Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = HADHA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 899 KiB  
Systematic Review
Sudden Death of a Four-Day-Old Newborn Due to Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiencies and a Systematic Literature Review of Early Deaths of Neonates with Fatty Acid Oxidation Disorders
by Ana Drole Torkar, Ana Klinc, Ziga Iztok Remec, Branislava Rankovic, Klara Bartolj, Sara Bertok, Sara Colja, Vanja Cuk, Marusa Debeljak, Eva Kozjek, Barbka Repic Lampret, Matej Mlinaric, Tinka Mohar Hajnsek, Daša Perko, Katarina Stajer, Tine Tesovnik, Domen Trampuz, Blanka Ulaga, Jernej Kovac, Tadej Battelino, Mojca Zerjav Tansek and Urh Groseljadd Show full author list remove Hide full author list
Int. J. Neonatal Screen. 2025, 11(1), 9; https://doi.org/10.3390/ijns11010009 - 26 Jan 2025
Viewed by 1505
Abstract
Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies have been a part of the Slovenian newborn screening (NBS) program since 2018. We describe a case of early lethal presentation of MTPD/LCHADD in a term newborn. The girl was born after an [...] Read more.
Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies have been a part of the Slovenian newborn screening (NBS) program since 2018. We describe a case of early lethal presentation of MTPD/LCHADD in a term newborn. The girl was born after an uneventful pregnancy and delivery, and she was discharged home at the age of 3 days, appearing well. At the age of 4 days, she was found without signs of life. Resuscitation was not successful. The NBS test performed using tandem mass spectrometry (MS/MS) showed a positive screen for MTPD/LCHADD. Genetic analysis performed on a dried blood spot (DBS) sample identified two heterozygous variants in the HADHA gene: a nucleotide duplication introducing a premature termination codon (p.Arg205Ter) and a nucleotide substitution (p.Glu510Gln). Post-mortem studies showed massive macro-vesicular fat accumulation in the liver and, to a smaller extent, in the heart, consistent with MTPD/LCHADD. A neonatal acute cardiac presentation resulting in demise was suspected. We conducted a systematic literature review of early neonatal deaths within 14 days postpartum attributed to confirmed fatty acid oxidation disorders (FAODs), which are estimated to account for 5% of sudden infant deaths. We discuss the pitfalls of the NBS for MTPD/LCHADD. Full article
Show Figures

Figure 1

18 pages, 1541 KiB  
Article
Phenotypic and Genetic Spectrum in 309 Consecutive Pediatric Patients with Inherited Retinal Disease
by Claudia S. Priglinger, Maximilian J. Gerhardt, Siegfried G. Priglinger, Markus Schaumberger, Teresa M. Neuhann, Hanno J. Bolz, Yasmin Mehraein and Guenther Rudolph
Int. J. Mol. Sci. 2024, 25(22), 12259; https://doi.org/10.3390/ijms252212259 - 14 Nov 2024
Cited by 2 | Viewed by 1567
Abstract
Inherited retinal dystrophies (IRDs) are a common cause of blindness or severe visual impairment in children and may occur with or without systemic associations. The aim of the present study is to describe the phenotypic and genotypic spectrum of IRDs in a pediatric [...] Read more.
Inherited retinal dystrophies (IRDs) are a common cause of blindness or severe visual impairment in children and may occur with or without systemic associations. The aim of the present study is to describe the phenotypic and genotypic spectrum of IRDs in a pediatric patient cohort in Retrospective single-center cross-sectional analysis. Presenting symptoms, clinical phenotype, and molecular genetic diagnosis were assessed in 309 pediatric patients with suspected IRD. Patients were grouped by age at genetic diagnosis (preschool: 0–6 years, n = 127; schoolchildren: 7–17 years, n = 182). Preschool children most frequently presented with nystagmus (34.5% isolated, 16.4% syndromic), no visual interest (20.9%; 14.5%), or nyctalopia (22.4%; 3.6%; p < 0.05); schoolchildren most frequently presented with declining visual acuity (31% isolated, 21.1% syndromic), nyctalopia (10.6%; 13.5%), or high myopia (5.3%; 13.2%). Pathogenic variants were identified in 96 different genes (n = 69 preschool, n = 73 schoolchildren). In the preschool group, 57.4% had isolated and 42.6% had syndromic IRDs, compared to 70.9% and 29.1% in schoolchildren. In the preschool group, 32.4% of the isolated IRDs were related to forms of Leber’s congenital amaurosis (most frequent were RPE65 (11%) and CEP290 (8.2%)), 31.5% were related to stationary IRDs, 15.1% were related to macular dystrophies (ABCA4, BEST1, PRPH2, PROM1), and 8.2% to rod–cone dystrophies (RPGR, RPB3, RP2, PDE6A). All rod–cone dystrophies (RCDs) were subjectively asymptomatic at the time of genetic diagnosis. At schoolage, 41% were attributed to cone-dominated disease (34% ABCA4), 10.3% to BEST1, and 10.3% to RCDs (RP2, PRPF3, RPGR; IMPG2, PDE6B, CNGA1, MFRP, RP1). Ciliopathies were the most common syndromic IRDs (preschool 37%; schoolchildren 45.1%), with variants in USH2A, CEP290 (5.6% each), CDH23, BBS1, and BBS10 (3.7% each) being the most frequent in preschoolers, and USH2A (11.7%), BBS10 (7.8%), CEP290, CDHR23, CLRN1, and ICQB1 (3.9% each) being the most frequent in syndromic schoolkids. Vitreoretinal syndromic IRDs accounted for 29.6% (preschool: COL2A1, COL11A1, NDP (5.6% each)) and 23.5% (schoolage: COL2A1, KIF11 (9.8% each)), metabolic IRDs for 9.4% (OAT, HADHA, MMACHD, PMM2) and 3.9% (OAT, HADHA), mitochondriopathies for 3.7% and 7.8%, and syndromic albinism accounted for 5.6% and 3.9%, respectively. In conclusion we show here that the genotypic spectrum of IRDs and its quantitative distribution not only differs between children and adults but also between children of different age groups, with an almost equal proportion of syndromic and non-syndromic IRDs in early childhood. Ophthalmic screening visits at the preschool and school ages may aid even presymptomatic diagnosis and treatment of potential sight and life-threatening systemic sequelae. Full article
(This article belongs to the Special Issue Advances in Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

12 pages, 1916 KiB  
Article
Genetic Background of Blood β-Hydroxybutyrate Acid Concentrations in Early-Lactating Holstein Dairy Cows Based on Genome-Wide Association Analyses
by Yueqiang Wang, Zhenyu Wang, Wenhui Liu, Shuoqi Xie, Xiaoli Ren, Lei Yan, Dong Liang, Tengyun Gao, Tong Fu, Zhen Zhang and Hetian Huang
Genes 2024, 15(4), 412; https://doi.org/10.3390/genes15040412 - 26 Mar 2024
Cited by 1 | Viewed by 1976
Abstract
Ketosis is a common metabolic disorder in the early lactation of dairy cows. It is typically diagnosed by measuring the concentration of β-hydroxybutyrate (BHB) in the blood. This study aimed to estimate the genetic parameters of blood BHB and conducted a genome-wide association [...] Read more.
Ketosis is a common metabolic disorder in the early lactation of dairy cows. It is typically diagnosed by measuring the concentration of β-hydroxybutyrate (BHB) in the blood. This study aimed to estimate the genetic parameters of blood BHB and conducted a genome-wide association study (GWAS) based on the estimated breeding value. Phenotypic data were collected from December 2019 to August 2023, comprising blood BHB concentrations in 45,617 Holstein cows during the three weeks post-calving across seven dairy farms. Genotypic data were obtained using the Neogen Geneseek Genomic Profiler (GGP) Bovine 100 K SNP Chip and GGP Bovine SNP50 v3 (Illumina Inc., San Diego, CA, USA) for genotyping. The estimated heritability and repeatability values for blood BHB levels were 0.167 and 0.175, respectively. The GWAS result detected a total of ten genome-wide significant associations with blood BHB. Significant SNPs were distributed in Bos taurus autosomes (BTA) 2, 6, 9, 11, 13, and 23, with 48 annotated candidate genes. These potential genes included those associated with insulin regulation, such as INSIG2, and those linked to fatty acid metabolism, such as HADHB, HADHA, and PANK2. Enrichment analysis of the candidate genes for blood BHB revealed the molecular functions and biological processes involved in fatty acid and lipid metabolism in dairy cattle. The identification of novel genomic regions in this study contributes to the characterization of key genes and pathways that elucidate susceptibility to ketosis in dairy cattle. Full article
(This article belongs to the Special Issue Research on Genetics and Genomics of Cattle)
Show Figures

Figure 1

17 pages, 1210 KiB  
Article
DNA Methylation Signatures in Paired Placenta and Umbilical Cord Samples: Relationship with Maternal Pregestational Body Mass Index and Offspring Metabolic Outcomes
by Ariadna Gómez-Vilarrubla, Berta Mas-Parés, Gemma Carreras-Badosa, Alexandra Bonmatí-Santané, Jose-Maria Martínez-Calcerrada, Maria Niubó-Pallàs, Francis de Zegher, Lourdes Ibáñez, Abel López-Bermejo and Judit Bassols
Biomedicines 2024, 12(2), 301; https://doi.org/10.3390/biomedicines12020301 - 27 Jan 2024
Cited by 4 | Viewed by 2182
Abstract
An epigenomic approach was used to study the impact of maternal pregestational body mass index (BMI) on the placenta and umbilical cord methylomes and their potential effect on the offspring’s metabolic phenotype. DNA methylome was assessed in 24 paired placenta and umbilical cord [...] Read more.
An epigenomic approach was used to study the impact of maternal pregestational body mass index (BMI) on the placenta and umbilical cord methylomes and their potential effect on the offspring’s metabolic phenotype. DNA methylome was assessed in 24 paired placenta and umbilical cord samples. The differentially methylated CpGs associated with maternal pregestational BMI were identified and the metabolic pathways and the potentially related diseases affected by their annotated genes were determined. Two top differentially methylated CpGs were studied in 90 additional samples and the relationship with the offspring’s metabolic phenotype was determined. The results showed that maternal pregestational BMI is associated with the methylation of genes involved in endocrine and developmental pathways with potential effects on type 2 diabetes and obesity. The methylation and expression of HADHA and SLC2A8 genes in placenta and umbilical cord were related to several metabolic parameters in the offspring at 6 years (weight SDS, height SDS, BMI SDS, Δ BW-BMI SDS, FM SDS, waist, SBP, TG, HOMA-IR, perirenal fat; all p < 0.05). Our data suggest that epigenetic analysis in placenta and umbilical cord may be useful for identifying individual vulnerability to later metabolic diseases. Full article
(This article belongs to the Special Issue Genetics, Obesity, Diabetes and Metabolic Syndrome)
Show Figures

Figure 1

14 pages, 3041 KiB  
Article
Zaluzanin C Alleviates Inflammation and Lipid Accumulation in Kupffer Cells and Hepatocytes by Regulating Mitochondrial ROS
by Ji-Won Jung, Feng Wang, Ayman Turk, Jeong-Su Park, Hwan Ma, Yuanqiang Ma, Hye-Rin Noh, Guoyan Sui, Dong-Su Shin, Mi-Kyeong Lee and Yoon Seok Roh
Molecules 2023, 28(22), 7484; https://doi.org/10.3390/molecules28227484 - 8 Nov 2023
Cited by 7 | Viewed by 3067
Abstract
Zaluzanin C (ZC), a sesquiterpene lactone isolated from Laurus nobilis L., has been reported to have anti-inflammatory and antioxidant effects. However, the mechanistic role of ZC in its protective effects in Kupffer cells and hepatocytes has not been elucidated. The purpose of this [...] Read more.
Zaluzanin C (ZC), a sesquiterpene lactone isolated from Laurus nobilis L., has been reported to have anti-inflammatory and antioxidant effects. However, the mechanistic role of ZC in its protective effects in Kupffer cells and hepatocytes has not been elucidated. The purpose of this study was to elucidate the efficacy and mechanism of action of ZC in Kupffer cells and hepatocytes. ZC inhibited LPS-induced mitochondrial ROS (mtROS) production and subsequent mtROS-mediated NF-κB activity in Kupffer cells (KCs). ZC reduced mRNA levels of pro-inflammatory cytokines (Il1b and Tnfa) and chemokines (Ccl2, Ccl3, Ccl4, Cxcl2 and Cxcl9). Tumor necrosis factor (TNF)-α-induced hepatocyte mtROS production was inhibited by ZC. ZC was effective in alleviating mtROS-mediated mitochondrial dysfunction. ZC enhanced mitophagy and increased mRNA levels of fatty acid oxidation genes (Pparα, Cpt1, Acadm and Hadha) and mitochondrial biosynthetic factors (Pgc1α, Tfam, Nrf1 and Nrf2) in hepatocytes. ZC has proven its anti-lipid effect by improving lipid accumulation in hepatocytes by enhancing mitochondrial function to facilitate lipid metabolism. Therefore, our study suggests that ZC may be an effective compound for hepatoprotection by suppressing inflammation and lipid accumulation through regulating mtROS. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

16 pages, 5183 KiB  
Article
Integrated Transcriptome Analysis of miRNAs and mRNAs in the Skeletal Muscle of Wuranke Sheep
by Yueying Yun, Rihan Wu, Xige He, Xia Qin, Lu Chen, Lina Sha, Xueyan Yun, Tadayuki Nishiumi and Gerelt Borjigin
Genes 2023, 14(11), 2034; https://doi.org/10.3390/genes14112034 - 31 Oct 2023
Cited by 3 | Viewed by 2095
Abstract
MicroRNAs (miRNAs) are regarded as important regulators in skeletal muscle development. To reveal the regulatory roles of miRNAs and their target mRNAs underlying the skeletal muscle development of Wuranke sheep, we investigated the miRNA and mRNA expression profiles in the biceps femoris [...] Read more.
MicroRNAs (miRNAs) are regarded as important regulators in skeletal muscle development. To reveal the regulatory roles of miRNAs and their target mRNAs underlying the skeletal muscle development of Wuranke sheep, we investigated the miRNA and mRNA expression profiles in the biceps femoris of these sheep at the fetal (3 months of gestation) and 3- and 15-month-old postnatal stages. Consequently, a total of 1195 miRNAs and 24,959 genes were identified. Furthermore, 474, 461, and 54 differentially expressed miRNAs (DEMs) and 6783, 7407, and 78 differentially expressed genes (DEGs) were detected among three comparative groups. Functional analysis demonstrated that the target mRNAs of the DEMs were enriched in multiple pathways related to muscle development. Moreover, the interactions among several predicted miRNA–mRNA pairs (oar-miR-133-HDAC1, oar-miR-1185-5p-MYH1/HADHA/OXCT1, and PC-5p-3703_578-INSR/ACTG1) that potentially affect skeletal muscle development were verified using dual-luciferase reporter assays. In this study, we identified the miRNA and mRNA differences in the skeletal muscle of Wuranke sheep at different developmental stages and revealed that a series of candidate miRNA–mRNA pairs may act as modulators of muscle development. These results will contribute to future studies on the function of miRNAs and their target mRNAs during skeletal muscle development in Wuranke sheep. Full article
(This article belongs to the Special Issue Genetics and Genomics of Sheep and Goat)
Show Figures

Figure 1

16 pages, 17111 KiB  
Article
The Identification of Functional Genes Affecting Fat-Related Meat Traits in Meat-Type Pigeons Using Double-Digest Restriction-Associated DNA Sequencing and Molecular Docking Analysis
by Siyu Yuan, Shaoqi Tian, Chuang Meng, Feng Ji, Bin Zhou, Hossam E. Rushdi and Manhong Ye
Animals 2023, 13(20), 3256; https://doi.org/10.3390/ani13203256 - 19 Oct 2023
Cited by 3 | Viewed by 2328
Abstract
The Chinese indigenous Shiqi (SQ) pigeon and the imported White King (WK) pigeon are two meat-type pigeon breeds of economical and nutritional importance in China. They displayed significant differences in such meat quality traits as intramuscular fat (IMF) content and fatty acid (FA) [...] Read more.
The Chinese indigenous Shiqi (SQ) pigeon and the imported White King (WK) pigeon are two meat-type pigeon breeds of economical and nutritional importance in China. They displayed significant differences in such meat quality traits as intramuscular fat (IMF) content and fatty acid (FA) compositions in the breast muscles. In this study, we aimed to screen candidate genes that could affect fat-related meat quality traits in meat-type pigeons. We investigated the polymorphic variations at the genomic level using double-digest restriction-associated DNA (ddRAD) sequencing in 12 squabs of SQ and WK pigeons that exhibited significant inter-breed differences in IMF content as well as FA and amino acid compositions in the breast muscles, and screened candidate genes influencing fat-related traits in squabs through gene ontology analysis and pathway analysis. By focusing on 6019 SNPs, which were located in genes with correct annotations and had the potential to induce changes in the encoded proteins, we identified 19 genes (ACAA1, ACAA2, ACACB, ACADS, ACAT1, ACOX3, ACSBG1, ACSBG2, ACSL1, ACSL4, ELOVL6, FADS1, FADS2, HACD4, HADH, HADHA, HADHB, MECR, OXSM) as candidate genes that could affect fat-related traits in squabs. They were significantly enriched in the pathways of FA metabolism, degradation, and biosynthesis (p < 0.05). Results from molecular docking analysis further revealed that three non-synonymous amino acid alterations, ACAA1(S357N), ACAA2(T234I), and ACACB(H1418N), could alter the non-bonding interactions between the enzymatic proteins and their substrates. Since ACAA1, ACAA2, and ACACB encode rate-limiting enzymes in FA synthesis and degradation, alterations in the enzyme–substrate binding affinity may subsequently affect the catalytic efficiency of enzymes. We suggested that SNPs in these three genes were worthy of further investigation into their roles in explaining the disparities in fat-related traits in squabs. Full article
(This article belongs to the Section Poultry)
Show Figures

Graphical abstract

9 pages, 496 KiB  
Article
New Acylcarnitine Ratio as a Reliable Indicator of Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency
by Galina V. Baydakova, Polina G. Tsygankova, Natalia L. Pechatnikova, Olga A. Bazhanova, Yana D. Nazarenko and Ekaterina Y. Zakharova
Int. J. Neonatal Screen. 2023, 9(3), 48; https://doi.org/10.3390/ijns9030048 - 25 Aug 2023
Cited by 4 | Viewed by 2543
Abstract
Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare fatal disorders of fatty acid β-oxidation with no apparent genotype–phenotype correlation. The measurement of acylcarnitines by MS/MS is a current diagnostic workup in these disorders. Nevertheless, false-positive and false-negative results have [...] Read more.
Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare fatal disorders of fatty acid β-oxidation with no apparent genotype–phenotype correlation. The measurement of acylcarnitines by MS/MS is a current diagnostic workup in these disorders. Nevertheless, false-positive and false-negative results have been reported, highlighting a necessity for more sensitive and specific biomarkers. This study included 54 patients with LCHAD/MTP deficiency that has been confirmed by biochemical and molecular methods. The analysis of acylcarnitines in dried blood spots was performed using ESI-MS/MS. The established “HADHA ratio” = (C16OH + C18OH + C18:1OH)/C0 was significantly elevated in all 54 affected individuals in comparison to the control group. Apart from 54 LCHAD deficiency patients, the “HADHA ratio” was calculated in 19 patients with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. As VLCAD-deficient patients did not show increased “HADHA ratio”, the results emphasized the high specificity of this new ratio. Therefore, the “HADHA ratio” was shown to be instrumental in improving the overall performance of MS/MS-based analysis of acylcarnitine levels in the diagnostics of LCHAD/MTP deficiencies. The ratio was demonstrated to increase the sensitivity and specificity of this method and reduce the chances of false-negative results. Full article
Show Figures

Figure 1

22 pages, 6729 KiB  
Article
Cross-Species Transcriptomics Analysis Highlights Conserved Molecular Responses to Per- and Polyfluoroalkyl Substances
by Livia Beccacece, Filippo Costa, Jennifer Paola Pascali and Federico Manuel Giorgi
Toxics 2023, 11(7), 567; https://doi.org/10.3390/toxics11070567 - 29 Jun 2023
Cited by 4 | Viewed by 6389
Abstract
In recent decades, per- and polyfluoroalkyl substances (PFASs) have garnered widespread public attention due to their persistence in the environment and detrimental effects on the health of living organisms, spurring the generation of several transcriptome-centered investigations to understand the biological basis of their [...] Read more.
In recent decades, per- and polyfluoroalkyl substances (PFASs) have garnered widespread public attention due to their persistence in the environment and detrimental effects on the health of living organisms, spurring the generation of several transcriptome-centered investigations to understand the biological basis of their mechanism. In this study, we collected 2144 publicly available samples from seven distinct animal species to examine the molecular responses to PFAS exposure and to determine if there are conserved responses. Our comparative transcriptional analysis revealed that exposure to PFAS is conserved across different tissues, molecules and species. We identified and reported several genes exhibiting consistent and evolutionarily conserved transcriptional response to PFASs, such as ESR1, HADHA and ID1, as well as several pathways including lipid metabolism, immune response and hormone pathways. This study provides the first evidence that distinct PFAS molecules induce comparable transcriptional changes and affect the same metabolic processes across inter-species borders. Our findings have significant implications for understanding the impact of PFAS exposure on living organisms and the environment. We believe that this study offers a novel perspective on the molecular responses to PFAS exposure and provides a foundation for future research into developing strategies for mitigating the detrimental effects of these substances in the ecosystem. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism)
Show Figures

Figure 1

15 pages, 3724 KiB  
Article
Optimization of Computational Resources for Real-Time Product Quality Assessment Using Deep Learning and Multiple High Frame Rate Camera Sensors
by Adi Wibowo, Joga Dharma Setiawan, Hadha Afrisal, Anak Agung Sagung Manik Mahachandra Jayanti Mertha, Sigit Puji Santosa, Kuncoro Budhi Wisnu, Ambar Mardiyoto, Henri Nurrakhman, Boyi Kartiwa and Wahyu Caesarendra
Appl. Syst. Innov. 2023, 6(1), 25; https://doi.org/10.3390/asi6010025 - 6 Feb 2023
Cited by 6 | Viewed by 3480
Abstract
Human eyes generally perform product defect inspection in Indonesian industrial production lines; resulting in low efficiency and a high margin of error due to eye tiredness. Automated quality assessment systems for mass production can utilize deep learning connected to cameras for more efficient [...] Read more.
Human eyes generally perform product defect inspection in Indonesian industrial production lines; resulting in low efficiency and a high margin of error due to eye tiredness. Automated quality assessment systems for mass production can utilize deep learning connected to cameras for more efficient defect detection. However, employing deep learning on multiple high frame rate cameras (HFRC) causes the need for much computation and decreases deep learning performance, especially in the real-time inspection of moving objects. This paper proposes optimizing computational resources for real-time product quality assessment on moving cylindrical shell objects using deep learning with multiple HFRC Sensors. Two application frameworks embedded with several deep learning models were compared and tested to produce robust and powerful applications to assess the quality of production results on rotating objects. Based on the experiment results using three HFRC Sensors, a web-based application with tensorflow.js framework outperformed desktop applications in computation. Moreover, MobileNet v1 delivers the highest performance compared to other models. This result reveals an opportunity for a web-based application as a lightweight framework for quality assessment using multiple HFRC and deep learning. Full article
Show Figures

Figure 1

10 pages, 2149 KiB  
Article
Gene Variants Related to Cardiovascular and Pulmonary Diseases May Correlate with Severe Outcome of COVID-19
by Mateusz Sypniewski, Zbigniew J. Król, Joanna Szyda, Elżbieta Kaja, Magdalena Mroczek, Tomasz Suchocki, Adrian Lejman, Maria Stępień, Piotr Topolski, Maciej Dąbrowski, Krzysztof Kotlarz, Angelika Aplas, Michał Wasiak, Marzena Wojtaszewska, Paweł Zawadzki, Agnieszka Pawlak, Robert Gil, Paula Dobosz and Joanna Stojak
Int. J. Mol. Sci. 2022, 23(15), 8696; https://doi.org/10.3390/ijms23158696 - 4 Aug 2022
Cited by 1 | Viewed by 2874
Abstract
Background: Severe outcomes of COVID-19 account for up to 15% of all cases. The study aims to check if any gene variants related to cardiovascular (CVD) and pulmonary diseases (PD) are correlated with a severe outcome of COVID-19 in a Polish cohort of [...] Read more.
Background: Severe outcomes of COVID-19 account for up to 15% of all cases. The study aims to check if any gene variants related to cardiovascular (CVD) and pulmonary diseases (PD) are correlated with a severe outcome of COVID-19 in a Polish cohort of COVID-19 patients. Methods: In this study, a subset of 747 samples from unrelated individuals collected across Poland in 2020 and 2021 was used and whole-genome sequencing was performed. Results: The GWAS analysis of SNPs and short indels located in genes related to CVD identified one variant significant in COVID-19 severe outcome in the HADHA gene, while for the PD gene panel, we found two significant variants in the DRC1 gene. In this study, both potentially protective and risk variants were identified, of which variants in the HADHA gene deserve the most attention. Conclusions: This is the first study reporting the association between the HADHA and DRC1 genetic variants and COVID-19 severe outcome based on the cohort WGS analysis. Although all the identified variants are localised in introns, they may be correlated and therefore inherited along with other risk variants, potentially causative to severe outcome of COVID-19 but not discovered yet. Full article
Show Figures

Figure 1

14 pages, 3837 KiB  
Article
Betaine Supplementation Causes an Increase in Fatty Acid Oxidation and Carbohydrate Metabolism in Livers of Mice Fed a High-Fat Diet: A Proteomic Analysis
by Caiyun Fan, Haitao Hu, Xiaoyun Huang, Di Su, Feng Huang, Zhao Zhuo, Lun Tan, Yinying Xu, Qingfeng Wang, Kun Hou and Jianbo Cheng
Foods 2022, 11(6), 881; https://doi.org/10.3390/foods11060881 - 19 Mar 2022
Cited by 18 | Viewed by 4893
Abstract
Betaine, a common methyl donor whose methylation is involved in the biosynthesis of carnitine and phospholipids in animals, serves as food and animal feed additive. The present study used liquid chromatography-mass spectrometry (LC-MS) to analyze the liver protein profile of mice on a [...] Read more.
Betaine, a common methyl donor whose methylation is involved in the biosynthesis of carnitine and phospholipids in animals, serves as food and animal feed additive. The present study used liquid chromatography-mass spectrometry (LC-MS) to analyze the liver protein profile of mice on a high fat (HF) diet to investigate the mechanism by which betaine affects hepatic metabolism. Although betaine supplementation had no significant effect on body weight, a total of 103 differentially expressed proteins were identified between HF diet + 1% betaine group (HFB) and HF diet group by LC-MS (fold change > 2, p < 0.05). The addition of 1% betaine had a significant enhancement of the expression of enzymes related to fatty acid oxidation metabolism, such as hydroxyacyl-Coenzyme A dehydrogenase (HADHA), enoyl Coenzyme A hydratase 1 (ECHS1) (p < 0.05) etc., and the expression of apolipoprotein A-II (APOA2) protein was significantly reduced (p < 0.01). Meanwhile, the protein expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and succinate-CoA ligase (SUCLG1) were highly significant (p < 0.01). Pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the functions of differential proteins involved fatty acid catabolism, carbohydrate metabolism, tricarboxylic acid cycle (TCA) and peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway. Protein–protein interaction (PPI) analysis discovered that acetyl-Coenzyme A acetyltransferase 1 (ACAT1), HADHA and ECHS1 were central hubs of hepatic proteomic changes in the HFB group of mice. Betaine alleviates hepatic lipid accumulation by enhancing fatty acid oxidation and accelerating the TCA cycle and glycolytic process in the liver of mice on an HF diet. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

14 pages, 2876 KiB  
Article
High-Intensity Interval Training and Moderate-Intensity Continuous Training Attenuate Oxidative Damage and Promote Myokine Response in the Skeletal Muscle of ApoE KO Mice on High-Fat Diet
by Linjia Wang, Jessica Lavier, Weicheng Hua, Yangwenjie Wang, Lijing Gong, Hao Wei, Jianxiong Wang, Maxime Pellegrin, Grégoire P. Millet and Ying Zhang
Antioxidants 2021, 10(7), 992; https://doi.org/10.3390/antiox10070992 - 22 Jun 2021
Cited by 16 | Viewed by 7638
Abstract
The purpose of this study was to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on the skeletal muscle in Apolipoprotein E knockout (ApoE KO) and wild-type (WT) C57BL/6J mice. ApoE KO mice fed with a high-fat diet [...] Read more.
The purpose of this study was to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on the skeletal muscle in Apolipoprotein E knockout (ApoE KO) and wild-type (WT) C57BL/6J mice. ApoE KO mice fed with a high-fat diet were randomly allocated into: Control group without exercise (ApoE−/− CON), HIIT group (ApoE−/− HIIT), and MICT group (ApoE−/− MICT). Exercise endurance, blood lipid profile, muscle antioxidative capacity, and myokine production were measured after six weeks of interventions. ApoE−/− CON mice exhibited hyperlipidemia and increased oxidative stress, compared to the WT mice. HIIT and MICT reduced blood lipid levels, ROS production, and protein carbonyl content in the skeletal muscle, while it enhanced the GSH generation and potently promoted mRNA expression of genes involved in the production of irisin and BAIBA. Moreover, ApoE−/− HIIT mice had significantly lower plasma HDL-C content, mRNA expression of MyHC-IIx and Vegfa165 in EDL, and ROS level; but remarkably higher mRNA expression of Hadha in the skeletal muscle than those of ApoE−/− MICT mice. These results demonstrated that both exercise programs were effective for the ApoE KO mice by attenuating the oxidative damage and promoting the myokines response and production. In particular, HIIT was more beneficial to reduce the ROS level in the skeletal muscle. Full article
Show Figures

Graphical abstract

19 pages, 3618 KiB  
Article
Parkin Coordinates Platelet Stress Response in Diabetes Mellitus: A Big Role in a Small Cell
by Seung Hee Lee, Jing Du, John Hwa and Won-Ho Kim
Int. J. Mol. Sci. 2020, 21(16), 5869; https://doi.org/10.3390/ijms21165869 - 15 Aug 2020
Cited by 10 | Viewed by 3707
Abstract
Increased platelet activation and apoptosis are characteristic of diabetic (DM) platelets, where a Parkin-dependent mitophagy serves a major endogenous protective role. We now demonstrate that Parkin is highly expressed in both healthy platelets and diabetic platelets, compared to other mitochondria-enriched tissues such as [...] Read more.
Increased platelet activation and apoptosis are characteristic of diabetic (DM) platelets, where a Parkin-dependent mitophagy serves a major endogenous protective role. We now demonstrate that Parkin is highly expressed in both healthy platelets and diabetic platelets, compared to other mitochondria-enriched tissues such as the heart, muscle, brain, and liver. Abundance of Parkin in a small, short-lived anucleate cell suggest significance in various key processes. Through proteomics we identified 127 Parkin-interacting proteins in DM platelets and compared them to healthy controls. We assessed the 11 highest covered proteins by individual IPs and confirmed seven proteins that interacted with Parkin; VCP/p97, LAMP1, HADHA, FREMT3, PDIA, ILK, and 14-3-3. Upon further STRING analysis using GO and KEGG, interactions were divided into two broad groups: targeting platelet activation through (1) actions on mitochondria and (2) actions on integrin signaling. Parkin plays an important role in mitochondrial protection through mitophagy (VCP/p97), recruiting phagophores, and targeting lysosomes (with LAMP1). Mitochondrial β-oxidation may also be regulated by the Parkin/HADHA interaction. Parkin may regulate platelet aggregation and activation through integrin signaling through interactions with proteins like FREMT3, PDIA, ILK, and 14-3-3. Thus, platelet Parkin may regulate the protection (mitophagy) and stress response (platelet activation) in DM platelets. This study identified new potential therapeutic targets for platelet mitochondrial dysfunction and hyperactivation in diabetes mellitus. Full article
(This article belongs to the Special Issue Physiology of Platelets in Humans and Animals)
Show Figures

Figure 1

11 pages, 2769 KiB  
Article
Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice
by Rongli Sun, Meng Cao, Juan Zhang, Wenwen Yang, Haiyan Wei, Xing Meng, Lihong Yin and Yuepu Pu
Int. J. Environ. Res. Public Health 2016, 13(11), 1068; https://doi.org/10.3390/ijerph13111068 - 31 Oct 2016
Cited by 38 | Viewed by 5699
Abstract
Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO) pathway, which is crucial for the maintenance and function of hematopoietic [...] Read more.
Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO) pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC), red blood cell (RBC), platelet (Pit) counts, and hemoglobin (Hgb) concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA) levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity. Full article
Show Figures

Figure 1

Back to TopTop