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Simple Summary: Ketosis (KET), a metabolic disorder frequently observed in dairy cows, is char-
acterized by increased levels of ketone bodies. The “gold standard” for diagnosing ketosis is the
concentration of blood β-hydroxybutyrate (BHB). The increasing number of studies focusing on
BHB highlights the increasing significance of metabolic disorders in both the dairy industry and
the scientific community. Additionally, the surge in research on the genetic and economic facets of
the KET is likely correlated with the recent accessibility of extensive datasets containing blood BHB
concentrations as routinely recorded traits in certain production systems. Such data are essential to
accurately estimating the genetic parameters associated with these traits. Consequently, the objective
of this study was to estimate genetic parameters and identify candidate genes related to blood BHB
through genome-wide association analysis to provide research directions for dairy ketosis.

Abstract: Ketosis is a common metabolic disorder in the early lactation of dairy cows. It is typically
diagnosed by measuring the concentration of β-hydroxybutyrate (BHB) in the blood. This study
aimed to estimate the genetic parameters of blood BHB and conducted a genome-wide association
study (GWAS) based on the estimated breeding value. Phenotypic data were collected from December
2019 to August 2023, comprising blood BHB concentrations in 45,617 Holstein cows during the three
weeks post-calving across seven dairy farms. Genotypic data were obtained using the Neogen
Geneseek Genomic Profiler (GGP) Bovine 100 K SNP Chip and GGP Bovine SNP50 v3 (Illumina Inc.,
San Diego, CA, USA) for genotyping. The estimated heritability and repeatability values for blood
BHB levels were 0.167 and 0.175, respectively. The GWAS result detected a total of ten genome-wide
significant associations with blood BHB. Significant SNPs were distributed in Bos taurus autosomes
(BTA) 2, 6, 9, 11, 13, and 23, with 48 annotated candidate genes. These potential genes included those
associated with insulin regulation, such as INSIG2, and those linked to fatty acid metabolism, such as
HADHB, HADHA, and PANK2. Enrichment analysis of the candidate genes for blood BHB revealed
the molecular functions and biological processes involved in fatty acid and lipid metabolism in dairy
cattle. The identification of novel genomic regions in this study contributes to the characterization of
key genes and pathways that elucidate susceptibility to ketosis in dairy cattle.
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1. Introduction

Ketosis is a common metabolic disorder that affects dairy cows in the early postpartum
period, typically detected by analyzing blood β-hydroxybutyrate levels. The incidence of
subclinical ketosis among Holstein cows across ten countries varies from 11.2% to 36.6%,
with an average of 21.8% [1]. The onset of ketosis results in increased costs for dairy
farms, including expenses related to ketosis treatment, an increased risk of other diseases,
compromised reproductive performance, and the likelihood of early lactation culling [2–4].
Therefore, mitigating the incidence of ketosis improves the health of dairy cows as well as
reduces production costs on dairy farms.

Dairy cows exhibit individual differences in metabolic adaptability during the early
lactation period, which can be leveraged to select high-yielding cows with a reduced risk
of metabolic disorders [5]. Previous genetic studies of ketosis, predominantly relying on
clinical records, have revealed heritability estimates ranging from 0.01 to 0.16, indicating a
low heritability level [6]. The low heritability of ketosis suggests that achieving significant
genetic progress through direct genetic selection methods is difficult. Blood BHB is the
predominant and most stable ketone body in bodily fluids. Its concentration is commonly
employed as a “gold standard” for ketosis and provides a more accurate indication of
sensitivity to ketosis than other ketone bodies [7–9]. In addition, blood BHB exhibits
moderate heritability (0.17 to 0.40) [10–14]. Genetic enhancement and genomic selection
strategies with BHB as a phenotype may effectively reduce the occurrence of ketosis. It is
crucial to meticulously record specific traits like ketone body concentrations (acetone or
BHB) in blood or milk to detect ketosis (KET). Therefore, employing BHB as an indicator
trait for indirect selection in ketosis should yield greater genetic gains than direct selection.

Rapid advancements in sequencing technology have revealed causal variants of com-
plex traits through genome-wide association analysis [10–12]. Several studies have investi-
gated the physiological, quantitative genetic, and genomic associations related to milk BHB,
acetone, and KET. Huang et al. [13] identified six genomic regions associated with ketosis
based on the binary ketosis trait in production records. Freebern et al. [14] conducted a
GWAS and fine-mapping analysis to identify potential candidate genes associated with
disease traits in Holstein cattle. They identified one significant segment that encompassed
DGAT1 on BTA14 for KET. Pralle et al. [15] performed a GWAS based on a KET phenotype
determined by repeated blood BHB concentrations and identified several novel marker
associations and metabolic pathways contributing to the genetic risk of dairy ketosis.
However, previous studies have not directly reported significant genome-wide regions or
genes containing putative causative mutations associated with blood BHB concentrations.
Therefore, this study aimed to investigate the genetic parameters and genomic associations
associated with blood BHB concentrations in early lactating Holstein cows in China. The
purposes of this study were to (1) estimate (co)variance components based on pedigree
and genomic data, (2) conduct a GWAS to identify significantly associated SNPs, and
(3) annotate and provide biological interpretations of potential candidate genes.

2. Materials and Methods
2.1. Ethics Statement

All animals were treated in accordance with the protocols approved by the Institutional
Animal Care and Use Committee of Henan Agriculture University (Permit Number: 12-1328).

2.2. Phenotype

Blood BHB concentrations were measured in 45,617 Holstein cows during the first
three weeks after calving, from December 2019 to August 2023. Data were gathered from
seven dairy-intensive pasture farms located in northern China (Table 1). The free-stall barn
system and TMR were implemented in every herd, with an average of 6517 ± 2751 cows
and 11,982 ± 5219 records per herd. Blood BHB concentration data were obtained from
production records at the dairy farm. Within the first three weeks postpartum in Holstein
cows, veterinarians collected blood samples from the tail vein. The blood samples were
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tested for BHB concentration using a handheld FreeStyle Optium Neo H ketone Meter (Ab-
bott Diabetes Care Ltd., Witney, UK). The device had a sensitivity of 98% and a specificity
of 95% [16].

Table 1. Summary statistics.

Items Number

Number of records 83,878
Number of animals 45,617

Number of herd-years-season 104
Number of parities 3

Mean incidence of ketosis (%) 1.1
Number of genotyped individuals 5146

Number of SNP after editing 80,217

A dataset containing records of cows with days in milk (DIM) from days 1 to 21 and
blood BHB values ranging from 0.1 to 8.0 mmol/L was kept for analyses. The dataset
included a total of 83,878 blood BHB records from 45,617 Holstein cows. BHB concentrations
in cows were categorized based on parity, with cows in their first, second, and third or
greater parities labeled as BHB1, BHB2, and BHB3, respectively. The number of animals in
each category was 27,261, 30,933, and 25,684, respectively. Furthermore, pedigrees can be
traced back three generations.

2.3. Genotype and Quality Control

Blood samples were collected from the coccygeal vein and transferred into 10 mL
vacuum tubes containing EDTAK2 as an anticoagulant. The samples were promptly cooled
on ice to preserve their integrity. Genomic DNA was subsequently extracted from the
blood samples of 5146 Holstein dairy cows using the phenol chloroform method. Most
of these animals (n = 3919) were genotyped with the Geneseek Genomic Profiler (GGP)
Bovine 100 K SNP Chip by Neogen Biotechnology (Shanghai, China), and a minority of
these animals (n = 1227) were genotyped using the GGP Bovine SNP50 v3 (Illumina Inc.,
San Diego, CA, USA). Using the 100 K chip reference data of 3919 Holstein dairy cows,
the 50 K chip data of 1227 Holstein dairy cows were imputed to the 100 K chip data with
an average imputation accuracy (R2) of 0.981 and ARS-UCD1.2(bosTau9) was used as a
reference genome. Genotype imputation was performed using Beagle software (version
5.4) [17]. Meanwhile, quality control (QC) was conducted using PLINK 1.90 [18] to remove
the SNPs that did not meet the specific criteria: (1) the individual genotype call rate < 95%,
(2) the SNP genotype call rate < 90%, and (3) the minor allele frequency (MAF) < 0.01
and deviated from the Hardy–Weinberg equilibrium value (p < 1.0 × 10−6). After quality
control, 5139 cows and 80,217 SNP variants were used for further association analyses.

2.4. Estimation of Genetic Parameters

Generalized linear models were performed using the GLM function [19] implemented
in the Basic package of R 4.3.2 [20], with blood BHB as the response variable to identify the
systematic effects that should be included in the genetic models. A single-trait repeatability
animal model (model 1) was used to estimate the heritability and repeatability of blood
BHB. The model 1 can be written as follows:

yijklmn = HYSi + Pj + DIMk + al + pem + εijklmn, (1)

where yijklmn are the phenotypic records for blood BHB; HYSi is the fixed effect of the
herd-year-season i (104 levels); Pj is the fixed effect of parity j (1, 2, or 3+); DIMk is the
covariate effect; al is the random additive genetic effect; pem is the random permanent
environmental effect; and εijklmn is the random residual effect. Two different methods were
employed to estimate variance components and predict breeding values: (a) the pedigree-
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based approach, which employed the BLUP method. In this method, the covariance
structure of the random animal effect was modeled as u ∼ N(0,Aσ2

a ), where A represents
the pedigree relationship matrix and σ2

a denotes the direct additive genetic variance, and
genetic parameters were analyzed using the AIREMLF90 program [21,22]; (b) The genomic
evaluation implemented a single-step genomic BLUP (ssGBLUP) method, which modeled
the random animal effect as u ∼ N(0,Hσ2

a ), with H being a matrix that integrates pedigree
and genomic relationships [23].

2.5. Genome-Wide Association Study

We employed the FarmCPU method, implemented using rMVP [24] in R version 4.3.2
for GWAS in this study. The FarmCPU method utilizes the fixed-effect model (FEM) and
the random-effect model (REM) iteratively [25]. The FEM is applied to test each of the m
genetic markers individually. Pseudo-quantitative trait nucleotides (QTNs) are included as
covariates to control false positives. Specifically, the FEM can be described as follows:

Yi = Mi1b1 + Mi2b2 + Mi3b3 + · · ·+ Mitbt + Sijdj + ei, (2)

where Yi is the observation on the ith sample; Mi1, Mi2, Mi3· · · Mit represents the genotypes
of the t pseudo-QTNs; b1, b2, b3, · · · ,bt is equal to the corresponding effect for the pseudo
QTNs; Mij represents the genotype of the jth SNPs and ith sample; Sj represents the
corresponding effect of the jth SNPs; and ei represents the residual.

The REM is employed to optimize the selection of pseudo QTNs from markers based
on their testing statistics and positions using the SUPER algorithm [26] in an REM, as below:

Yi = Ui + ei, (3)

where Yi is the observation of the ith sample, the BHB concentration and estimated breeding
values (EBVs) of BHB were used as the phenotype, respectively; ei is the residual, and Ui
represents the total genetic effect of the ith sample. We determined the threshold value for
selecting significant SNPs using the Bonferroni correction method [27]. The genome-wide
significant level was set at 6.23 × 10−7 (0.05/80,217).

2.6. Functional Analyses

Gene set enrichment analysis helps identify phenotype-relevant SNPs and mechanisms
of action by identifying corresponding biological pathways. Genes within 500 kb of the
identified SNPs were used for further functional analyses. BioMart from Ensembl (release
101) was used to extract gene names and descriptions using the bovine genome assembly
ARS-UCD1.2. Subsequently, we verified the biological functions of the relevant genes using
the NCBI GenBank database (https://www.ncbi.nlm.nih.gov/, accessed on 10 December
2023) and carefully selected genes associated with the study. The online Gene Ontology
(GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database were
searched using the KOBAS [28] (http://bioinfo.org/kobas, accessed on 22 December
2023) according to the protein-coding gene ID. Statistical significance was set at p < 0.05.
Finally, gene networks were constructed based on the predicted protein interactions among
the annotated genes, using the STRING database (www.string-db.org/, accessed on 30
December 2023) [29].

3. Results
3.1. Descriptive Statistics

The descriptive statistical results of seven cattle herds are shown in Table 2. The blood
ketone levels ranged from 0.1 to 8.0 mmol/L, with a mean of 0.927 mmol/L and a standard
deviation of 0.527 mmol/L. Specifically, the highest average value was observed for H2
at 1.01 mmol/L, whereas the lowest average value was observed for H1 at 0.868 mmol/L.
The number of animals with genotype and blood BHB phenotype data for different parities
is presented in Supplementary Table S1.

https://www.ncbi.nlm.nih.gov/
http://bioinfo.org/kobas
www.string-db.org/
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Table 2. Descriptive statistics of blood BHB trait in Chinese Holstein cattle.

Herd n * No. of Cows Mean SD Min Max

H1 14,691 9134 0.868 0.469 0.1 6.1
H2 16,612 8367 1.010 0.516 0.1 5.4
H3 16,749 8798 0.937 0.507 0.1 8.0
H4 15,614 8107 0.925 0.529 0.1 8.0
H5 11,905 6363 0.888 0.485 0.1 5.4
H6 2855 1570 0.880 0.478 0.1 4.4
H7 5451 3278 0.926 0.785 0.1 7.3

* n = number of records.

3.2. Estimation of Genetic Parameters

The genetic parameters estimated from the pedigree-based and genomics-based anal-
yses are listed in Table 3. BHB heritability in the present study ranged from 0.167 to
0.169, depending on the different information analyses used. In general, h2 estimates with
genomic information were slightly higher than those with pedigree information, mainly
because of the larger additive genetic variance (Table 3). Considering that the residual
variance was almost the same in the two approaches, the inclusion of genomic information
resulted in the same variance, from the permanent environmental variance to the additive
genetic effect.

Table 3. Estimates of genetic parameters and variance components for blood BHB in Chinese Holstein
cattle.

Methods σ2
a ± SE σ2

pe ± SE σ2
e ± SE h2 ± SE re

BLUP 0.044 ± 0.002 0.002 ± 0.003 0.218 ± 0.002 0.167 ± 0.010 0.175
ssGBLUP 0.045 ± 0.003 0.002 ± 0.002 0.218 ± 0.002 0.169 ± 0.010 0.175

σ2
a = additive genetic variance; σ2

pe = permanent environmental variance; σ2
e = residual variance; re = repeatability;

SE = standard errors.

3.3. Genome-Wide Association Study

A single-marker GWAS analysis was conducted on blood BHB values in cows of
different parities. Due to limited chip data for first-parity cows, genome-wide association
analysis was performed on data from second- and third-parity cows. The p-value profiles
of all SNP markers associated with each parity group are represented in Figure 1. No
significant SNP loci were found in the second-parity GWAS, whereas only one significant
SNP locus was identified in the third-parity GWAS. This SNP locus, located at ARS-BFGL-
NGS-41577 in BTA 1 (position: 46.75 Mb), was annotated as ZPLD1. In addition, the effect
of each SNP was calculated using the FarmCPU method based on the EBVs of all parity
groups. (Figure 1C). The results revealed that nine significant SNP were distributed across
BTA 2, 6, 9, 11, 13, and 23 (Table 4), among which the region on BTA 13 (50,955,987 bp) was
the most significant loci (−log10P > 6.20). A total of 48 genes located within 500 Kb of the
significant SNPs were identified as potential candidate genes for the investigated traits.
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Table 4. Significant SNPs identified for blood BHB in Chinese Holstein cattle.

SNP BTA Position p-Value Gene

BovineHD0200020100 2 69,386,940 1.76 × 10−7 CCDC93, INSIG2

BovineHD0200025237 2 88,536,618 4.77 × 10−7 SATB2, C2H2orf69, TYW5, MAIP1,
SPATS2L, KCTD18

BTA-05080-no-rs 6 10,139,671 4.39 × 10−7 NDST4

Hapmap51347-BTA-90657 9 103,006,480 2.59 × 10−7 DACT2, SMOC2, THBS2, WDR27,
C9H6orf120, PHF10

BovineHD1100000220 11 730,613 3.70 × 10−7 ZC3H8, FBLN7, TMEM87B, MERTK,
ANAPC1, BCL2L11

BovineHD1100021063 11 73,677,409 2.51 × 10−7
SELENOI, ADGRF3, HADHB, HADHA,

GAREM2, RAB10, KIF3C, ASXL2, DTNB,
DNMT3A, POMC, EFR3B

Hapmap43234-BTA-31907 13 24,940,514 1.70 × 10−7 KIAA1217

BTA-32905-no-rs 13 50,955,987 5.57 × 10−7
HAO1, ADRA1D, SMOX, RNF24, PANK2,
MAVS, AP5S1, CDC25B, CENPB, SPEF1,

ADISSP, HSPA12B
BovineHD2300004717 23 18,540,309 4.98 × 10−7 SUPT3H, RUNX2

3.4. Functional Analyses

Enrichment analyses for GO terms and KEGG pathways were conducted on all can-
didate genes to pinpoint their roles in established metabolic pathways. Based on func-
tional annotation results, significant pathways were identified for blood BHB (Figure 2;
Supplementary Table S2). These comprised various KEGG pathways, including fatty acid
elongation, β-alanine metabolism, fatty acid degradation, Valine, leucine, and isoleucine
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degradation, and fatty acid metabolism. Furthermore, they comprised GO terms such
as chromatin binding, osteoblast development, histone acetyltransferase activity, T cell
homeostasis, and positive regulation of the mitotic cell cycle. The relationships among
the genes in the network were established using various methods, such as co-expression,
gene fusion, protein homology, gene neighborhood, and gene co-occurrence. A network
comprising 44 nodes connected by 65 edges was constructed (Figure 3).
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4. Discussion

The present study aimed to estimate the genetic parameters of blood BHB and discover
genomic variants associated with blood BHB using GWAS. In a large dataset of early
lactating Holstein cows, most heritability estimates for BHB were based on predicted
results from milk infrared spectra. For example, Koeck et al. [30] reported h2 values ranging
from 0.14 to 0.29 for Canadian Holsteins. Similarly, comparable heritability values were
observed for Korean Holsteins, ranging from 0.14 to 0.09 in the first and fourth parities,
respectively [5]. In Italian Holsteins, blood BHB had a moderate heritability in the first
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35 days of milk, ranging from 0.13 to 0.3 [31]. The heritability in the present study was
higher than previous estimates based on blood BHB predicted from the milk infrared
spectra of Chinese Holstein cattle, in which the BHB heritability estimates ranged from
0.100 to 0.131 [32]. Continuous phenotypes, such as blood BHB concentrations, appear
to serve as superior indicators of ketosis susceptibility for implementation in breeding
programs. In a previous study, the estimated heritability of blood BHB concentration
in primiparous Holstein cows, using a random regression model, ranged from 0.08 to
0.40 [33], which were significantly different from our results, mainly because they focused
on primiparous cows and their sample size was smaller. The disparities noted in the
aforementioned studies are likely attributable to variations in population, dataset structure,
and statistical models employed. The results of another study were similar to those of
the present study. Drift et al. [9] conducted a genetic analysis using early lactation blood
and milk BHB in Dutch Holstein cows, revealing a heritability of 0.17 for blood BHB.
Overall, the heritability estimates of blood BHB levels were consistent with those reported
in previous studies.

Furthermore, using the BLUP and ssGBLUP analyses, the variance components and
heritability estimates for blood BHB were 0.167 and 0.169, respectively (Table 3). The
ssGBLUP method, which integrates genomic and pedigree relationship matrices, enhances
the accuracy of breeding values for production traits in young animals compared to conven-
tional BLUP methods [23,34,35]. The incorporation of genomic data enhances the precision
of kinship assessments, thereby facilitating more precise estimations of genetic relationships
among individuals. Our findings indicated a marginal increase in heritability estimates
when using genomic data compared to pedigree-based methodologies. The limited increase
in heritability may be attributed to the inclusion of individuals in the pedigree data. The
inclusion of genomic data substantially improves the reliability of these traits [36,37]. In
the future, we plan to collect more samples during periods with the highest phenotypic
and genetic variation.

In our genome-wide association study, we performed a single-marker GWAS anal-
ysis using blood ketone values across different parity groups. However, no significantly
associated SNP was found during the second lactation period, and all SNP effects were
too small to be significant when the Bonferroni correction was applied. Only one SNP
was significantly correlated with blood BHB levels during the third lactation period. It
is important to recognize that the efficacy of GWAS is influenced by variables such as
sample size and the density of SNP loci. Detecting SNPs with small effects can be difficult
in circumstances of limited sample sizes or sparse SNP marker coverage [38,39]. Notably,
we identified nine significant SNP loci located on BTA 2, 6, 9, 11, 13, and 23 based on
BHB breeding values. The SNP BTA-32905-no-rs (50,955,987 bp) on BTA 13, which ex-
hibited the highest −log10 p-value of 5.57 × 10−7, was situated within the genes RNF24,
PANK2, and MAVS. However, further research is needed to explore the relationship be-
tween these three candidate genes and ketosis. On BTA 11, the two significant SNP loci
(BovineHD1100000220, 730,613 bp, and BovineHD1100021063, 73,677,409 bp) included the
potential candidate genes HADHA, HADHB, BCL2L11, and EFR3B. In particular, the gene
hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit α (HADHA)
and β (HADHB) within the defined interval surrounding SNP BovineHD1100021063 (at
73,677,409 bp) on BTA 11 are associated with subclinical ketosis in later lactation [40].
In addition, studies have suggested the involvement of the BCL2L11 gene in lipid and
glucose metabolic pathways [41]. The EFR3B gene is considered a candidate gene for
human type 1 diabetes [42]. On BTA 2, both the SNP BovineHD0200020100 (69,386,940 bp)
and BovineHD0200025237 (88,536,618 bp) exceeded the significance threshold. One of the
candidate genes encompassing these two SNPs was INSIG2. The insulin-regulating gene
INSIG2 is involved in insulin signal transduction and plays a crucial role in the regulation
of lipid synthesis in mammary epithelial cells [43,44]. Insulin is a vital metabolic hormone
that plays a key role in the regulation of energy metabolism during the transition period
in dairy cows [45]. In the pathogenesis of ketosis, insulin resistance has been proposed as
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a predisposing factor because it may facilitate excessive postpartum adipose triglyceride
lipolysis [46,47]. A previous GWAS of KET also detected several candidate genes associated
with insulin metabolism and insulin-dependent diabetes [48]. Therefore, the INSIG2 gene
may be considered a new candidate gene for KET. In addition to these findings, we detected
significant SNP loci on BTA 6, 9, and 23 and annotated them to certain candidate genes.

To further annotate the functions, enrichment analysis was conducted on a list of
candidate genes. These results indicated that molecular functions and biological processes
are associated with fatty acid, amino acid, and lipid metabolism in dairy cattle. These
comprise various KEGG pathways, including bta00062 (fatty acid elongation), bta00410
(β-alanine metabolism), bta00071 (fatty acid degradation), bta00280 (Valine, leucine, and
isoleucine degradation), and bta01212 (fatty acid metabolism). The regulation of fatty acid
metabolism directly influences the energy balance in dairy cows. High-yielding cows often
experience ketosis more easily because of their higher demand for glucose and energy,
which can lead to an insufficient glucose supply, prompting the breakdown of fatty acids
and ketones [49,50]. Moreover, the gene–gene network analysis proved highly effective
in exploring shared biological processes among candidate genes. HADHA and HADHB
together form a mitochondrial membrane-bound hetero-oligomeric complex that catalyzes
the final three steps of mitochondrial long-chain fatty acid β-oxidation. In a study on the
glucagon response in mouse liver, under conditions of glucose scarcity, the mitochondrial
β-oxidation enzyme HADHA promoted the production of β-hydroxybutyrate through
β-oxidation [51]. In another study on liver tissue across three stages of lactation in Holstein
cows, HADHB was identified as a candidate gene for milk fat, casein, and lactose synthesis
in dairy cows [52]. Overall, these insights into the potential involvement of candidate
genes contributing to susceptibility to ketosis may offer a foundational framework for
understanding the pathogenesis of ketosis.

The results from our study confirmed the polygenic background of blood BHB and
KET, indicating their influence on numerous genomic regions, likely with small effects.
One limitation of the current study is the small sample size of cows included in the GWAS
analysis, which, when combined with the statistical adjustment for multiple testing, may
lead to a reduced number of significant SNPs being detected [53]. All SNP effects were
too small to reach significance when considering the strict Bonferroni-corrected P-value.
McCarthy et al. [54] suggested increasing the sample size to enhance the statistical power in
GWAS for complex traits with low incidences. Additionally, genotyping cows with a denser
SNP chip, as demonstrated by Freebern et al. [14], could potentially influence significance
tests in GWAS. In future research, we intend to expand the sample size and utilize high-
density SNP chip genotyping to improve the statistical power of GWAS for complex,
low-heritability traits. Meanwhile, we will also plan to identify key candidate genes
associated with ketosis by integrating genome-wide association and transcriptome data.

5. Conclusions

This study identified the genomic regions associated with blood BHB, and the esti-
mated heritability and repeatability values for blood BHB were 0.167 and 0.175, respectively.
The loci on BTA 2, 6, 9, 11, 13, and 23 exhibited significant associations with blood BHB
values and were considered to harbor crucial genes related to ketosis. These findings uncov-
ered important biological pathways related to fatty acid metabolism and lipid metabolism
in dairy cattle. To address the limitations of this study, we intend to increase the sample size
in future research and utilize high-density SNP chip genotyping to enhance the statistical
power of GWAS for complex, low-heritability traits. In summary, our result provides a
promising resource of candidate genes associated with blood BHB and ketosis in cattle,
which can be utilized in breeding programs and future investigations into disease genes for
clinical applications.
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