits antioxidant, antimicrobial, and anesthetic activities, mainly due to eugenol, methyl eugenol, and β-caryophyllene. However, its clinical application is limited by poor water solubility, instability, and low bioavailability. This study developed and compared two [...] Read more.
Background/Objectives: Holy basil (Ocimum tenuiflorum L.) essential oil exhibits antioxidant, antimicrobial, and anesthetic activities, mainly due to eugenol, methyl eugenol, and β-caryophyllene. However, its clinical application is limited by poor water solubility, instability, and low bioavailability. This study developed and compared two delivery systems, self-nanoemulsifying drug delivery systems (SNEDDS) and microemulsions (ME), to enhance their stability and fish anesthetic efficacy. Methods: The optimized SNEDDS (25% basil oil, 8.33% coconut oil, 54.76% Tween 80, 11.91% PEG 400) and ME (12% basil oil, 32% Tween 80, 4% sorbitol, 12% ethanol, 40% water) were characterized for droplet size, PDI, zeta potential, pH, and viscosity. Stability was evaluated by monitoring droplet size and PDI over time and by determining the retention of eugenol, methyl eugenol, and β-caryophyllene after storage at 45 °C. Fish anesthetic efficacy was tested in koi carp (Cyprinus carpio var. koi). Results: SNEDDS maintained a small droplet size (~22.78 ± 1.99 nm) and low PDI (0.188 ± 0.088 at day 60), while ME showed significant size enlargement (up to 177.10 ± 47.50 nm) and high PDI (>0.5). After 90 days at 45 °C, SNEDDS retained 94.45% eugenol, 94.08% methyl eugenol, and 88.55% β-caryophyllene, while ME preserved 104.76%, 103.53%, and 94.47%, respectively. In vivo testing showed that SNEDDS achieved faster anesthesia (114.70 ± 24.80 s at 120 ppm) and shorter recovery (379.60 ± 15.61 s) than ME (134.90 ± 4.70 s; 473.80 ± 16.94 s). Ethanol failed to induce anesthesia at 40 ppm and performed poorly compared to SNEDDS and ME at other concentrations (p < 0.0001). Conclusions: SNEDDS demonstrated superior physical stability and fish anesthetic performance compared to ME. These findings support SNEDDS as a promising formulation for delivering holy basil essential oil in biomedical and aquaculture applications. Full article
(This article belongs to the Special Issue Applications of Nanotechnology in Veterinary Drug Delivery)
Show Figures

Figure 1

21 pages, 848 KiB  
Review
Food-Derived Phytochemicals: Multicultural Approaches to Oxidative Stress and Immune Response
by Eiger Gliozheni, Yusuf Salem, Eric Cho, Samuel Wahlstrom, Dane Olbrich, Brandon Shams, Michael Alexander and Hirohito Ichii
Int. J. Mol. Sci. 2025, 26(15), 7316; https://doi.org/10.3390/ijms26157316 - 29 Jul 2025
Viewed by 181
Abstract
This review will focus on how ethnic consumption of foods such as shiitake, ginseng, turmeric, black seeds, berries, rosemary, moringa and holy basil can help act as antioxidants and immune modulators in fighting many diseases. We will investigate how these foods act on [...] Read more.
This review will focus on how ethnic consumption of foods such as shiitake, ginseng, turmeric, black seeds, berries, rosemary, moringa and holy basil can help act as antioxidants and immune modulators in fighting many diseases. We will investigate how these foods act on pathways like Nrf2/Keap1 to increase endogenous antioxidant capacity and help in reducing ROS production, based on publications found in PubMed between 1994 and 2024. In addition, we will show how these plants can cause immune system shifts by changing the makeup of the ratio of Th1/Th2 cells, reduce inflammation, and have antiangiogenic effects on cancer. This review will also show how plants can alter the gut microbiota and lead to a further decrease in oxidative stress. Overall, it will show how plants and their metabolites can potentially create a path forward for creating novel therapeutic approaches and help lead to an improved redox balance, support immune function, and enhance long-term health outcomes. Full article
Show Figures

Figure 1

23 pages, 6001 KiB  
Article
Quantification of Flavonoid Contents in Holy Basil Using Hyperspectral Imaging and Deep Learning Approaches
by Apichat Suratanee, Panita Chutimanukul and Kitiporn Plaimas
Appl. Sci. 2025, 15(13), 7582; https://doi.org/10.3390/app15137582 - 6 Jul 2025
Viewed by 353
Abstract
Holy basil (Ocimum tenuiflorum L.) is a medicinal herb rich in bioactive flavonoids with therapeutic properties. Traditional quantification methods rely on time-consuming and destructive extraction processes, whereas hyperspectral imaging provides a rapid, non-destructive alternative by analysing spectral signatures. However, effectively linking hyperspectral [...] Read more.
Holy basil (Ocimum tenuiflorum L.) is a medicinal herb rich in bioactive flavonoids with therapeutic properties. Traditional quantification methods rely on time-consuming and destructive extraction processes, whereas hyperspectral imaging provides a rapid, non-destructive alternative by analysing spectral signatures. However, effectively linking hyperspectral data to flavonoid levels remains a challenge for developing early detection tools before harvest. This study integrates deep learning with hyperspectral imaging to quantify flavonoid contents in 113 samples from 26 Thai holy basil cultivars collected across diverse regions of Thailand. Two deep learning architectures, ResNet1D and CNN1D, were evaluated in combination with feature extraction techniques, including wavelet transformation and Gabor-like filtering. ResNet1D with wavelet transformation achieved optimal performance, yielding an area under the receiver operating characteristic curve (AUC) of 0.8246 and an accuracy of 0.7702 for flavonoid content classification. Cross-validation demonstrated the model’s robust predictive capability in identifying antioxidant-rich samples. Samples with the highest predicted flavonoid content were identified, and cultivars exhibiting elevated levels of both flavonoids and phenolics were highlighted across various regions of Thailand. These findings demonstrate the predictive capability of hyperspectral data combined with deep learning for phytochemical assessment. This approach offers a valuable tool for non-destructive quality evaluation and supports cultivar selection for higher phytochemical content in breeding programs and agricultural applications. Full article
Show Figures

Figure 1

18 pages, 2181 KiB  
Article
Development of High-Pressure Extraction and Automatic Steam Distillation Methods for Aronia mitschurinii, Juvenile Ginger, and Holy Basil Plants
by Sara Lahoff, Ezra E. Cable, Ryan Buzzetto-More and Victoria V. Volkis
Molecules 2025, 30(10), 2199; https://doi.org/10.3390/molecules30102199 - 17 May 2025
Viewed by 1132
Abstract
Sample preparation is the most time-consuming part of phytochemical, agricultural chemical, and food science studies and is constantly being improved. This includes the development of modern extraction methods, such as high-pressure extraction and automatic steam distillation. These methods feature high reproducibility, low time [...] Read more.
Sample preparation is the most time-consuming part of phytochemical, agricultural chemical, and food science studies and is constantly being improved. This includes the development of modern extraction methods, such as high-pressure extraction and automatic steam distillation. These methods feature high reproducibility, low time consumption, and the ability to run several parallel samples. However, the ideal parameters for processing plant materials using these methods have not been fully explored. These parameters include those that produce the highest yield and those that produce yields comparable to less modern extraction techniques, which would allow for a comparison of data to a wide range of preexisting data obtained from plant materials in different growing locations and climates. As such, this study examined extracts produced by reflux extraction, high-pressure extraction, and traditional and automatic steam distillation for three plants: aronia, holy basil, and juvenile ginger. High-pressure extraction methods were developed to produce extracts similar to those produced by reflux extraction, while automatic distillation methods were developed to produce high essential oil yields. The automatic steam distillation yields were 55.81 ± 1.97 mg/g of holy basil, 61.52 ± 0.61 mg/g of ginger, and 45.79 ± 1.38 mg/g of aronia. The high-pressure extraction yields were 11.09 ± 1.46 mg GAE/g of holy basil, 154.50 ± 17.10 mg of anthocyanins/mL of aronia, 6.60 ± 0.55 mg GAE/g of ginger, and 3.27 ± 0.25 mg GAE/g of ginger. These were compared to reflux yields of 32.71 ± 5.22 mg GAE/g of holy basil, 253.00 ± 39.56 mg of anthocyanin/mL of aronia, and 3.34 ± 2.07 mg GAE/g of ginger. Full article
(This article belongs to the Special Issue Exploring the Natural Antioxidants in Foods)
Show Figures

Graphical abstract

18 pages, 2373 KiB  
Article
Yield, Bioactive Compounds, and Antioxidant Potential of Twenty-Three Diverse Microgreen Species Grown Under Controlled Conditions
by Bhornchai Harakotr, Lalita Charoensup, Panumart Rithichai, Yaowapha Jirakiattikul and Patlada Suthamwong
Resources 2025, 14(5), 71; https://doi.org/10.3390/resources14050071 - 27 Apr 2025
Viewed by 983
Abstract
Selecting suitable crop species is crucial for optimizing the productivity and nutritional content of microgreens. In this study, twenty-three diverse microgreen species, grown under controlled conditions, were analyzed for yield, bioactive compounds, and antioxidant activities. The microgreens were cultivated on a peat substrate [...] Read more.
Selecting suitable crop species is crucial for optimizing the productivity and nutritional content of microgreens. In this study, twenty-three diverse microgreen species, grown under controlled conditions, were analyzed for yield, bioactive compounds, and antioxidant activities. The microgreens were cultivated on a peat substrate in a controlled environment, with a growth period of 6 to 20 days from planting to harvest. Conditions were maintained at 25 ± 2 °C, a 16 h photoperiod, CO2 concentration of 1000 ppm, relative humidity of 60 ± 2%, and the LED light was set at 330 μmol/m2/s PPFD. Results from the analysis revealed that the yield, bioactive compounds, and antioxidant potential differed significantly among the twenty-three microgreen species. Unfortunately, the superior microgreens exhibiting greater values for all studied traits could not be identified. However, the principal component analysis (PCA) clustered red radish, rat-tailed radish, and Chinese kale microgreens, which were high in both yield and bioactive compounds. In contrast, red holy basil and lemon basil microgreens had high levels of these compounds but low yields. Additionally, a high level of anti-tyrosinase activity was observed in garland chrysanthemum, Chinese mustard, and Chinese cabbage microgreens. Therefore, these microgreen species can be utilized individually or in varying ratios to produce bioactive compounds in different concentrations that are suitable for various applications. The information presented in this study provides valuable insights for health-conscious consumers and growers for selecting superior species with functional implications. Full article
Show Figures

Graphical abstract

24 pages, 1700 KiB  
Article
Antifungal Efficacy of Essential Oils and Their Predominant Components Against Olive Fungal Pathogens
by Elena Petrović, Karolina Vrandečić, Jasenka Ćosić, Tamara Siber and Sara Godena
Agriculture 2025, 15(3), 340; https://doi.org/10.3390/agriculture15030340 - 4 Feb 2025
Cited by 1 | Viewed by 1780
Abstract
The antifungal effectiveness of essential oils (EOs) and their predominant components were tested on 14 phytopathogenic fungi isolated from olive trees. Commercial EOs from holy basil (Ocimum tenuiflorum L.), Chinese cinnamon (Cinnamomum aromaticum Ness), lemon (Citrus × limon), peppermint [...] Read more.
The antifungal effectiveness of essential oils (EOs) and their predominant components were tested on 14 phytopathogenic fungi isolated from olive trees. Commercial EOs from holy basil (Ocimum tenuiflorum L.), Chinese cinnamon (Cinnamomum aromaticum Ness), lemon (Citrus × limon), peppermint (Mentha × piperita L.), oregano (Origanum compactum Benth), and thyme (Thymus vulgaris L.) and components eugenol, e-cinnamaldehyde, limonene, menthol, carvacrol, and thymol were used. Antifungal efficacy was tested on six species from the Botryosphaeriaceae family: Botryosphaeria dothidea (Moug. ex Fr.) Ces. & De Not.; Diplodia mutila (Fr.) Fr.; D. seriata De Not.; Dothiorella iberica A.J.L. Phillips, J. Luque & A. Alves; Do. sarmentorum (Fr.) A.J.L. Phillips, Alves & Luque; and Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips. Other tested species included Biscogniauxia mediterranea (De Not.) Kuntze, B. nummularia (Bull.) Kuntze; Cytospora pruinosa Défago; Nigrospora gorlenkoana Novobr.; N. osmanthi Mei Wang & L. Cai; N. philosophiae-doctoris M. Raza, Qian Chen & L. Cai; Phaeoacremonium iranianum L. Mostert, Grafenhan, W. Gams & Crous; and Sordaria fimicola (Roberge ex Desm.) Ces. & De Not. The results show that Chinese cinnamon and oregano EOs, along with their components, completely inhibited the growth of all tested fungi, indicating their potential as biological control agents in sustainable agriculture. In contrast, the least effective treatments were the EOs derived from lemon and peppermint, as well as the components limonene, menthol, and thymol. Notably, the fungi Do. iberica and N. gorlenkoana were among the most sensitive to all the treatments applied. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

15 pages, 3342 KiB  
Article
Holy Basil (Ocimum sanctum L.) Flower and Fenofibrate Improve Lipid Profiles in Rats with Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD): The Role of Choline Metabolism
by Siraphat Taesuwan, Jakkapong Inchai, Konpong Boonyingsathit, Chanika Chimkerd, Kunchit Judprasong, Pornchai Rachtanapun, Chatchai Muanprasat and Chutima S. Vaddhanaphuti
Plants 2025, 14(1), 13; https://doi.org/10.3390/plants14010013 - 24 Dec 2024
Viewed by 1379
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to choline metabolism. The present study investigated the effect of holy basil (Ocimum sanctum L.) flower water extract (OSLY) on MASLD with choline metabolism as an underlying mechanism. Rats with high-fat diet (HFD)-induced MASLD [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to choline metabolism. The present study investigated the effect of holy basil (Ocimum sanctum L.) flower water extract (OSLY) on MASLD with choline metabolism as an underlying mechanism. Rats with high-fat diet (HFD)-induced MASLD received 250–1000 mg/kg bw of OSLY, fenofibrate, or fenofibrate + 1000 mg/kg OSLY combination. Biochemical parameters, choline metabolites, and one-carbon gene transcription were analyzed. OSLY and fenofibrate independently reduced serum LDL cholesterol (p < 0.02), liver cholesterol (p < 0.001), and liver triglyceride levels (p < 0.001) in HFD-fed rats. Only OSLY reduced signs of liver injury and increased serum HDL. Fenofibrate influenced choline metabolism by decreasing liver glycerophosphocholine (GPC; p = 0.04), as well as increasing betaine (p < 0.001) and the betaine:choline ratio (p = 0.02) in HFD-fed rats. Fenofibrate (vs. HFD) increased the expression of one-carbon metabolism genes Mthfd1l, Pemt, Smpd3, and Chka (p < 0.04). The OSLY treatment decreased liver GPC (500 mg dose; p = 0.03) and increased Smpd3 expression (1000 mg dose; p = 0.04). OSLY and fenofibrate showed weak synergistic effects on lipid and choline metabolism. Collectively, OSLY and fenofibrate independently improve lipid profiles in MASLD rats. The benefits of fenofibrate are partially mediated by choline/one-carbon metabolism, while those of OSLY are not mediated by this pathway. Holy basil flower extract merits further development as an alternative medicine for MASLD. Full article
Show Figures

Figure 1

17 pages, 3525 KiB  
Review
Harnessing the Antibacterial, Anti-Diabetic and Anti-Carcinogenic Properties of Ocimum sanctum Linn (Tulsi)
by Rakesh Arya, Hossain Md. Faruquee, Hemlata Shakya, Sheikh Atikur Rahman, Most Morium Begum, Sudhangshu Kumar Biswas, Md. Aminul Islam Apu, Md. Azizul Islam, Md. Mominul Islam Sheikh and Jong-Joo Kim
Plants 2024, 13(24), 3516; https://doi.org/10.3390/plants13243516 - 16 Dec 2024
Cited by 2 | Viewed by 5487
Abstract
Ocimum sanctum Linn (O. sanctum L.), commonly known as Holy Basil or Tulsi, is a fragrant herbaceous plant belonging to the Lamiaceae family. This plant is widely cultivated and found in north-central parts of India, several Arab countries, West Africa and tropical [...] Read more.
Ocimum sanctum Linn (O. sanctum L.), commonly known as Holy Basil or Tulsi, is a fragrant herbaceous plant belonging to the Lamiaceae family. This plant is widely cultivated and found in north-central parts of India, several Arab countries, West Africa and tropical regions of the Eastern World. Tulsi is known to be an adaptogen, aiding the body in adapting to stress by harmonizing various bodily systems. Revered in Ayurveda as the “Elixir of Life”, Tulsi is believed to enhance lifespan and foster longevity. Eugenol, the active ingredient present in Tulsi, is a l-hydroxy-2-methoxy-4-allylbenzene compound with diverse therapeutic applications. As concerns over the adverse effects of conventional antibacterial agents continue to grow, alternative therapies have gained prominence. Essential oils (EOs) containing antioxidants have a long history of utilization in traditional medicine and have gained increasing popularity over time. Numerous in vitro, in vivo and clinical studies have provided compelling evidence supporting the safety and efficacy of antioxidant EOs derived from medicinal plants for promoting health. This comprehensive review aims to highlight the scientific knowledge regarding the therapeutic properties of O. sanctum, focusing on its antibacterial, anti-diabetic, anti-carcinogenic, radioprotective, immunomodulatory, anti-inflammatory, cardioprotective, neurogenesis, anti-depressant and other beneficial characteristics. Also, the extracts of O. sanctum L. have the ability to reduce chronic inflammation linked to neurological disorders such as Parkinson’s and Alzheimer’s disease. The information presented in this review shed light on the multifaceted potential of Tulsi and its derivatives in maintaining and promoting health. This knowledge may pave the way for the development of novel therapeutic interventions and natural remedies that harness the immense therapeutic potential of Tulsi in combating various health conditions, while also providing valuable insights for further research and exploration in this field. Full article
Show Figures

Figure 1

27 pages, 3771 KiB  
Article
A Novel Supplement Consisting of Rice, Silkworm Pupae and a Mixture of Ginger and Holy Basil Improves Post-Stroke Cognitive Impairment
by Putthiwat Thongwong, Jintanaporn Wattanathorn and Wipawee Thukham-mee
Nutrients 2024, 16(23), 4144; https://doi.org/10.3390/nu16234144 - 29 Nov 2024
Cited by 1 | Viewed by 1310
Abstract
Backgrounds/Objectives: Despite the increasing importance of the condition of post-stroke cognitive impairment (PSCI), the current therapy efficacy is limited. Since oxidative stress and inflammation are targeted in anti-stroke therapy, we aimed to assess the protective effect against PSI of an orodispersible film loaded [...] Read more.
Backgrounds/Objectives: Despite the increasing importance of the condition of post-stroke cognitive impairment (PSCI), the current therapy efficacy is limited. Since oxidative stress and inflammation are targeted in anti-stroke therapy, we aimed to assess the protective effect against PSI of an orodispersible film loaded with silkworm pupae hydrolysate and a combined extract of holy basil and ginger (JP1), which show antioxidant, and anti-inflammation effects. Methods: Male Wistar rats (200–250 g) were administered JP1 at doses of 1, 10, and 100 mg/kg BW 45 min before a 6 h immobilization stress exposure for 14 days. Then, the right middle cerebral artery was permanently occluded (MCAO) and JP1 was continually administered for 21 days after MCAO. Spatial and non-spatial memory and the possible underlying mechanisms were also explored. Results: JP1 improved oxidative stress, inflammation, apoptosis, Erk signaling pathway, cholinergic function, and the growth of Lactobacillus and Bifidobacterium spp. in feces. These results suggest that JP1 improves PSCI, possibly involving the above mechanisms. Furthermore, serum corticosterone also decreased. Conclusions: Our results suggest that JP1 is a potential candidate for combating PSCI following exposure to stroke plus stress. However, a clear understanding of the precise active ingredient and the detailed mechanisms require further investigation. Full article
Show Figures

Figure 1

17 pages, 4877 KiB  
Article
In Vitro Morphogenesis of Tobacco: Modulation of Endogenous Growth Regulators by Tulsi (Holy Basil)
by Vanessa Vongnhay, Mukund R. Shukla, Murali-Mohan Ayyanath, Karthika Sriskantharajah and Praveen K. Saxena
Plants 2024, 13(14), 2002; https://doi.org/10.3390/plants13142002 - 22 Jul 2024
Cited by 1 | Viewed by 1389
Abstract
Plant growth regulators (PGRs) play a vital role in the induction of morphogenesis in vitro. Synthetic PGRs are commonly used to induce organogenesis and somatic embryogenesis from various explants, while natural substances are rarely utilized. This study aimed to enhance the regenerative response [...] Read more.
Plant growth regulators (PGRs) play a vital role in the induction of morphogenesis in vitro. Synthetic PGRs are commonly used to induce organogenesis and somatic embryogenesis from various explants, while natural substances are rarely utilized. This study aimed to enhance the regenerative response in Nicotiana tabacum leaf explants using Tulsi (Ocimum sanctum) leaf extract and to elucidate the biochemical interactions during modulation of endogenous plant growth regulators, including indole-3-acetic acid (IAA), abscisic acid (ABA), zeatin, and 6-(γ, γ-dimethylallylamino) purine (2iP). Tulsi leaf extract significantly improved shoot production through interactions between endogenous hormones and those present in the extract, which enhanced stress mitigation. The 20% Tulsi leaf extract treatment produced significantly more shoots than the control, coinciding with increased endogenous IAA and zeatin levels starting on day 10 in culture. Furthermore, ABA and zeatin concentrations increased on days 15 and 25, respectively, in the 20% Tulsi extract treatment, suggesting their role in the induction of somatic embryo-like structures. ABA likely acts as an activator of stress responses, encouraging the development of these structures. Additionally, 2iP was involved in the induction of both forms of regeneration in the 10% and 20% extract treatments, especially in combination with ABA. These results suggest that Tulsi leaf extract holds promising potential as a natural supplement for increasing plant regeneration in vitro and advancing our understanding of how natural extracts of plant origin can be harnessed to optimize plant regeneration processes in vitro. Full article
(This article belongs to the Special Issue In Vitro Morphogenesis of Plants)
Show Figures

Figure 1

17 pages, 2115 KiB  
Article
Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi (Ocimum sanctum L.)
by Vanessa Vongnhay, Mukund R. Shukla, Murali-Mohan Ayyanath, Karthika Sriskantharajah and Praveen K. Saxena
Plants 2024, 13(10), 1370; https://doi.org/10.3390/plants13101370 - 15 May 2024
Cited by 2 | Viewed by 1728
Abstract
The medicinal plant tulsi (Ocimum sanctum L.) is acknowledged for its invigorating and healing properties that enhance resilience to stress in various human and animal models by modulating antioxidant compounds. While extensive research has documented these effects in humans, the adaptogenic potential [...] Read more.
The medicinal plant tulsi (Ocimum sanctum L.) is acknowledged for its invigorating and healing properties that enhance resilience to stress in various human and animal models by modulating antioxidant compounds. While extensive research has documented these effects in humans, the adaptogenic potential of tulsi in stressful in vitro plant systems has not been explored. This study aimed to elucidate the adaptogenic properties of tulsi leaf extract on the in vitro regeneration of tobacco leaf explants through an investigation of the indoleamines at different developmental stages. Shoot regeneration from leaf explants on the medium supplemented with tulsi extract (20%) was compared to the control, and the differences in indoleamine compounds were analyzed using ultra-performance liquid chromatography. Treatment of the explants with the extract resulted in an almost two-fold increase in the number of regenerants after four weeks of culture, and 9% of the regenerants resembled somatic embryo-like structures. The occurrence of browning in the extract-treated explants stopped on day 10, shoots began to develop, and a significant concentration of tryptamine and N-acetyl-serotonin accumulated. A comparative analysis of indoleamine compounds in intact and cut tobacco leaves also revealed the pivotal role of melatonin and 2-hydroxymelatonin functioning as antioxidants during stress adaptation. This study demonstrates that tulsi is a potent adaptogen that is capable of modulating plant morphogenesis in vitro, paving the way for further investigations into the role of adaptogens in plant stress biology. Full article
(This article belongs to the Special Issue In Vitro Morphogenesis of Plants)
Show Figures

Figure 1

16 pages, 8025 KiB  
Article
Phenotypic Variations and Bioactive Constituents among Selected Ocimum Species
by Sintayehu Musie Mulugeta, Zsuzsanna Pluhár and Péter Radácsi
Plants 2024, 13(1), 64; https://doi.org/10.3390/plants13010064 - 24 Dec 2023
Cited by 7 | Viewed by 2891
Abstract
Basil (Ocimum species) represents an extraordinary group of aromatic plants that have gained considerable economic importance, primarily due to their essential oils, which have applications in medicine, culinary, and perfumery. The Ocimum genus encompasses more than 60 species of herbs and shrubs [...] Read more.
Basil (Ocimum species) represents an extraordinary group of aromatic plants that have gained considerable economic importance, primarily due to their essential oils, which have applications in medicine, culinary, and perfumery. The Ocimum genus encompasses more than 60 species of herbs and shrubs originally native to tropical regions. This genus stands out for its remarkable diversity, displaying a wide spectrum of variations in phenotype, chemical composition, and genetic makeup. In addition to genetic factors, the growth, development, and essential oil production of basil are also influenced by environmental conditions, ontogeny, and various other factors. Consequently, the primary objective of this study was to explore the diversity in both the morphological characteristics and essential oil composition among basil genotypes preserved within the gene bank of the Hungarian University of Agriculture and Life Sciences’ Department of Medicinal and Aromatic Plants. The investigation involved the assessment of fifteen basil genotypes, representing four distinct species: Ocimum basilicum (including ‘Anise’, ‘Clove’, ‘Fino Verde’, ‘Licorice’, ‘Mammoth’, ‘Mrs. Burns’, ‘Thai tömzsi’, ‘Thai hosszú’, and ‘Vietnamese basil’), Ocimum sanctum (green holy basils), Ocimum citrodora (Lemon basil), and Ocimum gratissimum (African and Vana holy basil). The genotypes exhibited significant variations in their morphological growth, essential oil content (EOC), and composition. African basil produced more biomass (408.3 g/plant) and showed robust growth. The sweet basil cultivars clove, licorice, Thai tömzsi, and Thai hosszú also exhibited similar robust growth trends. Vietnamese basil, on the other hand, displayed the lowest fresh biomass of 82.0 g per plant. Both holy basils showed EOC levels below 0.5%, while Mrihani basil stood out with the highest EOC of 1.7%. The predominant constituents of the essential oil among these genotypes comprised estragole, thymol, methyl cinnamate, linalool, and eugenol. In conclusion, this study showed that the genotypes of basil stored in the department’s gene bank exhibit a wide range of variability, both within and between species. Full article
Show Figures

Figure 1

19 pages, 12278 KiB  
Article
Analysis of Antioxidant Capacity Variation among Thai Holy Basil Cultivars (Ocimum tenuiflorum L.) Using Density-Based Clustering Algorithm
by Tanapon Saelao, Panita Chutimanukul, Apichat Suratanee and Kitiporn Plaimas
Horticulturae 2023, 9(10), 1094; https://doi.org/10.3390/horticulturae9101094 - 1 Oct 2023
Cited by 5 | Viewed by 3338
Abstract
Holy basil (Ocimum tenuiflorum L.) is a widely renowned herb for its abundance of bioactive compounds and medicinal applications. Nevertheless, there exists a dearth of knowledge regarding the variability among holy basil cultivars capable of yielding substantial bioactive compounds. This study aims [...] Read more.
Holy basil (Ocimum tenuiflorum L.) is a widely renowned herb for its abundance of bioactive compounds and medicinal applications. Nevertheless, there exists a dearth of knowledge regarding the variability among holy basil cultivars capable of yielding substantial bioactive compounds. This study aims to address this gap by shedding light on the diversity of antioxidant capacities within different accessions of Thai holy basil by employing a density-based clustering algorithm to categorize the holy basil cultivars that demonstrate notable antioxidant potential. The study involves the analysis of the anthocyanin, flavonoid, phenolic, and terpenoid content, as well as DPPH antioxidant activity, in 26 Thai holy basil accessions collected from diverse locations in Thailand. Among the 26 tested Thai holy basil cultivars, terpenoids were found to be the dominant class of compounds, with average values of 707 mg/gDW, while the levels of flavonoids and phenolic compounds remained below 65 mg rutin/gDW and 46 mg GAE/gDW, respectively. The DPPH assay in holy basil cultivars demonstrated that the antioxidant activity ranged between 50% and 93%. After standardizing the data, the clustering results revealed four distinct groups of cultivars: the first group, with low antioxidant levels; the second group, with high terpenoid content; the third group, with high flavonoid, DPPH antioxidant activity, and phenolic content; and the fourth group, with elevated levels of anthocyanin, DPPH antioxidant activity, and phenolic content. A strong positive correlation was observed among DPPH antioxidant activity, flavonoids, and phenolics. Specific cultivars: The Red, OC108, and OC106 holy basil cultivars in cluster 4 exhibited high anthocyanin and phenolic production. In cluster 3, the accessions OC113, OC057, OC063, and OC059 showed high DPPH antioxidant activity, flavonoids, and phenolics, while, in cluster 2, only accessions from Udon Thani, Thailand—namely OC194 and OC195—displayed high terpenoid content. Ultimately, this study significantly contributes to the inherent diversity in the antioxidant capacities among various Thai holy basil cultivars. It lays the foundation for targeted breeding strategies and informed choices regarding consumption. The comprehensive insights from this analysis hold the potential to accurately identify holy basil cultivars with promising applications in medicine, functional foods, and the nutraceutical industry. Full article
Show Figures

Figure 1

28 pages, 2178 KiB  
Review
An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: “Elixir of Life”
by Mohammad Raghibul Hasan, Bader Saud Alotaibi, Ziyad Mohammed Althafar, Ahmed Hussain Mujamammi and Jafar Jameela
Molecules 2023, 28(3), 1193; https://doi.org/10.3390/molecules28031193 - 25 Jan 2023
Cited by 30 | Viewed by 9341
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of [...] Read more.
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of “queen of herbs” and “Elixir of Life” in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

12 pages, 2241 KiB  
Article
The Cultural and Commercial Value of Tulsi (Ocimum tenuiflorum L.): Multidisciplinary Approaches Focusing on Species Authentication
by Sukvinder Kaur Bhamra, Michael Heinrich, Mark R. D. Johnson, Caroline Howard and Adrian Slater
Plants 2022, 11(22), 3160; https://doi.org/10.3390/plants11223160 - 18 Nov 2022
Cited by 13 | Viewed by 9166
Abstract
Tulsi (Holy basil, Ocimum tenuiflorum L., Lamiaceae), native to Asia, has become globalised as the cultural, cosmetic, and medicinal uses of the herb have been popularised. DNA barcoding, a molecular technique used to identify species based on short regions of DNA, can discriminate [...] Read more.
Tulsi (Holy basil, Ocimum tenuiflorum L., Lamiaceae), native to Asia, has become globalised as the cultural, cosmetic, and medicinal uses of the herb have been popularised. DNA barcoding, a molecular technique used to identify species based on short regions of DNA, can discriminate between different species and identify contaminants and adulterants. This study aimed to explore the values associated with Tulsi in the United Kingdom (UK) and authenticate samples using DNA barcoding. A mixed methods approach was used, incorporating social research (i.e., structured interviews) and DNA barcoding of Ocimum samples using the ITS and trnH-psbA barcode regions. Interviews revealed the cultural significance of Tulsi: including origins, knowledge exchange, religious connotations, and medicinal uses. With migration, sharing of plants and seeds has been seen as Tulsi plants are widely grown in South Asian (SA) households across the UK. Vouchered Ocimum specimens (n = 33) were obtained to create reference DNA barcodes which were not available in databases. A potential species substitution of O. gratissimum instead of O. tenuiflorum amongst SA participants was uncovered. Commercial samples (n = 47) were difficult to authenticate, potentially due to DNA degradation during manufacturing processes. This study highlights the cultural significance of Tulsi, despite a potential species substitution, the plant holds a prestigious place amongst SA families in the UK. DNA barcoding was a reliable way to authenticate Ocimum species. Full article
(This article belongs to the Special Issue DNA Barcoding for Herbal Medicines)
Show Figures

Figure 1

Back to TopTop