Ecosystem Services Trade-Offs in the Chaohu Lake Basin Based on Land-Use Scenario Simulations
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources and Pre-Processing
3. Methods
3.1. Multi-Scenario Simulations of LULC
3.1.1. Multi-Scenario Settings
3.1.2. The PLUS Model
3.2. ES Trade-Off Synergies
3.2.1. Evaluation of ESs
3.2.2. Correlation Analysis of ESs
3.3. ESBs Identification and Mapping
4. Results
4.1. Multi-Scenario Simulation of LULC
4.1.1. Multi-Scenario LULC Area Projections
4.1.2. Spatial Dynamics of Land Use Under Multi-Scenario Projections
4.2. Trade-Offs and Synergies in ESs
4.2.1. Spatial and Temporal Patterns of ESs Under Historical and Scenario-Based LULC Simulations
4.2.2. Patterns of Trade-Offs and Synergies in ESs
4.3. ESBs Characteristics and Changes
4.3.1. Characterization and Spatial Distribution of ESBs
4.3.2. Spatiotemporal Changes in ESBs Under Multi-Scenario
5. Discussion
5.1. Spatial Heterogeneity and Land-Use Impact on ESs
5.2. Trade-Offs and Synergies Among ESs Under Future Land-Use Scenarios
5.3. Ecological Conservation and Sustainable Development of ESs in the CLB
5.4. Limitations and Future Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Wang, Z.F. Evolving landscape-urbanization relationships in contemporary China. Landsc. Urban Plan. 2018, 171, 30–41. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Lai, C.; Lin, G. Quantitative assessment of the relative impacts of climate change and human activity on flood susceptibility based on a cloud model. J. Hydrol. 2020, 588, 125051. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.N.; Ou, W.X.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
- MEA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Rao, E. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Chen, M.; Lin, G. How Perceived Sensory Dimensions of Urban Green Spaces Affect Cultural Ecosystem Benefits: A Study on Haizhu Wetland Park, China. Urban For. Urban Green. 2023, 86, 127983. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the Impacts of Natural and Human Factors on Ecosystem Service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Moss, E.D.; Evans, D.M.; Atkins, J.P. Investigating the impacts of climate change on ecosystem services in UK agro-ecosystems: An application of the DPSIR framework. Land Use Policy 2021, 105, 105394. [Google Scholar] [CrossRef]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Li, Q.; Yang, L.; Jiao, H.; He, Q. Spatiotemporal Analysis of the Impacts of Land Use Change on Ecosystem Service Value: A Case from Guiyang, China. Land 2024, 13, 211. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier. China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Ouyang, X.; Xu, J.; Li, J.Y.; Wei, X.; Li, Y.H. Land space optimization of urban-agriculture-ecological functions in the Changsha-Zhuzhou-Xiangtan Urban Agglomeration, China. Land Use Policy 2022, 117, 106112. [Google Scholar] [CrossRef]
- Li, Y.; Yao, S.; Jiang, H.; Wang, H.; Ran, Q.; Gao, X.; Ding, X.; Ge, D. Spatial-temporal evolution and prediction of carbon storage: An integrated framework based on the MOP–PLUS–InVEST model and an applied case study in Hangzhou, East China. Land 2022, 11, 2213. [Google Scholar] [CrossRef]
- Zhao, M.M.; He, Z.B.; Du, J.; Chen, L.F.; Lin, P.F.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Xu, W.; Xu, H.; Li, X.; Qiu, H.; Wang, Z. Ecosystem services response to future land use/cover change (LUCC) under multiple scenarios: A case study of the Beijing-Tianjin-Hebei (BTH) region, China. Technol. Forecast. Soc. Chang. 2024, 205, 123525. [Google Scholar]
- Wang, Z.; Gao, Y.; Wang, X.; Lin, Q.; Li, L. A new approach to land use optimization and simulation considering urban development sustainability: A case study of Bortala, China. Sustain. Cities Soc. 2022, 87, 104135. [Google Scholar] [CrossRef]
- Rodriguez, J.P.; Beard, T.D.; Bennett, E.M.; Cumming, G.S.; Cork, S.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 28. [Google Scholar] [CrossRef]
- Bennett, E.M.; Balvanera, P. The future of production systems in a globalized world. Front. Ecol. Environ. 2007, 5, 191–198. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef]
- Kareiva, P.; Watts, S.; McDonald, R.; Boucher, T. Domesticated nature: Shaping landscapes and ecosystems for human welfare. Science 2007, 316, 1866–1869. [Google Scholar] [CrossRef]
- Marsboom, C.; Vrebos, D.; Staes, J.; Meire, P. Using dimension reduction PCA to identify ecosystem service bundles. Ecol. Indic. 2018, 87, 209–260. [Google Scholar] [CrossRef]
- He, L.J.; Xie, Z.Y.; Wu, H.Q.; Liu, Z.; Zheng, B.F.; Wan, W. Exploring the interrelations and driving factors among typical ecosystem services in the Yangtze river economic Belt, China. J. Environ. Manag. 2024, 351, 119794. [Google Scholar] [CrossRef]
- Zhang, T.J.; Zhang, S.P.; Cao, Q.; Wang, H.Y.; Li, Y.L. The spatiotemporal dynamics of ecosystem services bundles and the social-economic-ecological drivers in the Yellow River Delta region. Ecol. Indic. 2022, 135, 108573. [Google Scholar] [CrossRef]
- Turner, K.G.; Odgaard, M.V.; Bocher, P.K.; Dalgaard, T.; Svenning, J.C. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landsc. Urban Plan. 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Lyu, R.F.; Clarke, K.C.; Zhang, J.M.; Feng, J.L.; Jia, X.H.; Li, J.J. Spatial correlations among ecosystem services and their socio-ecological driving factors: A case study in the city belt along the Yellow River in Ningxia, China. Appl. Geogr. 2019, 108, 64–73. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Zogaris, S.; Economou, A.N.; Dimopoulos, P. Ecoregions in the Southern Balkans: Should Their Boundaries Be Revised? Environ. Manag. 2009, 43, 682–697. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, J.; Ai, D.; Chen, G.; Lin, Y. Integrating risk zoning and multifactor analysis: A strategic approach to ecological carbon sink management. Eco. Inform. 2024, 82, 102671. [Google Scholar] [CrossRef]
- Chang, Q.; Sha, Y.; Chen, Y. The coupling coordination and influencing factors of urbanization and ecological resilience in the Yangtze River Delta urban agglomeration, China. Land 2024, 13, 111. [Google Scholar] [CrossRef]
- Ding, M.; Liu, W.; Xiao, L.; Zhong, F.; Lu, N.; Zhang, J.; Zhang, Z.; Xu, X.; Wang, K. Construction and optimization strategy of ecological security pattern in a rapidly urbanizing region: A case study in central-south China. Ecol. Indic. 2022, 136, 108604. [Google Scholar] [CrossRef]
- Meacham, M.; Norström, A.V.; Peterson, G.D.; Andersson, E.; Bennett, E.M.; Crouzat, E.; Cord, A.F.; Felipe-Lucia, M.R.; Fischer, J.; Hamann, M.; et al. Advancing Research on Ecosystem Service Bundles for Comparative Assessments and Synthesis. Ecosyst. People 2022, 18, 99–111. [Google Scholar] [CrossRef]
- Zhang, X.; Han, R.; Yang, S.; Yang, Y.; Tang, X.; Qu, W. Identification of bundles and driving factors of ecosystem services at multiple scales in the eastern China region. Ecol. Indic. 2024, 158, 111378. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liu, L.; Liang, Z.; Wang, Y.; Wang, H.; Wu, S. Uncovering the Relationships between Ecosystem Services and Social-Ecological Drivers at Different Spatial Scales in the Beijing-Tianjin-Hebei Region. J. Clean. Prod. 2021, 290, 125193. [Google Scholar] [CrossRef]
- Turkelboom, F.; Leone, M.; Jacobs, S.; Kelemen, E.; García-Llorente, M.; Baró, F.; Termansen, M.; Barton, D.N.; Berry, P.; Stange, E.; et al. When we cannot have it all: Ecosystem services trade-offs in the context of spatial planning. Ecosyst. Serv. 2018, 29, 566–578. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, J.; Gao, Y. The influences of land use changes on the value of ecosystem services in Chaohu Lake Basin, China. Environ. Earth Sci. 2015, 74, 385–395. [Google Scholar] [CrossRef]
- Min, M.; Li, H.; Ma, T.; Miao, C. Will agricultural land scale management aggravate non-point source pollution?—Chaohu Lake Basin, China as a case study. Appl. Geogr. 2023, 158, 103056. [Google Scholar] [CrossRef]
- Li, G.; Liu, G.; Zhou, C.; Chou, C.; Zheng, L.; Wang, J. Spatial distribution and multiple sources of heavy metals in the water of Chaohu Lake, Anhui, China. Environ. Monit. Assess. 2012, 184, 2763–2773. [Google Scholar] [CrossRef] [PubMed]
- Min, M.; Miao, C.; Duan, X.; Yan, W. Formation mechanisms and general characteristics of cultivated land use patterns in the Chaohu Lake Basin, China. Land Use Policy 2022, 117, 106093. [Google Scholar] [CrossRef]
- Jin, G.; Deng, X.; Zhao, X.; Guo, B.; Yang, J. Spatiotemporal Patterns in Urbanization Efficiency within the Yangtze River Economic Belt between 2005 and 2014. J. Geogr. Sci. 2018, 28, 1113–1126. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, X.; Jiao, J. Ecological security assessment of Chaohu Lake Basin of China in the context of River Chief System reform. Environ. Sci. Pollut. Res. 2020, 27, 2773–2785. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.R.; Meng, W.; Jin, X.C.; Zheng, B.H.; Zhang, L.; Xi, H.Y. Ecological security problems of the major key lakes in China. Environ. Earth Sci. 2015, 74, 3825–3837. [Google Scholar] [CrossRef]
- Fang, T.; Lu, W.; Cui, K.; Li, J.; Yang, K.; Zhao, X.; Liang, Y.; Li, H. Distribution, bioaccumulation and trophic transfer of trace metals in the food web of Chaohu Lake, Anhui, China. Chemosphere 2019, 218, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Cheng, X.; Dai, M. Regional Flood Disaster Resilience Evaluation Based on Analytic Network Process: A Case Study of the Chaohu Lake Basin, Anhui Province, China. Nat. Hazards 2016, 82, 39–58. [Google Scholar] [CrossRef]
- Xu, Z.; Dong, B.; Qu, J.; Wang, H.; Han, Y.; Gao, X. Optimization of composite ecological network patterns in Anhui Province based on multi-functional coupling of ecology-climate-economy. Ecol. Indic. 2024, 166, 112524. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Jin, G. Exploring the Optimization of Spatial Patterns for Carbon Sequestration Services Based on Multi-Scenario Land Use/Cover Changes in the Changchun-Jilin-Tumen Region, China. J. Clean. Prod. 2024, 438, 140788. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Han, J.; Hu, Z.; Wang, P.; Yan, Z.; Li, G.; Zhang, Y.; Zhou, T. Spatio-temporal evolution and optimization analysis of ecosystem service value-A case study of coal resource-based city group in Shandong, China. J. Clean. Prod. 2022, 363, 132602. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, X.; Yang, Y.; Xue, M. Optimization and Simulation of Mountain City Land Use Based on MOP-PLUS Model: A Case Study of Caijia Cluster, Chongqing. ISPRS Int. J. Geoinf. 2023, 12, 451. [Google Scholar] [CrossRef]
- Ruan, J.; Li, Z.; Zhang, X.; Jian, X.; Wang, D. Optimal vegetation coverage from the perspective of ecosystem services in the Qilian Mountains. Environ. Res. Commun. 2024, 6, 115023. [Google Scholar] [CrossRef]
- Pan, T.; Su, F.; Yan, F.; Lyne, V.; Wang, Z.; Xu, L. Optimization of Multi-Objective Multi-Functional Landuse Zoning Using a Vector-Based Genetic Algorithm. Cities 2023, 137, 104256. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Li, X.; Huang, X.; Lyu, X.; Tian, H.; Qu, T. How will ecosystem carbon sequestration contribute to the reduction of regional carbon emissions in the future? analysis based on the MOP-PLUS model framework. Ecol. Indic. 2023, 156, 111156. [Google Scholar] [CrossRef]
- Lin, Z.; Peng, S. Comparison of multimodel simulations of land use and land cover change considering integrated constraints—A case study of the Fuxian Lake basin. Ecol. Indic. 2022, 142, 109254. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, X.; Wu, M.; Wen, J.; Zou, J. Assessing the Water Conservation Function Based on the InVEST Model: Taking Poyang Lake Region as an Example. Land 2022, 11, 2228. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, P.; Qiu, X.; Xu, G.; Chi, J. Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China. Int. J. Environ. Res. Public Health 2023, 20, 855. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Shen, A.; Liu, C.; Wen, B. Impacts of ecological land fragmentation on habitat quality in the Taihu Lake basin in Jiangsu Province, China. Ecol. Indic. 2024, 158, 111611. [Google Scholar] [CrossRef]
- Feng, X.; Huang, H.; Wang, Y.; Tian, Y.; Li, L. Identification of Ecological Sources Using Ecosystem Service Value and Vegetation Productivity Indicators: A Case Study of the Three-River Headwaters Region, Qinghai-Tibetan Plateau, China. Remote Sens. 2024, 16, 1258. [Google Scholar] [CrossRef]
- Wang, S.; Cai, T.; Wen, Q.; Yin, C.; Han, J.; Zhang, Z. Spatiotemporal Dynamics of Ecosystem Water Yield Services and Responses to Future Land Use Scenarios in Henan Province, China. Water 2024, 16, 2544. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Peng, S.; Huang, B. The impact of multi-scenario land use change on the water conservation in central Yunnan urban agglomeration, China. Ecol. Indic. 2023, 147, 109922. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Yan, F.; Wei, S.; Zhang, J.; Hu, B. Depth-to-bedrock map of China at a spatial resolution of 100 meters. Sci. Data 2020, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Chen, J.; Fang, Z.; Chen, J. Assessment of coordinative relationship between comprehensive ecosystem service and urbanization: A case study of Yangtze River Delta urban agglomerations, China. Ecol. Indic. 2021, 133, 108454. [Google Scholar] [CrossRef]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2019, 4, 86–92. [Google Scholar] [CrossRef]
- Wang, W.; Fu, T.; Chen, H. Spatial-temporal evolution and prediction of carbon storage in the Yangtze River Delta urban agglomeration based on PLUS-InVEST model. Environ. Sci. 2024, 1–20. [Google Scholar]
- Li, J.; He, H.; Zeng, Q.; Chen, L.; Sun, R. A Chinese soil conservation dataset preventing soil water erosion from 1992 to 2019. Sci. Data 2023, 10, 319. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yu, F. Spatial distribution of soil erosion and its relationship to environment factors in Anhui Province. Geogr. Res. 2010, 29, 1461–1470. [Google Scholar]
- Kong, L.; Zheng, H.; Rao, E.; Xiao, Y.; Ouyang, Z.; Li, C. Evaluating indirect and direct effects of Eco-Restoration policy on soil conservation service in Yangtze River Basin. Sci. Total Environ. 2018, 631–632, 887–894. [Google Scholar]
- Pärn, J.; Pinay, G.; Mander, Ü. Indicators of nutrients transport from agricultural catchments under temperate climate: A review. Ecol. Indic. 2012, 22, 4–15. [Google Scholar] [CrossRef]
- Kong, X.; Dong, L.; He, W.; Wang, Q.; Mooij, W.M.; Xu, F. Estimation of the long-term nutrient budget and thresholds of regime shift for a large shallow lake in China. Ecol. Indic. 2015, 52, 231–244. [Google Scholar] [CrossRef]
- Chen, X.; Dai, Z.; Jiang, L.; Ye, C.; Wang, Y.; Huang, X.; Yang, C.; Chen, S. Simulation of nitrogen export scenarios in Chaohu Basin Based on land use patterns. J. Lake Sci. 2024, 36, 149–164. [Google Scholar]
- Gao, T.; Xie, H.; Wan, N.; Xiong, Z.; Hu, Z.; Lai, X. Simulation and source analysis of nonpoint source nitrogen and phosphorus pollution export in a typical agricultural catchment draining to Chaohu Lake. J. Agro-Environ. Sci. 2022, 41, 2428–2438. [Google Scholar]
- Wang, Z.; Xu, M.; Lin, H.; Qureshi, S.; Cao, A.; Ma, Y. Understanding the dynamics and factors affecting cultural ecosystem services during urbanization through spatial pattern analysis and a mixed-methods approach. J. Clean. Prod. 2021, 279, 123422. [Google Scholar] [CrossRef]
- Daniel, T.C.; Muhar, A.; Arnberger, A.; Aznar, O.; Boyd, J.W.; Chan, K.M.A.; Costanza, R.; Elmqvist, T.; Flint, C.G.; Gobster, P.H.; et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl. Acad. Sci. USA 2012, 109, 8812–8819. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, L.; Dang, X.; Hu, F.; Yuan, B.; Yuan, Z.; Wei, L. Impacts and predictions of urban expansion on habitat quality in the densely populated areas: A case study of the Yellow River Basin, China. Ecol. Indic. 2023, 151, 110320. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Li, J. Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the Yangtze River Economic Belt and Yellow River Basin of China. Land Use Policy 2023, 125, 106463. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, C.; Su, Y.; Duan, H.; Wu, X.; Lu, R.; Su, Q.; Wu, Y.; Chu, Z. Study on spatiotemporal evolution and driving forces of habitat quality in the basin along the Yangtze River in Anhui Province based on InVEST model. Land 2023, 12, 1092. [Google Scholar] [CrossRef]
- He, N.; Guo, W.; Wang, H.; Yu, L.; Cheng, S.; Huang, L.; Jiao, X.; Chen, W.; Zhou, H. Temporal and spatial variations in landscape habitat quality under multiple Land-Use/Land-Cover scenarios based on the PLUS-InVEST model in the Yangtze River Basin, China. Land 2023, 12, 1338. [Google Scholar] [CrossRef]
- Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [Google Scholar] [CrossRef]
- Caliñski, T.; Harabasz, J. A Dendrite Method Foe Cluster Analysis. Commun. Stat. 1974, 3, 1–27. [Google Scholar]
- El Khattabi, M.Z.; El Jai, M.; Lahmadi, Y.; Oughdir, L.; Rahhali, M. Understanding the Interplay Between Metrics, Normalization Forms, and Data Distribution in K-Means Clustering: A Comparative Simulation Study. Arab. J. Sci. Eng. 2024, 49, 2987–3007. [Google Scholar] [CrossRef]
- Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Identification of Ecosystem Service Bundles and Driving Factors in Beijing and Its Surrounding Areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, S.; Xiao, Y.; Xie, G.D.; Wang, Y.Y.; Zhang, C.S.; Li, P.; Lei, G.C. Mapping the spatiotemporal heterogeneity of ecosystem service relationships and bundles in Ningxia, China. J. Clean. Prod. 2021, 294, 126216. [Google Scholar] [CrossRef]
- Shen, J.S.; Li, S.C.; Liang, Z.; Liu, L.B.; Li, D.L.; Wu, S.Y. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- Gou, M.M.; Li, L.; Ouyang, S.; Wang, N.; La, L.M.; Liu, C.F.; Xiao, W.F. Identifying and analyzing ecosystem service bundles and their socioecological drivers in the Three Gorges Reservoir Area. J. Clean. Prod. 2021, 307, 127208. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China. J. Clean. Prod. 2020, 264, 121573. [Google Scholar] [CrossRef]
- Sun, X.; Shan, R.; Liu, F. Spatio-temporal quantification of patterns, trade-offs and synergies among multiple hydrological ecosystem services in different topographic basins. J. Clean. Prod. 2020, 268, 122338. [Google Scholar] [CrossRef]
- Geng, W.; Li, Y.; Zhang, P.; Yang, D.; Jing, W.; Rong, T. Analyzing spatio-temporal changes and trade-offs/synergies among ecosystem services in the Yellow river basin, China. Ecol. Indic. 2022, 138, 108825. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-Temporal Heterogeneity of Ecosystem Service Interactions and Their Social-Ecological Drivers: Implications for Spatial Planning and Management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.W.; Hu, X.P.; Liu, Y.; Daryanto, S.; Cherubini, F. Trading-off ecosystem services for better ecological restoration: A case study in the Loess Plateau of China. J. Clean. Prod. 2020, 257, 120469. [Google Scholar] [CrossRef]
- Deng, C.; Liu, J.; Nie, X.; Li, Z.; Liu, Y.; Xiao, H.; Hu, X.; Wang, L.; Zhang, Y.; Zhang, G.; et al. How trade-offs between ecological construction and urbanization expansion affect ecosystem services. Ecol. Indic. 2021, 122, 107253. [Google Scholar] [CrossRef]
- Liang, S.; Yang, F.; Zhang, J.; Xiong, S.; Xu, Z. Assessment and Management Zoning of Ecosystem Service Trade-Off/Synergy Based on the Social–Ecological Balance: A Case of the Chang-Zhu-Tan Metropolitan Area. Land 2024, 13, 127. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, J.; Zhang, Y.; Yu, B.; Zhu, Z. What Is the Spatiotemporal Relationship between Urbanization and Ecosystem Services? A Case from 110 Cities in the Yangtze River Economic Belt, China. J. Environ. Manag. 2022, 321, 115709. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Xiao, Y.; Sang, W. Land use trade-offs and synergies based on temporal and spatial patterns of ecosystem services in South China. Ecol. Indic. 2022, 143, 109335. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Z.; Zhang, J.; Huang, Y. Investigating the trade-offs between the supply and demand for ecosystem services for regional spatial management. J. Environ. Manag. 2023, 325 Pt A, 116591. [Google Scholar] [CrossRef]
- Liao, Q.; Li, T.; Wang, Q.Y.; Liu, D.R. Exploring the ecosystem services bundles and influencing drivers at different scales in southern Jiangxi, China. Ecol. Indic. 2023, 148, 110089. [Google Scholar] [CrossRef]
- Li, K.; Hou, Y.; Andersen, P.S.; Xin, R.; Rong, Y.; Skov-Petersen, H. An ecological perspective for understanding regional integration based on ecosystem service budgets, bundles, and flows: A case study of the Jinan metropolitan area in China. J. Environ. Manag. 2022, 305, 114371. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hao, R.; Qiao, J.; Xue, H. Function zoning and spatial management of small basins based on ecosystem disservice bundles. J. Clean. Prod. 2020, 255, 120285. [Google Scholar] [CrossRef]
- Huang, F.; Zuo, L.; Gao, J.; Jiang, Y.; Du, F.; Zhang, Y. Exploring the driving factors of trade-offs and synergies among ecological functional zones based on ecosystem service bundles. Ecol. Indic. 2023, 146, 109827. [Google Scholar] [CrossRef]
Data | Time | Resolution | Source |
---|---|---|---|
Land-use type | 2010, 2020 | 30 m | http://www.resdc.cn/ (accessed on 12 July 2024) |
DEM | 2019 | 30 m | http://www.gscloud.cn/ (accessed on 12 July 2024) |
Annual mean temperature, Annual precipitation, Annual evaporation | 2020 | 1000 m | http://www.resdc.cn/ (accessed on 12 July 2024) |
Water area, River | 2020 | 1000 m | http://www.openstreetmap.org/ (accessed on 12 July 2024) |
Soil type | 2009 | 1000 m | http://www.fao.org/ (accessed on 12 July 2024) |
Population, GDP | 2020 | 1000 m | http://www.resdc.cn/ (accessed on 12 July 2024) |
Railway, Highway, Road | 2024 | 1000 m | http://www.openstreetmap.org/ (accessed on 13 July 2024) |
City, district, and county center | 2024 | − | http://www.openstreetmap.org/ (accessed on 13 July 2024) |
Primary Classification | Secondary Classification | Cropland | Forestland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
Provisioning services | Food supply | 159,150 | 47,277 | 43,065 | 149,788 | 0 | 1873 |
Raw material supply | 74,894 | 108,596 | 63,660 | 43,065 | 0 | 5617 | |
Water supply | 3744 | 56,170 | 35,575 | 1,552,183 | 0 | 3744 | |
Regulating services | Air quality regulation | 125,448 | 357,152 | 226,555 | 144,171 | 3744 | 20,596 |
Climate regulation | 67,404 | 1,068,647 | 597,282 | 428,770 | 0 | 18,724 | |
Waste treatment | 18,724 | 313,151 | 196,597 | 1,039,157 | 18,724 | 58,043 | |
Regulation of water flows | 50,553 | 699,324 | 438,131 | 19,142,970 | 5617 | 39,319 | |
Supporting services | Erosion prevention | 192,853 | 434,855 | 275,236 | 174,129 | 3744 | 24,341 |
Maintenance of soil fertility | 22,468 | 33,234 | 20,596 | 13,107 | 0 | 1873 | |
Habitat services | 24,341 | 396,003 | 250,896 | 477,450 | 3744 | 22,468 | |
Cultural services | Cultural and amenity services | 11,234 | 173,661 | 110,469 | 353,876 | 1873 | 9362 |
Total | 750,813 | 3,688,070 | 2,258,062 | 23,518,670 | 37,446 | 205,960 |
Function | Formula |
---|---|
Economic benefits | E1 (x) = 326x1 + 121x2 + 2292x3 + 739x4 + 23,315x5 + 0x6 |
Ecological benefits | E2 (x) = 75x1 + 369x2 + 226x3 + 2352x4 + 4x5 + 21x6 |
ED simulation | Max (E1(x)) |
EP simulation | Max (E2(x)) |
SD simulation | Max (E1(x), E2(x)) |
Constraint Type | Constraint Expression | Interpretation |
---|---|---|
Total area constraint | x1 + x2 + x3 + x4 + x5 + x6 = 13,777.14 | The total acreage of each land-use type in the study area remains the same. |
Area of cropland | 7815.95 ≤ x1 ≤ 8206.75 | Considering the declining trend of cropland between 2010 and 2020 and the policy of “reasonably determining the plan for restoring cropland” in Chapter 4, Section 2 of the Plan, adjustments specific to the study area were made based on prior settings [19]. The cropland area was constrained to a maximum increase of 5% over the area projected by the Markov model, with the Markov model’s prediction serving as the lower limit. |
Area of forestland | 2137.20 ≤ x2 ≤ 2248.14 | Considering the decreasing trend of forestland from 2010 to 2020 and the policy of “ensuring that the forest cover rate in Anhui Province is ≥22.06% by 2035” in Chapter 2, Section 3 of the Plan, the study revised the upper and lower bounds of forestland area in line with prior settings [54]. The forestland area was capped at a 5% increase over its 2020 level, while the degradation rate of forestland observed from 2010 to 2020 was set as the lower limit. |
Area of grassland | 540.85 ≤ x3 ≤ 543.28 | Considering the upward trend of grassland from 2010 to 2020, the upper limit of the grassland is based on the growth rate from 2010 to 2020, and the lower limit is based on the year 2020. |
Area of water area | 1172.87 ≤ x4 ≤ 1176.22 | The upper limit of the water area is based on the growth rate from 2010 to 2020, and the lower limit is based on the year 2020. |
Area of construction land | 1798.63 ≤ x5 ≤ 2338.21 | The Plan calls for the area of construction land to be limited to 1.3 times the 2020 size, so the upper limit is set at 1.3 times the 2020 size, and the lower limit is based on the year 2020. |
Area of unused land | 3.48 ≤ x6 ≤ 4.97 | According to the Plan and previous setting [21], the upper limit of the unused land area is less than 2020, but the lower limit is greater than 70% of 2020 to preserve the diversity of land types. |
ND Simulation | ED Simulation | EP Simulation | SD Simulation | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
b | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
d | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
e | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Land-Use Type | Cropland | Forestland | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|
2010 | 8449.24 | 2144.54 | 538.88 | 1169.05 | 1474.70 | 0.73 |
2020 | 8118.74 | 2141.09 | 540.85 | 1172.87 | 1798.62 | 4.97 |
−3.91% | −0.16% | 0.37% | 0.33% | 21.97% | 580.82% | |
ND | 7815.95 | 2137.20 | 543.28 | 1176.22 | 2095.46 | 9.02 |
−3.73% | −0.18% | 0.45% | 0.29% | 16.50% | 81.49% | |
ED | 7815.95 | 2137.20 | 540.85 | 1172.87 | 2106.79 | 3.48 |
−3.73% | −0.18% | 0.00% | 0.00% | 17.13% | −29.98% | |
EP | 8122.62 | 2137.20 | 540.85 | 1172.87 | 1798.62 | 4.97 |
0.05% | −0.18% | 0.00% | 0.00% | 0.00% | 0.00% | |
SD | 7865.24 | 2137.56 | 540.87 | 1172.93 | 2056.64 | 3.91 |
−3.122% | −0.165% | 0.004% | 0.005% | 14.345% | −21.328% |
ESB Type | Bundle 1 | Bundle 2 | Bundle 3 | Bundle 4 | Bundle 5 | Bundle 6 | Bundle 7 |
---|---|---|---|---|---|---|---|
2010 | 8003 | 1927 | 716 | 218 | 703 | 961 | 826 |
2020 | 7996 | 1937 | 712 | 219 | 702 | 960 | 828 |
−0.09% | 0.52% | −0.56% | 0.46% | −0.14% | −0.10% | 0.24% | |
ND | 7985 | 1931 | 707 | 239 | 702 | 962 | 828 |
−0.14% | −0.31% | −0.70% | 9.13% | 0.00% | 0.21% | 0.00% | |
ED | 8006 | 1936 | 707 | 216 | 700 | 961 | 828 |
0.13% | −0.05% | −0.70% | −1.37% | −0.28% | 0.10% | 0.00% | |
EP | 7996 | 1937 | 712 | 219 | 702 | 960 | 828 |
0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | |
SD | 7996 | 1937 | 710 | 218 | 700 | 965 | 828 |
0.00% | 0.00% | −0.28% | −0.46% | −0.28% | 0.52% | 0.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, A.; Zhang, G.; Ma, P.; Wang, X. Ecosystem Services Trade-Offs in the Chaohu Lake Basin Based on Land-Use Scenario Simulations. Land 2024, 13, 2210. https://doi.org/10.3390/land13122210
Jin A, Zhang G, Ma P, Wang X. Ecosystem Services Trade-Offs in the Chaohu Lake Basin Based on Land-Use Scenario Simulations. Land. 2024; 13(12):2210. https://doi.org/10.3390/land13122210
Chicago/Turabian StyleJin, Aibo, Gachen Zhang, Ping Ma, and Xiangrong Wang. 2024. "Ecosystem Services Trade-Offs in the Chaohu Lake Basin Based on Land-Use Scenario Simulations" Land 13, no. 12: 2210. https://doi.org/10.3390/land13122210
APA StyleJin, A., Zhang, G., Ma, P., & Wang, X. (2024). Ecosystem Services Trade-Offs in the Chaohu Lake Basin Based on Land-Use Scenario Simulations. Land, 13(12), 2210. https://doi.org/10.3390/land13122210