Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (548)

Search Parameters:
Keywords = Hazard Quotient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 511 KiB  
Article
Dietary Acrylamide Exposure and Its Correlation with Nutrition and Exercise Behaviours Among Turkish Adolescents
by Mehtap Metin Karaaslan and Burhan Basaran
Nutrients 2025, 17(15), 2534; https://doi.org/10.3390/nu17152534 - 1 Aug 2025
Viewed by 73
Abstract
Background/Objectives: Acrylamide is a probably carcinogenic to humans that naturally forms during the thermal processing of foods. An individual’s lifestyle—especially dietary habits and physical activity—may influence the severity of acrylamide’s adverse health effects. This study aimed to examine the relationship between adolescents’ dietary [...] Read more.
Background/Objectives: Acrylamide is a probably carcinogenic to humans that naturally forms during the thermal processing of foods. An individual’s lifestyle—especially dietary habits and physical activity—may influence the severity of acrylamide’s adverse health effects. This study aimed to examine the relationship between adolescents’ dietary and exercise behaviors and their dietary acrylamide exposure and associated health risks. Methods: This descriptive and cross-sectional study was conducted with 370 high school students in Türkiye. Data were collected using the Nutrition Exercise Behavior Scale (NEBS) and a retrospective 24-h dietary recall questionnaire. Acrylamide exposure was calculated based on food intake to estimate carcinogenic (CR) and non-corcinogenic (target hazard quotient: THQ) health risks and analyzed in relation to NEBS scores. Results: Findings indicated that while adolescents are beginning to adopt healthy eating and exercise habits, these behaviors are not yet consistent. Emotional eating and unhealthy food choices still occur. Higher acrylamide exposure and risk values were observed in boys and underweight individuals. This can be explained mainly by the fact that boys consume more of certain foods—especially bread, which contains relatively higher levels of acrylamide—than girls do, and that underweight individuals have lower body weights despite consuming similar amounts of food as other groups. Bread products emerged as the primary source of daily acrylamide intake. Positive correlations were found between NEBS total and subscale scores and acrylamide exposure and health risk values. Conclusions: The study demonstrates a significant association between adolescents’ health behaviors and acrylamide exposure. These results underscore potential public health concerns regarding acrylamide intake during adolescence and emphasize the need for targeted nutritional interventions to reduce risk and promote sustainable healthy behaviors. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

22 pages, 1289 KiB  
Article
Assessment of Heavy Metal Contamination and Human Health Risk in Parapenaeus longirostris from Coastal Tunisian Aquatic Ecosystems
by Walid Ben Ameur, Ali Annabi, Kaddachi Rania and Mauro Marini
Pollutants 2025, 5(3), 23; https://doi.org/10.3390/pollutants5030023 - 1 Aug 2025
Viewed by 144
Abstract
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the [...] Read more.
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the red shrimp Parapenaeus longirostris, collected in 2023 from four coastal regions: Bizerte, Monastir, Kerkennah, and Gabes. Metal analysis was conducted using flame atomic absorption spectroscopy. This species was chosen due to its ecological and economic importance. The study sites were chosen based on their differing levels of industrial, urban, and agricultural influence, providing a representative overview of regional contamination patterns. Mean concentrations were 1.04 µg/g for Zn, 0.59 µg/g for Cu, 1.56 µg/g for Pb, and 0.21 µg/g for Cd (dry weight). Pb was the most prevalent metal across sites. Statistically significant variation was observed only for Cu (p = 0.0334). All metal concentrations were below international safety limits set by FAO/WHO and the European Union. Compared to similar studies, the levels reported were similar or slightly lower. Human health risk was evaluated using target hazard quotient (THQ), hazard index (HI), and cancer risk (CR) values. For adults, THQ ranged from 5.44 × 10−6 to 8.43 × 10−4, while for children it ranged from 2.40 × 10−5 to 3.72 × 10−3. HI values were also well below 1, indicating negligible non-carcinogenic risk. CR values for Cd and Pb in both adults and children fell within the acceptable risk range (10−6 to <10−4), suggesting no significant carcinogenic concern. This study provides the first field-based dataset on metal contamination in P. longirostris from Tunisia, contributing valuable insights for seafood safety monitoring and public health protection. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

13 pages, 609 KiB  
Article
Leaching of Potentially Toxic Elements from Paper and Plastic Cups in Hot Water and Their Health Risk Assessment
by Mahmoud Mohery, Kholoud Ahmed Hamam, Sheldon Landsberger, Israa J. Hakeem and Mohamed Soliman
Toxics 2025, 13(8), 626; https://doi.org/10.3390/toxics13080626 - 26 Jul 2025
Viewed by 351
Abstract
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve [...] Read more.
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve potentially toxic elements, namely As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Pb, Sb, V, and Zn, were determined in leachates, revealing significant variability in mass fractions between paper and plastic cups, with plastic cups demonstrating greater leaching potential. Health risk assessments, including hazard quotient (HQ) and excess lifetime cancer risk (ELCR), indicated minimal non-carcinogenic and carcinogenic risks for most elements, except Pb, which posed elevated non-carcinogenic risk, especially in plastic cups. Children showed higher relative exposure levels compared to adults due to their lower body weights (the HQ in children is two times greater than in adults). Overall, the findings of the current study underscore the need for stricter monitoring and regulation of materials used in disposable cups, especially plastic ones, to mitigate potential health risks. Future investigations should assess the leaching behavior of potentially toxic elements under conditions that accurately mimic real-world usage. Such investigations ought to incorporate a systematic evaluation of diverse temperature regimes, varying exposure durations, and different beverage types. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

15 pages, 1787 KiB  
Article
Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa
by Abraham Addo-Bediako, Thato Matita and Wilmien Luus-Powell
Water 2025, 17(15), 2200; https://doi.org/10.3390/w17152200 - 23 Jul 2025
Viewed by 259
Abstract
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of [...] Read more.
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of pollution and assessed human health risk in the Moopetsi River, an intermittent river in the Limpopo Province of South Africa. Chemical analyses were conducted on water and sediment samples collected during high-flow, low-flow and intermittent-flow regimes. The findings showed seasonal variations in the chemical pollution levels in the sediments and the highest contamination was measured during intermittent flow. The enrichment factor and geoaccumulation index values identified chromium and nickel as major contributors to sediment contamination. The mean arsenic, chromium and nickel levels exceeded the established guideline values. An evaluation of human health risk was conducted using ingestion and dermal absorption pathways. The results showed that ingestion has greater non-carcinogenic and carcinogenic risks than dermal exposure, especially for children during intermittent flow. The elements of great concern for non-carcinogenic risk were chromium, manganese and nickel and for carcinogenic risk, they were arsenic, chromium, nickel and lead. The outcome of this study is useful for waste management and conservation to reduce environmental degradation and human health risk. Full article
(This article belongs to the Special Issue Advances in Metal Removal and Recovery from Water)
Show Figures

Figure 1

24 pages, 958 KiB  
Article
Soil Heavy Metal Contamination in the Targuist Dumpsite, North Morocco: Ecological and Health Risk Assessments
by Kaouthar Andaloussi, Hafid Achtak, Abdeltif El Ouahrani, Jalal Kassout, Giovanni Vinti, Daniele Di Trapani, Gaspare Viviani, Hassnae Kouali, Mhammed Sisouane, Khadija Haboubi and Mostafa Stitou
Soil Syst. 2025, 9(3), 82; https://doi.org/10.3390/soilsystems9030082 - 22 Jul 2025
Viewed by 354
Abstract
This study aims to assess the ecological and human health risks associated with four heavy metals (Cd, Cr, Cu, and Zn) in the soil of a dumpsite in Targuist city, Morocco. In total, 16 surface soil samples were collected from the dumpsite and [...] Read more.
This study aims to assess the ecological and human health risks associated with four heavy metals (Cd, Cr, Cu, and Zn) in the soil of a dumpsite in Targuist city, Morocco. In total, 16 surface soil samples were collected from the dumpsite and its nearby areas following leaching drain flows. The pollution load index (PLI), geo-accumulation index (Igeo), and potential ecological risk index (RI) were subsequently determined. In addition, hazard quotient (HQ) and health index (HI) were used to assess the non-carcinogenic and carcinogenic risks associated with the soil heavy metal contents. The PLI indicated significant contamination by the studied heavy metals. On the other hand, the Igeo values suggested no Cr contamination, moderate contamination by Cu and Zn, and severe contamination by Cd. The RI indicated a dominant contribution from Cd, with minor contributions from Cu, Zn, and Cr accounting for 92.47, 5.44, 1.11, and 0.96%, respectively, to the potential ecological risk in the study area. The non-carcinogenic health risks associated with exposure of the nearby population to the soil heavy metals at the dumpsite and burned solid waste-derived air pollution were below the threshold value of 1 for both children and adults. Although carcinogenic risks were observed in the study area, they were acceptable for both children and adults according to the United States Environmental Protection Agency (USEPA). However, carcinogenic risks associated with Cr were unacceptable according to the Italian Legislation. Finally, strategies to mitigate the risks posed by the dumpsite were also discussed in this study. Full article
Show Figures

Figure 1

17 pages, 309 KiB  
Article
Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment
by Jarosław Chmielewski, Elżbieta Wszelaczyńska, Jarosław Pobereżny, Magdalena Florek-Łuszczki and Barbara Gworek
Sustainability 2025, 17(15), 6666; https://doi.org/10.3390/su17156666 - 22 Jul 2025
Viewed by 385
Abstract
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, [...] Read more.
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, and fruits collected from 16 allotment gardens (AGs) located in Warsaw. A total of 112 samples were analyzed (72 vegetable and 40 fruit samples). Vegetables from AGs accumulated significantly higher levels of HMs than fruits. Leafy vegetables, particularly those cultivated near high-traffic roads, exhibited markedly elevated levels of Pb, Cd, and Zn compared to those grown in peripheral areas. Lead concentrations exceeded permissible limits by six to twelve times, cadmium by one to thirteen times, and zinc by 0.7 to 2.4 times. Due to high levels of Pb and Cd, tomatoes should not be cultivated in urban environments. Regardless of location, only trace amounts of HMs were detected in fruits. The greatest health risk is associated with the consumption of leafy vegetables. Lettuce should be considered an indicator plant for assessing environmental contamination. The obtained Hazard Index (HI) values indicate that only the tested fruits are safe for consumption. Meanwhile, the values of the Hazard Quotient (HQ) indicate no health risk associated with the consumption of lettuce, cherries, and red currants. Among the analyzed elements, Pb showed a higher potential health risk than other metals. This study emphasizes the need for continuous monitoring of HM levels in urban soils and the establishment of baseline values for public health purposes. Remediation of contaminated soils and the implementation of safer agricultural practices are recommended to reduce the exposure of urban populations to the risks associated with the consumption of contaminated produce. In addition, the safety of fruits and vegetables grown in urban areas is influenced by the location of the AGs and the level of industrialization of the agglomeration. Therefore, the safety assessment of plant products derived from AGs should be monitored on a continuous basis, especially in vegetables. Full article
(This article belongs to the Special Issue Soil Microorganisms, Plant Ecology and Sustainable Restoration)
22 pages, 7529 KiB  
Article
Analysis of Human Health Risk Related to the Exposure of Arsenic Concentrations and Temporal Variation in Groundwater of a Semi-Arid Region in Mexico
by Jennifer Ortiz Letechipia, Miguel Eduardo Pinedo Vega, Julián González Trinidad, Hugo Enrique Júnez-Ferreira, Ana Isabel Veyna Gómez, Ada Rebeca Contreras Rodríguez, Cruz Octavio Robles Rovelo and Sandra Dávila Hernández
Water 2025, 17(14), 2143; https://doi.org/10.3390/w17142143 - 18 Jul 2025
Viewed by 250
Abstract
This study evaluates the human health risks associated with exposure to arsenic in groundwater from a semi-arid region of Mexico, focusing on concentration levels and their temporal variation. Arsenic concentrations were analyzed using ordinary kriging for spatial interpolation, along with descriptive and inferential [...] Read more.
This study evaluates the human health risks associated with exposure to arsenic in groundwater from a semi-arid region of Mexico, focusing on concentration levels and their temporal variation. Arsenic concentrations were analyzed using ordinary kriging for spatial interpolation, along with descriptive and inferential statistical methods. Human health risk was assessed through the following two key indicators: the Hazard Quotient (HQ), which estimates non-carcinogenic risk by comparing exposure levels to reference doses and carcinogenic risk (CR), which represents the estimated lifetime probability of developing cancer due to arsenic exposure. The mean arsenic concentration across both study years was 0.0200 mg/L, with median values of 0.0151 mg/L in 2015 and 0.0200 mg/L in 2020. The average HQ was 2.13 in 2015 and 2.17 in 2020, both exceeding the safety threshold of one. Mean CR values were 0.00096 and 0.00097 for 2015 and 2020, respectively, with a consistent median of 0.00072 across both years. A t-test was applied to compare the distributions between years. Both HQ and CR values significantly exceeded the recommended safety limits (p < 0.05), indicating that groundwater in the study area poses a potential carcinogenic and non-carcinogenic health risk. These findings underscore the urgent need for water quality monitoring and the implementation of mitigation measures to safeguard public health in the region. Full article
Show Figures

Figure 1

23 pages, 1633 KiB  
Article
Multifactorial Evaluation of Honey from Pakistan: Essential Minerals, Antioxidant Potential, and Toxic Metal Contamination with Relevance to Human Health Risk
by Sana, Waqar Ahmad, Farooq Anwar, Hammad Ismail, Mujahid Farid, Muhammad Adnan Ayub, Sajjad Hussain Sumrra, Chijioke Emenike, Małgorzata Starowicz and Muhammad Zubair
Foods 2025, 14(14), 2493; https://doi.org/10.3390/foods14142493 - 16 Jul 2025
Viewed by 361
Abstract
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as [...] Read more.
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as color, pH, electrical conductivity, moisture, ash, and solids content were within acceptable ranges. ICP-OES analysis was used to assess six essential minerals and ten toxic metals. Except for slightly elevated boron levels (up to 0.18 mg/kg), all elements were within safe limits, with potassium reaching up to 1018 mg/kg. Human health risk assessments—including Average Daily Dose of Ingestion, Total Hazard Quotient, and Carcinogenic Risk—indicated no carcinogenic threats for adults or children, despite some elevated metal levels. Antioxidant activity, measured through total phenolic content (TPC) and DPPH radical scavenging assays, showed that darker honeys had stronger antioxidant properties. While the overall quality of honey samples was satisfactory, significant variations (p ≤ 0.05) were observed across different regions. These differences are attributed to diverse agro-climatic conditions and production sources. The findings highlight the need for continued monitoring to ensure honey safety and nutritional quality. Full article
Show Figures

Figure 1

19 pages, 2883 KiB  
Article
Health Risk Assessment and Accumulation of Potentially Toxic Elements in Capsella bursa-pastoris (L.) Medik
by Ivana Mikavica, Dragana Ranđelović, Miloš Ilić, Marija Simić, Jelena Petrović, Marija Koprivica and Jelena Mutić
Processes 2025, 13(7), 2222; https://doi.org/10.3390/pr13072222 - 11 Jul 2025
Viewed by 267
Abstract
Capsella bursa-pastoris (L.) Medik (C. bursa-pastoris) is an underexplored medicinal herb and bioindicator of potentially toxic elements (PTEs). Its broad traditional utilization combined with its high capacity for PTE accumulation may endanger human health. Herein, we investigated the concentrations and mobility [...] Read more.
Capsella bursa-pastoris (L.) Medik (C. bursa-pastoris) is an underexplored medicinal herb and bioindicator of potentially toxic elements (PTEs). Its broad traditional utilization combined with its high capacity for PTE accumulation may endanger human health. Herein, we investigated the concentrations and mobility of PTEs (Ba, Co, Cr, Cu, Fe, Mn, Ni, Sr, and Zn) in the urban soil–C. bursa-pastoris system and comprehensively assessed potential health risks associated with exposure to contaminated soils, plant and herbal extracts. Cu, Zn, Sr, and Mn were the most abundant in soils and predominantly phytoavailable. The calculated values of the geo-accumulation index (Igeo) indicated moderate to heavy Cu, Zn, and Sr contamination in the soil. C. bursa-pastoris demonstrated two strategies for PTEs—the exclusion of Ba, Cr, Mn, and Sr, and the accumulation of Cu, Ni, Co, and Fe. Principal Component Analysis (PCA) classified samples from four cities based on the PTE levels in soils, plants, and herbal extracts. Although plant tissues contained elevated levels of PTEs, the estimated daily intake (EDI), target hazard quotient (THQ), and lifetime carcinogenic risk (LCR) demonstrated no significant health risks from consuming C. bursa-pastoris and its extracts. The obtained results indicated the higher sensitivity of children to the hazardous effects of PTEs compared to adults. Extensive risk assessments of polluted soils and inhabiting plants are crucial in PTE monitoring. This study underscored its importance and delivered new insights into the contamination of medicinal herbs, aiming to contribute to implementing safety policies in public health protection. Full article
Show Figures

Graphical abstract

18 pages, 313 KiB  
Article
Comparative Analysis of Phenolic, Carotenoid, and Elemental Profiles in Three Crataegus Species from Şebinkarahisar, Türkiye: Implications for Nutritional Value and Safety
by Mehmet Emin Şeker, Ayşegül Erdoğan and Emriye Ay
Molecules 2025, 30(14), 2934; https://doi.org/10.3390/molecules30142934 - 11 Jul 2025
Viewed by 291
Abstract
This study evaluated the phenolic, carotenoid, and elemental compositions of three hawthorn species—Crataegus: C. tanacetifolia (yellow), C. orientalis (orange), and C. microphylla (red)—collected from Şebinkarahisar, Türkiye. Liquid chromatography tandem mass spectrometry (LC-MS-MS) analysis revealed that C. microphylla had the highest phenolic content, [...] Read more.
This study evaluated the phenolic, carotenoid, and elemental compositions of three hawthorn species—Crataegus: C. tanacetifolia (yellow), C. orientalis (orange), and C. microphylla (red)—collected from Şebinkarahisar, Türkiye. Liquid chromatography tandem mass spectrometry (LC-MS-MS) analysis revealed that C. microphylla had the highest phenolic content, notably epicatechin, gallic acid, and quercetin. It also showed the highest levels of β-carotene and lutein, highlighting its nutraceutical potential. C. orientalis was rich in rutin and taxifolin. Inductively coupled plasma mass spectrometry (ICP-MS) results showed significant mineral content, including Fe, Mn, Ca, and Se. About 60 g of dried hawthorn could meet 7–8% of daily selenium needs. In C. tanacetifolia, toxicological tests showed no substantial health hazards, with target hazard quotient (THQ) values below 1 and carcinogenic risk (CR) values within tolerable levels (e.g., Ni-CR: 4.68 × 10−5). Lead (Pb) and arsenic (As) levels were below detection thresholds in all samples, indicating that hawthorn fruits from this location are safe. The study also shows how species-specific and geographical factors affect hawthorn fruit nutrition and safety. Full article
13 pages, 1338 KiB  
Article
Human Health Risk Assessment of Phenolic Contaminants in Lake Xingkai, China
by Liang Liu, Jinhua Gao, Yijun Sun, Yibo Sun, Handan Liu, Hongqing Sun and Guangyi Mu
Water 2025, 17(13), 2037; https://doi.org/10.3390/w17132037 - 7 Jul 2025
Viewed by 361
Abstract
Cresols are aromatic organic compounds widely used in industrial and agricultural production. They have been detected in large quantities in aquatic environments, posing health risks such as skin irritation, gastrointestinal stimulation, and chronic neurological effects. In this study, we investigated the exposure concentration [...] Read more.
Cresols are aromatic organic compounds widely used in industrial and agricultural production. They have been detected in large quantities in aquatic environments, posing health risks such as skin irritation, gastrointestinal stimulation, and chronic neurological effects. In this study, we investigated the exposure concentration of cresols in the water bodies of Lake Xingkai (i.e., Daxingkai and Xiaoxingkai Lakes) during four typical hydrological periods (30 April, 22 June, 5 September, and 1 November 2021), assessed the human health risk from phenolic contaminants using the mean value method, and determined the health risk of adult cresol exposure in the Lake Xingkai watershed based on local population exposure parameters. This study developed a water environmental pollution health risk assessment model based on the methodology proposed by the United States Environmental Protection Agency (US EPA). It further evaluated the health risks to humans posed by phenolic pollutants via the drinking water pathway. The results revealed that the concentration range of cresols in water bodies was between 5.91 × 10−1 ng·mL−1 and 6.68 ng·mL−1. The adult drinking water health risk values of cresols in the Lake Xingkai watershed were between 3.15 × 10−4 and 3.57 × 10−3, and all water samples from the 10 sites had hazard quotient (HQ) values less than 1, indicating that the non-carcinogen risk was small or negligible. The cresol HQ value in the water of Xiaoxingkai Lake was 4.6 times that found in Daxingkai Lake. Full article
Show Figures

Figure 1

20 pages, 3290 KiB  
Article
The Impact of High Urban Temperatures on Pesticide Residues Accumulation in Vegetables Grown in the Greater Accra Metropolitan Area of Ghana
by Joyce Kumah, Eric Kofi Doe, Benedicta Yayra Fosu-Mensah, Benjamin Denkyira Ofori, Millicent A. S. Kwawu, Ebenezer Boahen, Doreen Larkailey Lartey, Sampson D. D. P. Dordaa and Christopher Gordon
J. Xenobiot. 2025, 15(4), 103; https://doi.org/10.3390/jox15040103 - 2 Jul 2025
Viewed by 713
Abstract
This study investigates the effect of high urban land temperatures on pesticide residue (PR) accumulation in cabbage and lettuce and on public health in the Greater Accra Metropolitan Area (GAMA) in Ghana. A comparative toxicological analysis regarding the food system was conducted with [...] Read more.
This study investigates the effect of high urban land temperatures on pesticide residue (PR) accumulation in cabbage and lettuce and on public health in the Greater Accra Metropolitan Area (GAMA) in Ghana. A comparative toxicological analysis regarding the food system was conducted with 66 farmers across three land surface temperatures: low (Atomic, n = 22), moderate (Ashaiman, n = 22), and high (Korle-Bu, n = 22). Pesticide residue concentrations were assessed using an ANOVA to examine spatial variations across sites. The results indicate a strong correlation between high land surface temperatures and pesticide residue accumulation, with lettuce recording significantly (p < 0.05) higher PR levels than cabbage. Several pesticides, including carbendazim (CBZ), Imidacloprid (IMI), Thiamethoxam (TMX), and Chlorpyrifos (CHL), exceeded the maximum residue limits (MRLs) set by the World Health Organization (WHO) and the European Union (EU) at moderate and high-temperature sites. carbendazim was the dominant pesticide detected, with a concentration of 19.0 mg/kg in lettuce, which far exceeded its maximum residue limit (MRL) of 0.10 mg/kg across all study sites. Statistical analyses (PERMANOVA) confirmed that land surface temperatures and pesticide types significantly influenced the PR concentrations. Public health risk assessments indicate that children are more vulnerable to pesticide exposure than adults. The toxicity hazard quotient (THQ) for organophosphate pesticides, particularly CHL and Dimethoate (DMT), exceeded safe thresholds at moderate and high-temperature sites. Full article
Show Figures

Graphical abstract

31 pages, 2318 KiB  
Article
Mercury Contamination and Human Health Risk by Artisanal Small-Scale Gold Mining (ASGM) Activity in Gunung Pongkor, West Java, Indonesia
by Tia Agustiani, Susi Sulistia, Agus Sudaryanto, Budi Kurniawan, Patrick Adu Poku, Ahmed Elwaleed, Jun Kobayashi, Yasuhiro Ishibashi, Yasumi Anan and Tetsuro Agusa
Earth 2025, 6(3), 67; https://doi.org/10.3390/earth6030067 - 1 Jul 2025
Viewed by 711
Abstract
Artisanal small-scale gold mining (ASGM) is the largest source of global mercury (Hg) emissions. This study investigated Hg contamination in water, soil, sediment, fish, and cassava plants around ASGM sites in Gunung Pongkor, West Java, Indonesia. Hg concentration ranged from 0.06 to 4.49 [...] Read more.
Artisanal small-scale gold mining (ASGM) is the largest source of global mercury (Hg) emissions. This study investigated Hg contamination in water, soil, sediment, fish, and cassava plants around ASGM sites in Gunung Pongkor, West Java, Indonesia. Hg concentration ranged from 0.06 to 4.49 µg/L in water; 0.420 to 144 mg/kg dw in soil; 0.920 to 150 mg/kg dw in sediment; 0.259 to 1.23 mg/kg dw in fish; 0.097 to 5.09 mg/kg dw in cassava root; and 0.350 to 8.84 mg/kg dw in cassava leaf. Geo-accumulation index (Igeo) analysis revealed moderate to heavy soil contamination upstream, likely due to direct ASGM input. In contrast, sediment Igeo values indicated heavy contamination downstream, suggesting Hg transport and sedimentation. Bioconcentration factors (BCFs) in fish were predominantly high in downstream and midstream areas, indicating enhanced Hg bioavailability. Bioaccumulation factors (BAFs) in cassava were higher in upstream areas. Health risk assessment, based on the Hazard Quotient (HQ) and Hazard Index (HI), identified ingestion as the primary exposure route, with children exhibiting significantly higher risks than adults. These findings highlight the significant Hg contamination associated with ASGM in Gunung Pongkor and emphasize the need for targeted mitigation strategies to protect human and environmental health. Full article
Show Figures

Figure 1

29 pages, 2784 KiB  
Article
Interdisciplinary Evaluation of the Săpânța River and Groundwater Quality: Linking Hydrological Data and Vegetative Bioindicators
by Ovidiu Nasca, Thomas Dippong, Maria-Alexandra Resz and Monica Marian
Water 2025, 17(13), 1975; https://doi.org/10.3390/w17131975 - 30 Jun 2025
Viewed by 252
Abstract
This study was carried out to fill the present research gap in the study area by assessing water chemistry, potential heavy metal contamination, and the associated health risk evaluation that goes along with it in surface water bodies and groundwater in the NE [...] Read more.
This study was carried out to fill the present research gap in the study area by assessing water chemistry, potential heavy metal contamination, and the associated health risk evaluation that goes along with it in surface water bodies and groundwater in the NE of Maramureș County, near the Tisa River. The main methods we applied were Piper, Ficklin–Caboi, and Gibbs diagrams for determining the water typology and chemistry, the Overall Water Quality Index (OWQI) and vegetation cover to determine the water quality, a contamination index for analyzing the contamination degree, and a human health risk assessment through water ingestion after exposure of children and adults. This article’s main findings specify that waters were characterized and classified into the CaMgHCO3 dominant category of water type, with precipitation, agricultural, and domestic inputs, related to the Cl (mean ranging between 1.01–5.65 mg/L) and NO3 (mean ranging between 2.23–5.52 mg/L) content. The OWQI scores indicated excellent quality, below the critical value, ranging between 0.70 and 6.57. The applied risk assessment indicated that the daily intake of toxins is higher in the case of children than in adults, up to four and five times. The hazard quotient scores, ranging between 0.00093 and 0.248 for adults and between 0.0039 and 1.040 for children, indicated that if consumed, the studied waters can pose potential negative effects on children. Full article
Show Figures

Figure 1

14 pages, 1622 KiB  
Article
Neonicotinoid Residues in Tea Products from China: Contamination Patterns and Implications for Human Exposure
by Yulong Fan, Hongwei Jin, Jinru Chen, Kai Lin, Lihua Zhu, Yijia Guo, Jiajia Ji and Xiaming Chen
Toxics 2025, 13(7), 550; https://doi.org/10.3390/toxics13070550 - 29 Jun 2025
Viewed by 470
Abstract
Neonicotinoids (NEOs) are a class of systemic insecticides widely used in agriculture owing to their high efficacy and selectivity. As one of the most globally consumed beverages, tea may represent a potential dietary source of pesticide residues. However, limited research has examined NEO [...] Read more.
Neonicotinoids (NEOs) are a class of systemic insecticides widely used in agriculture owing to their high efficacy and selectivity. As one of the most globally consumed beverages, tea may represent a potential dietary source of pesticide residues. However, limited research has examined NEO contamination in tea and its implications for human exposure, highlighting the need for further investigation. Therefore, this study comprehensively evaluated the residue characteristics, processing effects, and human exposure risks of six NEOs—dinotefuran (DIN), imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THM), clothianidin (CLO), and thiacloprid (THI)—in Chinese tea products. According to the findings, the primary pollutants, ACE, DIN, and IMI, accounted for 95.65% of the total NEO residues in 137 tea samples, including green, oolong, white, black, dark, and herbal teas. The highest total target NEO (∑6NEOs) residue level was detected in oolong tea (mean: 57.86 ng/g). Meanwhile, IMI exhibited the highest residue level (78.88 ng/g) in herbal tea due to the absence of high-temperature fixation procedures. Concentrations of DIN in 61 samples (44.5%) exceeded the European Union’s maximum residue limit of 10 ng/g. Health risk assessment indicated that both the chronic hazard quotient (cHQ) and acute hazard quotient (aHQ) for adults and children were below the safety threshold (<1). However, children required special attention, as their exposure risk was 1.28 times higher than that of adults. The distribution of NEO residues was significantly influenced by tea processing techniques, such as full fermentation in black tea. Optimizing processing methods (e.g., using infrared enzyme deactivation) and implementing targeted pesticide application strategies may help mitigate risk. These results provide a scientific foundation for enhancing tea safety regulations and protecting consumer health. Full article
(This article belongs to the Special Issue Human Biomonitoring in Health Risk Assessment of Emerging Chemicals)
Show Figures

Graphical abstract

Back to TopTop