Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = Hefei City

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3816 KiB  
Article
Charging Station Siting and Capacity Determination Based on a Generalized Least-Cost Model of Traffic Distribution
by Mingzhao Ma, Feng Wang, Lirong Xiong, Yuhonghao Wang and Wenxin Li
Algorithms 2025, 18(8), 479; https://doi.org/10.3390/a18080479 - 4 Aug 2025
Viewed by 106
Abstract
With the popularization of electric vehicles and the continuous expansion of the electric vehicle market, the construction and management of charging facilities for electric vehicles have become important issues in research and practice. In some remote areas, the charging stations are idle due [...] Read more.
With the popularization of electric vehicles and the continuous expansion of the electric vehicle market, the construction and management of charging facilities for electric vehicles have become important issues in research and practice. In some remote areas, the charging stations are idle due to low traffic flow, resulting in a waste of resources. Areas with high traffic flow may have fewer charging stations, resulting in long queues and road congestion. The purpose of this study is to optimize the location of charging stations and the number of charging piles in the stations based on the distribution of traffic flow, and to construct a bi-level programming model by analyzing the distribution of traffic flow. The upper-level planning model is the user-balanced flow allocation model, which is solved to obtain the optimal traffic flow allocation of the road network, and the output of the upper-level planning model is used as the input of the lower-layer model. The lower-level planning model is a generalized minimum cost model with driving time, charging waiting time, charging time, and the cost of electricity consumed to reach the destination of the trip as objective functions. In this study, an empirical simulation is conducted on the road network of Hefei City, Anhui Province, utilizing three algorithms—GA, GWO, and PSO—for optimization and sensitivity analysis. The optimized results are compared with the existing charging station deployment scheme in the road network to demonstrate the effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

28 pages, 2298 KiB  
Article
Spatial Correlation of Agricultural New Productive Forces and Strong Agricultural Province in Anhui Province of China
by Xingmei Jia, Mengting Yang and Tingting Zhu
Sustainability 2025, 17(15), 6719; https://doi.org/10.3390/su17156719 - 23 Jul 2025
Viewed by 496
Abstract
Developing agricultural new productive forces (ANPF) according to local conditions is a key strategy for agricultural modernization. Using panel data from 16 prefecture-level cities in Anhui Province from 2010 to 2022, this study constructed indicator systems for ANPF and the construction of a [...] Read more.
Developing agricultural new productive forces (ANPF) according to local conditions is a key strategy for agricultural modernization. Using panel data from 16 prefecture-level cities in Anhui Province from 2010 to 2022, this study constructed indicator systems for ANPF and the construction of a strong agricultural province (CSAP). The entropy-weight TOPSIS method was used to calculate the levels of ANPF and the SAP index. This study employed a modified gravity model and social network analysis (SNA) to investigate the spatial correlation and evolutionary characteristics of these networks. Geographical detectors were also used to identify the driving factors behind agricultural transformation. The findings indicate that both ANPF and CSAP showed an upward trend during the study period, with significant regional heterogeneity, with Central Anhui being the most prominent. This study revealed spatial spillover effects and strong network correlations between ANPF and CSAP, with the spatial network structure exhibiting characteristics of multi-core, multi-association, and multidimensional connections. The entities within the network are tightly connected, with no “isolated island” phenomenon, and Hefei, as the central hub, showed the highest number of connections. Laborer quality, tangible means of production, and new-quality industries emerged as the core driving forces, working in synergy to propel CSAP. This study contributes new insights into the spatial network dynamics of agricultural development and offers actionable recommendations for policymakers to enhance agricultural modernization globally. Full article
Show Figures

Figure 1

18 pages, 6313 KiB  
Article
Unveiling PM2.5 Transport Pathways: A Trajectory-Channel Model Framework for Spatiotemporally Quantitative Source Apportionment
by Yong Pan, Jie Zheng, Fangxin Fang, Fanghui Liang, Mengrong Yang, Lei Tong and Hang Xiao
Atmosphere 2025, 16(7), 883; https://doi.org/10.3390/atmos16070883 - 18 Jul 2025
Viewed by 247
Abstract
In this study, we introduced a novel Trajectory-Channel Transport Model (TCTM) to unravel spatiotemporal dynamics of PM2.5 pollution. By integrating high-resolution simulations from the Weather Research and Forecasting (WRF) model with the Nested Air-Quality Prediction Modeling System (WRF-NAQPMS) and 72 h backward-trajectory [...] Read more.
In this study, we introduced a novel Trajectory-Channel Transport Model (TCTM) to unravel spatiotemporal dynamics of PM2.5 pollution. By integrating high-resolution simulations from the Weather Research and Forecasting (WRF) model with the Nested Air-Quality Prediction Modeling System (WRF-NAQPMS) and 72 h backward-trajectory analysis, TCTM enables the precise identification of source regions, the delineation of key transport corridors, and a quantitative assessment of regional contributions to receptor sites. Focusing on four Yangtze River Delta cities (Hangzhou, Shanghai, Nanjing, Hefei) during a January 2020 pollution event, the results demonstrate that TCTM’s Weighted Concentration Source (WCS) and Source Pollution Characteristic Index (SPCI) outperform traditional PSCF and CWT methods in source-attribution accuracy and resolution. Unlike receptor-based statistical approaches, TCTM reconstructs pollutant transport processes, quantifies spatial decay, and assigns contributions via physically interpretable metrics. This innovative framework offers actionable insights for targeted air-quality management strategies, highlighting its potential as a robust tool for pollution mitigation planning. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

29 pages, 6641 KiB  
Article
Climate-Adaptive Passive Design Strategies for Near-Zero-Energy Office Buildings in Central and Southern Anhui, China
by Jun Xu, Yu Gao and Lizhong Yang
Sustainability 2025, 17(14), 6535; https://doi.org/10.3390/su17146535 - 17 Jul 2025
Viewed by 389
Abstract
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in [...] Read more.
Driven by the global energy transition and China’s dual-carbon targets, Passive ultra-low-energy buildings are a key route for carbon reduction in the construction sector. This study addresses the high energy demand of office buildings and the limited suitability of current efficiency codes in the hot-summer/cold-winter, high-humidity zone of central and southern Anhui. Using multi-year climate records and energy-use surveys from five cities and one scenic area (2013–2024), we systematically investigate climate-adaptive passive-design strategies. Climate-Consultant simulations identify composite envelopes, external shading, and natural ventilation as the three most effective measures. Empirical evidence confirms that optimized envelope thermal properties significantly curb heating and cooling loads; a Huangshan office-building case validates the performance of the proposed passive measures, while analysis of a near-zero-energy demonstration project in Chuzhou yields a coordinated insulation-and-heat-rejection scheme. The results demonstrate that region-specific passive design can provide a comprehensive technical framework for ultra-low-energy buildings in transitional climates and thereby supporting China’s carbon-neutrality targets. Full article
(This article belongs to the Special Issue Building Sustainability within a Smart Built Environment)
Show Figures

Figure 1

16 pages, 5691 KiB  
Article
Balancing Urban Expansion and Food Security: A Spatiotemporal Assessment of Cropland Loss and Productivity Compensation in the Yangtze River Delta, China
by Qiong Li, Yinlan Huang, Jianping Sun, Shi Chen and Jinqiu Zou
Land 2025, 14(7), 1476; https://doi.org/10.3390/land14071476 - 16 Jul 2025
Viewed by 284
Abstract
Cropland is a critical resource for safeguarding food security. Ensuring both the quantity and quality of cropland is essential for achieving zero hunger and promoting sustainable agriculture. However, whether urbanization-induced cropland loss poses a substantial threat to regional food security remains a key [...] Read more.
Cropland is a critical resource for safeguarding food security. Ensuring both the quantity and quality of cropland is essential for achieving zero hunger and promoting sustainable agriculture. However, whether urbanization-induced cropland loss poses a substantial threat to regional food security remains a key concern. This study examines the central region of the Yangtze River Delta (YRD) in China, integrating CLCD (China Land Cover Dataset) land use/cover data (2001–2023), MOD17A2H net primary productivity (NPP) data, and statistical records to evaluate the impacts of urban expansion on grain yield. The analysis focuses on three components: (1) grain yield loss due to cropland conversion, (2) compensatory yield from newly added cropland under the requisition–compensation policy, (3) yield increases from stable cropland driven by agricultural enhancement strategies. Using Sen’s slope analysis, the Mann–Kendall trend test, and hot/coldspot analysis, we revealed that urban expansion converted approximately 14,598 km2 of cropland, leading to a grain production loss of around 3.49 million tons, primarily in the economically developed cities of Yancheng, Nantong, Suzhou, and Shanghai. Meanwhile, 8278 km2 of new cropland was added through land reclamation, contributing only 1.43 million tons of grain—offsetting just 41% of the loss. In contrast, stable cropland (102,188 km2) contributed an increase of approximately 9.84 million tons, largely attributed to policy-driven productivity gains in areas such as Chuzhou, Hefei, and Ma’anshan. These findings suggest that while compensatory cropland alone is insufficient to mitigate the food security risks from urbanization, the combined strategy of “Safeguarding Grain in the Land and in Technology” can more than compensate for production losses. This study underscores the importance of optimizing land use policy, strengthening technological interventions, and promoting high-efficiency land management. It provides both theoretical insight and policy guidance for balancing urban development with regional food security and sustainable land use governance. Full article
(This article belongs to the Special Issue Land Use Policy and Food Security: 2nd Edition)
Show Figures

Figure 1

23 pages, 3705 KiB  
Article
Research on the Evaluation of the Node Cities of China Railway Express Based on Machine Learning
by Chenglin Ma, Mengwei Zhou, Wenchao Kang, Haolong Wang and Jiajia Feng
ISPRS Int. J. Geo-Inf. 2025, 14(7), 237; https://doi.org/10.3390/ijgi14070237 - 22 Jun 2025
Viewed by 440
Abstract
As a crucial component of the Belt and Road Initiative (BRI), China Railway Express (CR Express) plays a pivotal role in enhancing regional connectivity and economic integration. However, the systematic evaluation of CR Express node cities remains understudied, hindering the optimization of logistics [...] Read more.
As a crucial component of the Belt and Road Initiative (BRI), China Railway Express (CR Express) plays a pivotal role in enhancing regional connectivity and economic integration. However, the systematic evaluation of CR Express node cities remains understudied, hindering the optimization of logistics networks and sustainable development goals. This study pioneers a data-driven approach by integrating multi-source geospatial data and advanced machine learning algorithms to develop a comprehensive evaluation framework spanning five critical dimensions: economic vitality, ecological sustainability, logistics capacity, network connectivity, and policy support. By comparing the evaluation performance of six machine learning models, an optimal decision-making model is identified, and the evaluation indicators are rigorously screened to provide robust decision-support for the establishment of CR Express assembly centers. The Random Forest model outperformed comparative algorithms with 99.5% prediction accuracy (8.33% higher than conventional classification models), particularly in handling multi-dimensional interactions between urban development factors. Feature importance analysis identified 11 decisive indicators from node city evaluation empirical indicators, where CR Express trade volume (weight = 0.1269), logistics hub classification (weight = 0.1091), and operational frequency (weight = 0.0980) emerged as the top three predictors. Spatial predictions highlight five strategic cities (Changsha, Wuhan, Shenyang, Jinan, Hefei) as prime candidates for CR Express assembly centers, providing actionable insights for national logistics planning under the BRI framework. Full article
Show Figures

Figure 1

21 pages, 2500 KiB  
Article
A Study of Theoretical Modeling for Scavenging Coefficients of Polydisperse Aerosols Removed by Rainfall
by Xing Gao, Can Qi, Hongqiang Wang and Hui Zhu
Atmosphere 2025, 16(6), 634; https://doi.org/10.3390/atmos16060634 - 22 May 2025
Viewed by 353
Abstract
This paper incorporates various currently known collection mechanisms (including Brownian diffusion, interception effect, inertial impaction, thermophoresis, diffusiophoresis, and electrostatic interaction) into the calculation of the total collection efficiency to analyze their impacts on the scavenging coefficient. The turbulent effect is introduced into the [...] Read more.
This paper incorporates various currently known collection mechanisms (including Brownian diffusion, interception effect, inertial impaction, thermophoresis, diffusiophoresis, and electrostatic interaction) into the calculation of the total collection efficiency to analyze their impacts on the scavenging coefficient. The turbulent effect is introduced into the parametric study of the scavenging coefficient. Combining the local raindrop size distribution and aerosol size distribution, a theoretical prediction model for multi-fraction aerosol scavenging by rainfall is established and verified and corrected with measured data. The main conclusions are as follows: For particles within the accumulation mode range, the influence of the collision efficiency needs to be carefully considered. When studying the scavenging coefficient, it is necessary to combine the locally measured raindrop size distribution and aerosol size distribution. The influence of the aerosol size distribution on the scavenging coefficient under different seasonal conditions in the same area can be neglected. When the turbulent effect is introduced, the theoretical prediction is closer to the actual situation. In comparison with the actual measured PM2.5 values in Guangzhou City, Hefei City, and Tianjin City, the temporal variation characteristics of PM2.5 estimated by the theoretical model exhibit a substantial degree of consistency with the trends revealed by the measurement results. Additionally, a linear correlation is discernible between the scavenging coefficients obtained from field measurements in these three regions and those calculated by the theoretical model. Specifically, the equations of the linear relationships are Λs = 0.498 × 10−5 + 1.025Λm; Λs = 1.035Λm − 0.036 × 10−5; and Λs = 0.903Λm − 1.11 × 10−5. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

21 pages, 31442 KiB  
Article
A Study on the Visual Perception and Emotional Differences of Urban Residents Towards Urban Spatial Elements from the Perspective of Xiangchou—An Analysis of Xiaoyaojin Park in Hefei
by Zhen Xu and Ru Sun
Buildings 2025, 15(8), 1209; https://doi.org/10.3390/buildings15081209 - 8 Apr 2025
Viewed by 734
Abstract
With the acceleration of urbanization, the surge in urban population led to disorder in urban characteristics and appearance, triggering a conflict between Xiangchou and rapid urbanization. This study selected Xiaoyaojin Park in Hefei as a case study and, based on Kevin Lynch’s “Image [...] Read more.
With the acceleration of urbanization, the surge in urban population led to disorder in urban characteristics and appearance, triggering a conflict between Xiangchou and rapid urbanization. This study selected Xiaoyaojin Park in Hefei as a case study and, based on Kevin Lynch’s “Image of the City” theory, divided urban spatial elements into five categories: Paths, Edges, Districts, Nodes, and Landmarks. By using eye-tracking technology, this study compared and analyzed the visual preferences of local students in Hefei (Xiangchou) and non-local students (non-Xiangchou) for urban elements, and explored the elements that carried Xiangchou through semi-structured interviews. This research found that there were significant differences in visual behavior between the two groups, with the non-Xiangchou group spending more time looking at edge elements, while the Xiangchou group showed more pronounced visual differences concerning Landmarks and Nodes. Nevertheless, Landmarks served as an important carrier of Xiangchou for both groups. The findings provide a new perspective on urban renewal and transformation, emphasizing the need to start from the emotions of residents, and to embed or preserve urban memory points, in order to enhance urban recognizability. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

26 pages, 1877 KiB  
Article
Research on the Impact of Polycentric City Network on Economic Growth in the Yangtze River Delta Urban Agglomeration
by Yaxing Gu and Shukai Cai
Sustainability 2025, 17(7), 3267; https://doi.org/10.3390/su17073267 - 7 Apr 2025
Viewed by 635
Abstract
The Yangtze River Delta region is facing the demand for high-quality economic development, and the study of urban network as a manifestation of the interaction between cities is becoming increasingly important. This study focused on the node structure of the urban network in [...] Read more.
The Yangtze River Delta region is facing the demand for high-quality economic development, and the study of urban network as a manifestation of the interaction between cities is becoming increasingly important. This study focused on the node structure of the urban network in the Yangtze River Delta urban agglomeration from 2010 to 2021, used the modified gravity model to construct a polycentric city network from the perspective of economic flow, used the spatial Durbin model for spatial econometric analysis, and identified the conduction path through the two-step method of causal stepwise regression mediating effect test. The results show that Shanghai, as the core node city, has significantly promoted the economic development of Hangzhou, Nanjing, Hefei, and other cities and formed a metropolitan network structure characterized by “one core and five circles”. Under different spatial weight matrices, the polycentric city network has a significant positive impact on economic growth, and its impact is not only related to the economic level of the city itself but also closely related to the economic status of its neighboring cities. The polycentric city network significantly enhances economic growth by accelerating the flow of regional factors, promoting regional industrial division of labor and cooperation, and enhancing regional innovation capabilities. Full article
Show Figures

Figure 1

18 pages, 5650 KiB  
Article
The Influence of the Construction of the Bridge Pile Foundation on the Adjacent Operating Subway Tunnel Considering the Creep Characteristics of the Stratum
by Dandan Wu and Wentian Cui
Buildings 2025, 15(7), 1001; https://doi.org/10.3390/buildings15071001 - 21 Mar 2025
Viewed by 449
Abstract
The pile foundation construction adjacent to an operational subway tunnel can induce the creep effects of the surrounding soil of the tunnel, resulting in the deformation of the existing tunnel lining and potentially compromising the safe operation of the tunnel. Therefore, the Mindlin [...] Read more.
The pile foundation construction adjacent to an operational subway tunnel can induce the creep effects of the surrounding soil of the tunnel, resulting in the deformation of the existing tunnel lining and potentially compromising the safe operation of the tunnel. Therefore, the Mindlin solution and the generalized Kelvin viscoelasticity constitutive model were employed to establish the theoretical calculation model for the deformation of the adjacent subway tunnel caused by the pile construction. Then, the effect of pile construction on the deformation of adjacent tunnels under different pile–tunnel spacing was analyzed via three-dimensional numerical simulation and theoretical calculation methods and compared with the field monitoring data. The results showed that the theoretical and numerical data are in agreement with the field monitoring data. The theoretical model provides closer predictions to the field-measured values than the numerical simulation. As the distance between the pile and the tunnel increases, both the vertical settlement and the horizontal displacement of the subway tunnel lining exhibit a gradual reduction. In the hard plastic clay region of Hefei City (China), pile foundation construction near an operational subway tunnel can be classified into three distinct zones based on proximity to the tunnel: the high-impact zone (<1.0 D), the moderate-impact zone (1.0 D–3.0 D), and the low-impact zone (>3.0 D). The pile foundation in high-, moderate-, and low-impact zones should be monitored for 7 days, 3 days, and 1 day, respectively, to ensure the stable deformation of the lining. Full article
Show Figures

Figure 1

24 pages, 39930 KiB  
Article
Investigation on Thermal Environment of Urban Slow Lane Based on Mobile Measurement Method—A Case Study of Swan Lake Area in Hefei, China
by Mengyuan Li, Taotao Shui, Linpo Shi and Ruxue Cao
Buildings 2025, 15(3), 388; https://doi.org/10.3390/buildings15030388 - 26 Jan 2025
Viewed by 632
Abstract
Numerous issues with the urban thermal environment have been brought on by the rapid development of urbanization. The thermal climate of the slow lane, a major urban activity area, is directly tied to the well-being and comfort of city dwellers. The Swan Lake [...] Read more.
Numerous issues with the urban thermal environment have been brought on by the rapid development of urbanization. The thermal climate of the slow lane, a major urban activity area, is directly tied to the well-being and comfort of city dwellers. The Swan Lake area in Hefei was chosen as the research site for this paper. The mobile measurement method was used to determine the heat island intensity distribution of the slow lane in each season of the year. The effects of building density, the percentage of permeable underlying surface, and shading on the slow lane’s thermal environment were then thoroughly examined. According to the study, the distribution of heat island intensities along the mobile measurement route varies significantly depending on season, as well as time of year. Summer and winter have the most notable variations in the distribution of heat island intensities along the mobile measurement route; the summer values range from 0.1 to 4, while the winter values range from −0.3 to 3. The results showed a maximum difference of 30.2 °C in surface temperature (Ts) readings and 11.9 °C in air temperature (Ta) readings between the identical sites with and without shading, according to tests conducted at four typical mobile measurement locations along the mobile measuring route. The shading factor has a greater effect on the slow lane’s thermal environment than permeable underlying surface and building density, as seen by the standardized coefficient of shading being significantly higher than both of these factors. With a standardized coefficient of shading of −0.493 in the winter and a standardized coefficient of shading of −0.517 in the summer, the effect of the shading factor on the thermal environment is more noticeable in the summer. Full article
(This article belongs to the Special Issue Urban Climatic Suitability Design and Risk Management)
Show Figures

Figure 1

28 pages, 7399 KiB  
Article
Research on the Indoor Thermal Environment of Industrial Architectural Heritage Based on Human Thermal Comfort—A Case Study in Hefei (China) During Winter
by Qiguo Li, Yao Zhang and Chao Wen
Buildings 2025, 15(1), 62; https://doi.org/10.3390/buildings15010062 - 27 Dec 2024
Cited by 1 | Viewed by 908
Abstract
With the development of China’s social economy and urbanization, there is a significant stock of urban industrial architectural heritage. Considering the increasing demand for urban land and the renewal of idle sites, the reuse of industrial architectural heritage has become an important measure [...] Read more.
With the development of China’s social economy and urbanization, there is a significant stock of urban industrial architectural heritage. Considering the increasing demand for urban land and the renewal of idle sites, the reuse of industrial architectural heritage has become an important measure for urban development, while preserving the city’s industrial memory and the authenticity of architectural heritage. This paper conducts a reuse study on the industrial architectural heritage in Hefei based on human thermal comfort. The motor factory welding workshop and the diesel engine factory cylinder casting workshop in Hefei are selected as research objects. By measuring the physical parameters of the indoor thermal environment and the thermal comfort of human bodies before and after the renovation of these two workshops and by conducting data statistics and regression analyses on the measured data and questionnaire data, an actual mean thermal sensation MTS model of human thermal comfort in the indoor space of the industrial architectural heritage before and after reuse is established. This paper compares the neutral temperature, comfortable temperature range, and duration of thermal comfort at different times for the research objects; analyzes the reasons for the differences in the results; and draws conclusions from the comparative analysis, providing a theoretical basis for the practice of comfortable environment transformation of industrial architectural heritage. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 16291 KiB  
Article
Ecosystem Services Trade-Offs in the Chaohu Lake Basin Based on Land-Use Scenario Simulations
by Aibo Jin, Gachen Zhang, Ping Ma and Xiangrong Wang
Land 2024, 13(12), 2210; https://doi.org/10.3390/land13122210 - 17 Dec 2024
Cited by 2 | Viewed by 997
Abstract
Amid global environmental degradation, understanding the spatiotemporal dynamics and trade-offs of ecosystem services (ESs) under varying land-use scenarios is critical for advancing the sustainable development of social–ecological systems. This study analyzed the Chaohu Lake Basin (CLB), focusing on four scenarios: natural development (ND), [...] Read more.
Amid global environmental degradation, understanding the spatiotemporal dynamics and trade-offs of ecosystem services (ESs) under varying land-use scenarios is critical for advancing the sustainable development of social–ecological systems. This study analyzed the Chaohu Lake Basin (CLB), focusing on four scenarios: natural development (ND), economic priority (ED), ecological protection (EP), and sustainable development (SD). Using the PLUS model and multi-objective genetic algorithm (MOGA), land-use changes for 2030 were simulated, and their effects on ESs were assessed quantitatively and qualitatively. The ND scenario led to significant declines in cropland (3.73%) and forest areas (0.18%), primarily due to construction land expansion. The EP scenario curbed construction land growth, promoted ecosystem recovery, and slightly increased cropland by 0.05%. The SD scenario achieved a balance between ecological and economic goals, maintaining relative stability in ES provision. Between 2010 and 2020, construction land expansion, mainly concentrated in central Hefei City, led to a marked decline in habitat quality (HQ) and landscape aesthetics (LA), whereas water yield (WY) and soil retention (SR) improved. K-means clustering analysis identified seven ecosystem service bundles (ESBs), revealing significant spatial heterogeneity. Bundles 4 through 7, concentrated in mountainous and water regions, offered high biodiversity maintenance and ecological regulation. In contrast, critical ES areas in the ND and ED scenarios faced significant encroachment, resulting in diminished ecological functions. The SD scenario effectively mitigated these impacts, maintaining stable ES provision and ESB distribution. This study highlights the profound effects of different land-use scenarios on ESs, offering insights into sustainable planning and ecological restoration strategies in the CLB and comparable regions. Full article
Show Figures

Figure 1

24 pages, 12705 KiB  
Article
Site Selection of Elderly Care Facilities Based on Multi-Source Spatial Big Data and Integrated Learning
by Yin Zhang, Junhong Zhu, Fangyi Li and Yingjie Wang
ISPRS Int. J. Geo-Inf. 2024, 13(12), 451; https://doi.org/10.3390/ijgi13120451 - 15 Dec 2024
Cited by 2 | Viewed by 1492
Abstract
This study explores a method to improve the site selection for elderly care facilities in an aging region, using Hefei City, China, as the study area. It combines topographic conditions, population distribution, economic development status, and other multi-source spatial big data at a [...] Read more.
This study explores a method to improve the site selection for elderly care facilities in an aging region, using Hefei City, China, as the study area. It combines topographic conditions, population distribution, economic development status, and other multi-source spatial big data at a 500 m grid scale; constructs a prediction model for the suitability of sites for elderly care facilities based on integrated learning; and carries out a comprehensive evaluation and feature importance analysis. Finally, it uses trained random forest (RF) and gradient boosting decision tree (GBDT) models to predict preliminary site selection results for elderly care facilities. A second screening that compares three degrees of population aging is conducted to obtain the final site selection results. The results show the following: (1) The comprehensive evaluation indexes of the two integrated learning models, RF and GBDT, are above or below 80% as needed, which is better than the four single learning models. (2) The prediction results of the RF and GBDT models have 87.9% and 78.4% fit to existing elderly facilities, respectively, which indicates that the methods are reasonable and reliable. (3) The results of both the RF and GBDT models indicate that the closest distance to healthcare facilities and the size of the population distribution are the two most important factors affecting the location of elderly care facilities. (4) The results of the preliminary site selection show an overall spatial distribution of higher suitability in the main urban area and lower suitability in the suburban counties. The secondary screening finds that priority needs to be given to the periphery of the main urban area and to Lujiang County and other surrounding townships that have a more serious degree of aging as soon as possible in the site selection of new elderly care facilities. Full article
Show Figures

Figure 1

25 pages, 14722 KiB  
Article
Analyzing the Supply and Demand Dynamics of Urban Green Spaces Across Diverse Transportation Modes: A Case Study of Hefei City’s Built-Up Area
by Kang Gu, Jiamei Liu, Di Wang, Yue Dai and Xueyan Li
Land 2024, 13(11), 1937; https://doi.org/10.3390/land13111937 - 17 Nov 2024
Cited by 1 | Viewed by 1555
Abstract
With the increasing demands of urban populations, achieving a balance between the supply and demand in the spatial allocation of urban green park spaces (UGSs) is essential for effective urban planning and improving residents’ quality of life. The study of UGS supply and [...] Read more.
With the increasing demands of urban populations, achieving a balance between the supply and demand in the spatial allocation of urban green park spaces (UGSs) is essential for effective urban planning and improving residents’ quality of life. The study of UGS supply and demand balance has become a research hotspot. However, existing studies of UGS supply and demand balance rarely simultaneously improve the supply side, demand side, and transportation methods that connect the two, nor do they conduct a comprehensive, multi-dimensional supply and demand evaluation. Therefore, this study evaluates the accessibility of UGS within Hefei’s built-up areas, focusing on age-specific demands for UGS and incorporating various travel modes, including walking, cycling, driving, and public transportation. An improved two-step floating-catchment area (2SFCA) method is applied to evaluate the accessibility of UGS in Hefei’s built-up areas. This evaluation combines assessments using the Gini coefficient, Lorenz curve, location entropy, and local spatial autocorrelation analysis, utilizing the ArcGIS 10.8 and GeoDa 2.1 platforms. Together, these methods enable a supply–demand balance analysis of UGSs to identify areas needing improvement and propose corresponding strategies. The research results indicate the following: (1) from a regional perspective, there are significant disparities in the accessibility of UGS within Hefei’s urban center, with the old city showing more imbalance than the new city. Areas with high demand and low supply are primarily concentrated in the old city, which require future improvement; (2) in terms of travel modes, higher-speed travel (such as driving) offers better and more equitable accessibility compared to slower modes (such as walking), highlighting transportation as a critical factor influencing accessibility; (3) regarding population demand, there is an overall balance in the supply of UGS, with local imbalances observed in the needs of residents across different age groups. Due to the high specific demand for UGS among older people and children, the supply and demand levels in these two age groups are more consistent. This study offers valuable insights for achieving the balanced, efficient, and sustainable development of the social benefits of UGS. Full article
Show Figures

Figure 1

Back to TopTop