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Abstract: An epigenomic approach was used to study the impact of maternal pregestational body
mass index (BMI) on the placenta and umbilical cord methylomes and their potential effect on the
offspring’s metabolic phenotype. DNA methylome was assessed in 24 paired placenta and umbilical
cord samples. The differentially methylated CpGs associated with maternal pregestational BMI were
identified and the metabolic pathways and the potentially related diseases affected by their annotated
genes were determined. Two top differentially methylated CpGs were studied in 90 additional
samples and the relationship with the offspring’s metabolic phenotype was determined. The results
showed that maternal pregestational BMI is associated with the methylation of genes involved in
endocrine and developmental pathways with potential effects on type 2 diabetes and obesity. The
methylation and expression of HADHA and SLC2A8 genes in placenta and umbilical cord were
related to several metabolic parameters in the offspring at 6 years (weight SDS, height SDS, BMI SDS,
∆ BW-BMI SDS, FM SDS, waist, SBP, TG, HOMA-IR, perirenal fat; all p < 0.05). Our data suggest
that epigenetic analysis in placenta and umbilical cord may be useful for identifying individual
vulnerability to later metabolic diseases.

Keywords: DNA methylation; placenta; umbilical cord; pregestational obesity

1. Introduction

Accumulating evidence suggests that overweight and obesity in children are influ-
enced by an intrauterine environment [1]. This is known as fetal programming and implies
that environmental events can reset the physiological development of the embryo and
the fetus. The mechanisms underlying these effects might involve an impaired placental
transfer of nutrients during fetal development, which may cause permanent adaptations
in appetite, energy metabolism, and neuroendocrine function in the offspring, which pre-
dispose individuals to a greater risk of obesity and metabolic diseases in later life [2].
Among the wide range of in utero exposures, maternal obesity is a significant risk fac-
tor for cardiometabolic outcomes in the progeny [3]. Studies show a clear relationship
between increased maternal pregestational BMI, increased adiposity levels, and adverse
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cardiometabolic profile in their offspring at school age [4–6]. Whether these associations
reflect direct intrauterine causal mechanisms or are part of the obesity-inherited condition
remains unclear.

The mechanisms underlying these associations are still unknown. However, mounting
evidence from animal and human studies supports that in utero exposures are associated
with epigenetic modifications, including DNA methylation, which can, in turn, alter the
transcriptional capacity of genes involved in metabolism [7]. DNA methylation, the most
commonly investigated epigenetic mechanism influencing transcriptional regulation, con-
sists of the addition of a methyl group to the 5′ carbon of a cytosine followed by a guanine,
resulting in a methylated CpG site (CpGs). The distribution and pattern of methylation
are not uniform throughout the genome, as it occurs mainly in the so-called CpG islands
(CGI), which correspond to regions that are longer than 200 bp, with a cytosine and gua-
nine content of at least 50%, and a ratio of observed to expected CG higher than 0.6. It is
estimated that 70% of the promoters contain CGIs. Unmethylated CGIs have been related
to transcriptionally active genes, whereas methylated CGIs are related to transcriptional
repression [8].

The relationship between epigenetic mechanisms (especially DNA methylation) and
obesity is emerging as a new field with potential clinical implications [9]. A handful
of initial studies in humans have revealed associations between childhood obesity and
DNA methylation [10]. These associations are the results of approaches from two main
perspectives. While some authors have demonstrated significant associations between
childhood or adolescent obesity and DNA methylation in peripheral blood [11–13], others
have provided evidence that placenta and umbilical cord (blood and/or tissue) methylation
might influence anthropometric characteristics at birth [14–17] and body composition
later in life [18–20]. Some of the above-mentioned studies focused on targeted genomic
regions with a known relationship with obesity (i.e., LEP/LEPR, ADIPOQA/ADIPOR,
PPARG, IGF2, and others) [10], while others, performed epigenome-wide scale analyses
that shed light on new genes that were mainly implicated in metabolism and immune
regulation [20–22].

Placenta and umbilical cord tissues are of extra-embryonic mesoderm origin and give
support to fetal development [23]. Both tissues are affected by in utero conditions, and
developmental abnormalities in these tissues may cause adverse events in the mother and
the child [24,25]. During the last decade, there has been a great interest in the use of these
tissues as raw materials for medical applications because of their exceptional properties
and the ease of access to them [26]. The majority of clinical studies have utilized placental
tissues and umbilical cord veins; however, extensive preclinical experimentation has been
performed on the umbilical cord tissue (including Wharton’s Jelly) [27].

Given the above-mentioned findings, we hypothesize that epigenetic signatures estab-
lished during development can be influenced by maternal obesity and have an effect on the
offspring phenotype. Epigenetic marks shared by different tissues may be the most likely
related to offspring phenotype. The early detection of such signatures in fetal tissues at
birth may also provide predictive markers for the subsequent phenotype of the offspring.
Thus, we have used an epigenomic approach to study the impact of maternal pregestational
BMI on the offspring’s methylome in paired placenta and umbilical cord tissue samples
and the potential effect on their metabolic phenotype in late life.

2. Materials and Methods
2.1. Study Population and Ethics

The study population consisted of a population-based prenatal cohort of pregnant
women who were recruited during pregnancy (in Girona, northeastern Spain) and whose
infants were followed-up at 6 years old. The inclusion criteria were: Caucasian origin,
infants born at term (37 to 40 weeks), singleton pregnancies, and informed written consent.
The exclusion criteria were as follows: women with major medical, surgical, or obstetrical
complications, including gestational diabetes, hypertension, or preeclampsia; fetal growth
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restriction; newborn malformations or asphyxia; assisted reproductive technology; and
alcohol abuse or drug addiction during pregnancy.

A total of 114 mother–infant pairs were included in the cohort, of which, 24 were
selected for the study of the genome-wide DNA methylation array and 90 for the validation
of the top differentially methylated CpGs and gene expression (Supplementary Figure S1).
The sampling method was designed to ensure that the sample is representative of the study
subjects taking into account pregestational BMI, age, and newborn’s gender.

2.2. Mother–Newborn Assessments

Information on pregnancy, labor, and delivery characteristics was retrieved from stan-
dardized medical records. Gestational age was determined by utilizing the last menstrual
period, and whenever feasible, it was verified through ultrasound assessment. Mater-
nal pregestational weight was acquired through a questionnaire and cross-verified using
clinical records. Pregestational BMI was calculated as weight divided by height squared
(Kg/m2).

Newborns were weighed and measured immediately after delivery using a calibrated
scale and a measuring board, respectively. Gestational age- and sex-adjusted z-scores (SDS)
for birth weight and length were calculated using regional norms [28].

2.3. Umbilical Cord and Placenta Samples

Upon delivery, the umbilical cord was clamped and cut, and a section of the cord (a
piece measuring 1 to 4 cm in length) was immediately stored at −80 ◦C. For the placenta,
three cuboidal biopsies (1 cm3) from randomly selected lobes of the inner surface of the
placenta (maternal side) were obtained. Afterward, the decidua (outermost layer) was
removed, samples were washed with a physiological saline buffer to remove the maternal
blood, and samples were immediately stored at −80 ◦C.

2.4. Children Assessments

Children whose parents agreed to participate in the follow-up study at 6 years of age
(n = 62) were examined in the morning under a fasting state, and a venous blood sample
was obtained. Their characteristics at birth did not differ from those who did not participate
in the follow-up study.

Weight was measured on a calibrated scale, wearing light clothes, and height was
measured with a Harpenden stadiometer without shoes. BMI and age- and sex-adjusted
z-scores were calculated as above. Waist circumference was measured in the supine position
at the umbilical level. The changes between weight at birth and BMI at 6 years (∆ BW-BMI
SDS) were calculated as the subtraction between BMI SDS at 6 years and birth weight (BW)
SDS. Fat mass (FM) was assessed by bioelectric impedance (Hydra Bioimpedance Analyzer
4200; XiTRON Technologies, San Diego, CA, USA) and it was calculated as body weight
minus lean mass. An electronic oscillometer (Dinamap®Pro 100; GE Medical Systems,
Chalfont St. Giles, UK) with appropriate cuff size was used to measure blood pressure. It
was measured on the right arm, after a 10-min rest, and the patient was in a supine position.
Data are presented as the average of two measurements. Perirenal fat was measured by
a high-sensitivity ultrasound using a convex 3–3.5 MHz transducer placed parallel to the
surface of the kidney. Longitudinal scans were performed and the thickness from the inner
side of the abdominal musculature to the surface of the kidney was measured.

Serum glucose was measured by the hexokinase method as mg/dL. Insulin was
measured by immunochemiluminescence (IMMULITE 2000, Diagnostic Products, Los
Angeles, CA, USA) as mIU/L. The lower detection limit was 0.4 mIU/L, and the intra- and
inter-assay coefficients of variation (CVs) were <10%. Insulin resistance was estimated from
fasting insulin and glucose levels using the homeostasis model assessment [HOMA-IR =
(fasting insulin in mIU/L) × (fasting glucose in mM)/22.5]. Total serum triacylglycerol (TG)
was measured by monitoring the reaction of glycerol–phosphate oxidase (ARCHITECT,
Abbott Laboratories, Abbott Park, IL, USA); the lower detection limit was 5.0 mg/dL
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and intra- and inter-assay CVs were <5%. High-density lipoprotein cholesterol (HDL-
cholesterol) was quantified by a homogenous method of selective detergent with accelerator
(ARCHITECT, Abbott Laboratories, Abbott Park, IL, USA); the lower detection limit was
2.5 mg/dL and intra- and inter-assay CVs were <4%.

2.5. Genome-Wide DNA Methylation Array

DNA methylation profiling was performed in 24 paired placenta and umbilical cord
samples using the Infinium® MethylationEPIC BeadChip array (Illumina, San Diego, CA,
USA), which examines >850,000 CpGs across the genome. The process was conducted at
the Epigenomics Unit and Biostatistics Service from IIs La Fe (Valencia, Spain) following
the manufacturer’s protocol, as previously described [29]. Raw IDAT files were normalized
using functional normalization with R package minfi (version 1.28.0). Every beta value in
the EPIC array was accompanied by a detection p-value, which represents the confidence
of a given beta value. Filters were applied as follows: CpGs with a detection p value > 0.01
were removed from the analysis, and CpGs associated with SNPs and CpGs located in
sexual chromosomes were also removed before the analysis of the data. After the filtering,
the remaining 841,818 CpGs were considered valid for the analysis.

The differentially methylated CpGs associated with maternal pregestational BMI were
identified using Beta regression models with pregestational BMI as a predictor and the
methylation level of each CpG as a response. To correct for multiple comparisons, p values
were subsequently adjusted using the false discovery rate. All statistical analyses were
performed using R (version 3.5.1, RStudio Inc, Vienna, Austria) and R package betareg
(version 2.0-13, RStudio Inc, Vienna, Austria). Adjusted p-values < 0.05 were considered
statistically significant. Given that pregestational BMI is a continuous variable whose range
in the sample spans from 18.9 to 38.0, an odds ratio (OR) value higher than 1.05 or lower
than 0.95 was considered to have a more relevant biological effect.

Each CpG on the array was assigned to functional regions of the gene, including
promoter regions (TSS1500, TSS200, and 5′-UTR), first exon, gene body, and 3′UTR, as well
as localization in relation to CpG islands (shore, island, and shelf). Methylation array data
were deposited in the Gene Expression Omnibus database (accession number GSE192812).

The WebGestalt (web-based gene set analysis toolkit) was used to identify the metabolic
pathways epigenetically affected by maternal pregestational BMI; bioinformatic analyses
with DAVID (Database for Annotation, Visualization, and Integrated Discovery) [30,31]
were conducted to study the potentially affected diseases and disorders.

2.6. CpG Methylation by Pyrosequencing

The top differentially methylated CpGs shared between the placenta and umbilical
cord (annotating for HADHA and SLC2A8 genes) were selected for validation in 90 paired
placenta and umbilical cord samples by pyrosequencing bisulfite-treated DNA. Genomic
DNA was isolated from placenta and umbilical cord samples using the QIAamp DNA
mini kit (Qiagen, Hilden, Germany). Sodium bisulfite conversion of 500 ng of DNA was
performed using the EpiTect Fast DNA Bisulfite Kit (Qiagen). Bisulfite-treated DNA (10 ng)
was PCR-amplified with 2 µM of forward and biotinylated reverse primers (Supplementary
Table S1). Both PCR and sequencing primers were designed with the usage of PyroMark As-
say Design 2.0 software (Qiagen). The PCR product was rendered single-stranded through
biotin capture on magnetic beads and then annealed to the sequencing primer (4 mM) to be
subsequently pyro-sequenced in PyroMark Q48 Instrument (Qiagen). CpG site methyla-
tion was quantified with the PyroMark Q48 (Qiagen). Raw data were analyzed using the
PyroMark Q48 AutoPREP Software V2.4.2 (Qiagen) and the percentage of methylation for
each analyzed CpG was obtained.

2.7. Gene Expression by Real-Time PCR

The expression levels of the two commonly differentially methylated genes in both pla-
centa and umbilical cord (HADHA and SLC2A8 genes) were studied in 90 paired placenta
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and umbilical cord samples by RT-qPCR. Total RNA was isolated and retro-transcribed
using the RNeasy mini kit (Qiagen, Germany) and the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Waltham, MA, USA). TaqMan Gene Expression
assays (Thermo Fisher Scientific, Waltham, MA, USA) were used to amplify the HADHA
(Hs00426191_m1) and SLC2A8 (Hs00205863_m1) genes in both placenta and umbilical cord,
the housekeeping genes TBP (Hs00427620_m1) and SDHA (Hs00188166_m1) in placenta,
and GAPDH (Hs02786624_g1) in umbilical cord. Reactions were run on a LightCycler
480 Real-Time PCR System (Roche Diagnostics, Rotkreuz, Switzerland), using the default
cycling conditions. Relative gene expression levels were calculated according to the 2−∆Ct

method.

2.8. Statistical Methods

Statistical analyses were performed using SPSS Statistics 22.0 (SPSS, Chicago, IL, USA).
Results are shown as mean ± standard error of the mean (SEM). An unpaired t test was
used to study differences between quantitative variables and the chi-square test was used
for categorical variables. To study the relationship between epigenetics and offspring
parameters, subjects were grouped according to their methylation and expression levels as
follows: low levels (those with methylation/expression levels below the 50th percentile of
the sample, n = 31) and high levels (those with methylation/expression levels above the
50th percentile of the sample, n = 31). The univariate general linear model adjusting for
potential confounders (maternal pregestational BMI, gestational age, and child’s sex and
age) was performed. Statistical significance was set at p-value ≤ 0.05.

3. Results
3.1. Maternal and Offspring Characteristics

Table 1 summarizes the maternal and offspring characteristics of the study population
(24 pregnant women included for the genome-wide DNA methylation array and 90 preg-
nant women included for the validation of the top differentially methylated CpGs and gene
expressions). Both groups had similar characteristics, but the validation group displayed
slightly lower gestational age and birth weight, and the offspring at 6 years were slightly
younger and shorter (all p < 0.05).

Table 1. Clinical characteristics of the study subjects.

Array Validation p Value

Mother (n) 24 90

Age (yr) 31 ± 1 31 ± 1 Ns
Height (cm) 164 ± 1 163 ± 1 Ns
Pregestational weight (kg) 68.5 ± 2.9 65.3 ± 1.4 Ns
Pregestational BMI (Kg/m2) 25.2 ± 1.0 24.5 ± 0.4 Ns
Pregestational Obesity (%) 31 33 Ns
Pre-delivery weight (kg) 84.7 ± 2.9 79.6 ± 1.4 Ns
Pre-delivery BMI (Kg/m2) 31.2 ± 1.1 29.9 ± 0.5 Ns
Gestational weight gain (Kg) 16.1 ± 0.6 14.3 ± 0.5 Ns

Newborn (n) 24 90

Gender (% female) 50 43 Ns
Gestational age (wk) 40 ± 0.1 39 ± 0.1 0.04
Birth weight (Kg) 3.4 ± 0.1 3.2 ± 0.1 0.01
Birth weight SDS 0.30 ± 0.1 0.01 ± 0.1 0.04
Birth length(cm) 50.1 ± 0.2 49.5 ± 0.1 Ns
Birth length SDS 0.07 ± 0.1 −0.21 ± 0.1 Ns

Offspring at 6 yr (n) 24 62
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Table 1. Cont.

Array Validation p Value

Gender (% female) 50 43 Ns
Age (yr) 6.2 ± 0.1 5.8 ± 0.1 0.04
Weight (kg) 23.7 ± 1.0 22.3 ± 0.6 Ns
Weight SDS 0.22 ± 0.2 0.13 ± 0.1 Ns
Height (cm) 120 ± 1 114 ± 1 0.004
Height SDS 0.46 ± 0.2 −0.07 ± 0.1 Ns
BMI (kg/m2) 16.3 ± 0.3 16.8 ± 0.3 Ns
BMI SDS −0.02 ± 0.1 0.24 ± 0.1 Ns
∆ BW-BMI SDS −0.30 ± 0.2 0.23 ± 0.1 Ns
Waist (cm) 57.1 ± 1.7 57.1 ± 0.9 Ns
Hip (cm) 61.1 ± 1.8 59.9 ± 1.0 Ns
SBP (mmHg) 96.9 ± 3.0 96.2 ± 1.4 Ns
DBP (mmHg) 57.1 ± 1.1 55.9 ± 0.9 Ns
HDL-cholesterol (mg/dL) 57.0 ± 2.7 54.4 ± 1.2 Ns
Triglycerides (mg/dL) 49.5 ± 2.7 50.8 ± 2.1 Ns
Glucose (mg/dL) 85.0 ± 1.7 82.5 ± 1.0 Ns
Insulin (mIU/L) 6.2 ± 0.5 5.5 ± 0.2 Ns
HOMA-IR 1.3 ± 0.1 1.1 ± 0.1 Ns
Perirenal fat (cm) 0.10 ± 0.1 0.11 ± 0.1 Ns
FM (Kg) 5.9 ± 0.6 5.7 ± 0.4 Ns
FM SDS 0.37 ± 0.3 0.59 ± 0.2 Ns

Data are shown as mean ± SEM. BMI: body mass index; SDS: standard deviation score; ∆ BW-BMI SDS: z score
changes from weight at birth to BMI at 6 years; SBP: systolic blood pressure; DBP: diastolic blood pressure; HDL:
high-density lipoprotein; HOMA-IR: Homeostatic model assessment for insulin resistance; FM: fat mass; Ns:
non-significant.

3.2. Genome-Wide DNA Methylation Array

The genome-wide DNA methylation array showed that pregestational BMI was as-
sociated with differential DNA methylation at 1031 CpGs in placenta (786 CpGs with Ref
Seq-annotated genes) and 369 CpGs in umbilical cord (323 CpGs with Ref Seq-annotated
genes). We considered those CpGs with Ref Seq-annotated genes to have a greater proba-
bility of eliciting significant changes in gene expression and, thus, focused our analyses
only on those CpGs with gene annotation. Those CpGs were distributed over 742 and
314 different genes in placenta and umbilical cord, respectively. A subset of 17 genes was
commonly differentially methylated in both placenta and umbilical cord (Figure 1A). This
indicates that about 3% (in placenta) and 6% (in umbilical cord) of the methylome was
shared between both tissues.

The distribution of gene regulatory regions for CpGs with significant changes in DNA
methylation is presented in Figure 2A,B. In placenta, the methylated CpGs associated with
maternal pregestational BMI were mainly located in a CpG Island (31.4%) and within the
gene body (34%) according to the gene region; in umbilical cord, they were mainly located
in a CpG Island (74.5%) and within the TSS200 site (30%), according to the gene region.
Regarding the distribution within the gene, an excess of CpGs can be observed in all regions
before the body (TSS1500, TSS200, 5′UTR, and first exon) in umbilical cord compared to
placenta. Additionally, CpGs were widely spread across different chromosomes, indicating
that both the placenta and umbilical cord tissue have extensive and significant methylation
changes in a genome-wide manner (Figure 2C).
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Figure 1. Overview of the analytical strategy used to identify placental and umbilical cord methylated
genes, showing the association with pregestational BMI.

A summary of the top differentially methylated CpGs with the most relevant associ-
ation with pregestational BMI in placenta and umbilical cord (OR > 1.05 and OR < 0.95)
is presented in Table 2 (the full list of differentially methylated CpGs associated with
pregestational BMI is shown in Supplementary Table S2). The CpGs that were annotated to
HADHA and SLC2A8 genes were placed among the top differentially methylated CpGs in
both placenta and umbilical cord.

Table 2. Summary of the top differentially methylated CpGs (selected by odds ratio) and their
annotated genes in placenta (A) and umbilical cord (B).

(A) Placenta

IlmnID Beta Coef-
ficient

FDR-Adjusted
p-Value OR Chr Position Gene Name

cg13692482 −0.130 2.04 × 10−8 0.878 9 130168651 SLC2A8
cg13031029 −0.124 3.34 × 10−6 0.883 7 107574783 LAMB1
cg03357803 −0.106 3.76 × 10−5 0.899 15 28272345 OCA2
cg12006733 −0.105 2.17 × 10−5 0.901 15 90177014 KIF7
cg12680750 −0.104 7.92 × 10−7 0.901 2 133426182 LYPD1

cg04899492 0.096 5.82 × 10−5 1.101 6 24126312 NRSN1
cg05888872 0.098 1.23 × 10−7 1.103 10 14050479 FRMD4A
cg01188578 0.103 2.48 × 10−5 1.108 2 26464058 HADHA
cg16936887 0.105 5.28 × 10−5 1.111 18 52989025 TCF4
cg12877278 0.117 3.59 × 10−7 1.124 6 151551059 LOC102723831
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Table 2. Cont.

(B) Umbilical Cord

IlmnID Beta Coef-
ficient

FDR-Adjusted
p-Value OR Chr Position Gene Name

cg13692482 −0.133 2.35 × 10−6 0.875 9 130168651 SLC2A8
cg03751055 −0.084 7.46 × 10−6 0.919 10 131380455 MGMT
cg23143502 −0.063 3.64 × 10−7 0.939 4 675936 MFSD7
cg25783997 −0.058 7.21 × 10−6 0.944 2 185462928 ZNF804A
cg16396228 −0.050 3.06 × 10−6 0.952 17 46985589 UBE2Z

cg03876184 0.074 1.31 × 10−5 1.077 2 27886755 SUPT7L
cg04740665 0.080 8.39 × 10−6 1.083 1 205560997 MFSD4
cg16513685 0.081 6.31 × 10−7 1.084 9 33738831 LINC01251
cg26028074 0.118 1.39 × 10−6 1.125 17 32201533 ASIC2
cg01188578 0.179 2.16 × 10−6 1.196 2 26464058 HADHA

FDR: false discovery rate; OR: odds ratio; Chr: chromosome. In bold, the CpGs/genes shared between placenta
and umbilical cord.
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chromosomes (C).
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3.3. Bioinformatics Functional Analysis

To establish whether the differentially methylated CpGs had significant functional
roles, we conducted bioinformatics analyses, aimed to determine the gene metabolic path-
ways overrepresented by all the differentially methylated CpGs in placenta and umbilical
cord (KEGG analysis) and the potentially related disease/disorders (Figure 1B).

The KEEG analysis of the differentially methylated CpGs in placenta and umbili-
cal cord is shown in Table 3. Differential methylation in placenta showed enrichment
in pathways with potentially important effects on extracellular matrix interaction, fatty
acid elongation, RNA transport, the AGE-RAGE signaling pathway in diabetic complica-
tions, and arrhythmogenic right ventricular cardiomyopathy (ARVC). In umbilical cord,
enrichment was observed in pathways related to natural killer cell-mediated cytotoxicity,
NOD-like receptor signaling, and RNA transport.

Table 3. Enriched Kyoto Encyclopedia of Genes and Genomes (KEEG) pathways of methylated CpGs
associated with maternal pregestational BMI in placenta and umbilical cord. The number of genes
involved in each pathway and the p value are shown.

Placenta Genes p Value

Hsa04512: ECM–receptor interaction 3 0.016
Hsa00062: Fatty acid elongation 4 0.018
Hsa03013: RNA transport 7 0.031
Hsa04933: AGE-RAGE signaling pathway in diabetic complications 4 0.036
Hsa05412: Arrhythmogenic right ventricular cardiomyopathy (ARVC) 3 0.045

Umbilical Cord Genes p Value

Hsa04650: Natural killer cell-mediated cytotoxicity 3 0.007
Hsa04621: NOD-like receptor signaling pathway 7 0.010
Hsa03013: RNA transport 4 0.047

Table 4 shows the top-ranked common diseases/disorders related to the differentially
methylated genes in placenta and umbilical cord. The differentially methylated genes in
placenta were mainly related to psychological, chemo-dependency, pharmacogenomic, and
metabolic diseases. A higher number of genes were involved in tobacco, type 2 diabetes,
and renal failure. The differentially methylated genes in umbilical cord were mainly related
to pharmacogenomic, developmental, immune, and metabolic diseases. A higher number
of genes were involved in type 2 diabetes, cleft lip, and obesity.

Table 4. Top-ranked common diseases and disorders to which differentially methylated genes in
placenta and umbilical cord belonged. The number of genes involved in each disease/disorder and
the p value are shown.

Placenta Genes p Value

Tobacco User Disorder 139 0.0078
Height 17 0.014

Eosinophils 8 0.016
Hemoglobin A, Glycosylated 14 0.016

Coronary Disease 17 0.02
Attention Deficit and Disruptive Behavior Disorders 4 0.021

Bone Mineral Density 25 0.024
Occipital Lobe 4 0.029

Type 2 Diabetes 100 0.032
Intuition 3 0.034

Pancreatic Neoplasms 6 0.049
Breath Tests 10 0.05

Chronic Renal Failure 45 0.05
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Table 4. Cont.

Umbilical Cord Genes p Value

Type 2 Diabetes 57 0.00009
Cleft Lip 14 0.0092
Obesity 13 0.013
Autism 12 0.025

Hypertension 19 0.028
Respiratory Function Tests 9 0.042

Leukemia 8 0.05

3.4. HADHA and SLC2A8 Methylation and Expression

Given that HADHA and SLC2A8 were placed among the top methylated CpGs in
both placenta and umbilical cord, they were selected to be validated in a wider population
by pyrosequencing and RT-qPCR (Figure 1C). The levels of CpG methylation and gene
expression for both tissues are compiled in Supplementary Table S3.

Placental HADHA methylation showed a positive relation with pregestational BMI,
as mothers with higher placental HADHA methylation (>p50) showed higher pregesta-
tional BMI (p = 0.03), and placental HADHA expression showed a negative relation with
pregestational BMI, as mothers with higher placental HADHA expression (>p50) showed
lower pregestational BMI (p = 0.003) (Figure 3). In turn, the placental HADHA expression
was negatively associated with the methylation levels (p = 0.04). Moreover, lower placental
HADHA methylation and higher HADHA expression were related to a worse metabolic
profile in the offspring at 6 years (higher weight SDS, BMI SDS, ∆ BW-BMI SDS, waist, SBP,
insulin, HOMA-IR, and FM SDS; all p < 0.05) (Table 5(A)). Most of these results remained
significant after adjusting for potential confounding factors. No significant relationship
was observed between umbilical cord methylation and/or expression and the offspring
outcomes; however, children with lower umbilical cord HADHA methylation tended to
show higher BMI-SDS, ∆ BW-BMI SDS, and SBP (p between 0.05 and 0.08) (Table 5(B)).
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Figure 3. Relationship between placental HADHA methylation and expression with pregestational
BMI.

Pyrosequencing analysis failed to demonstrate a relationship between SLC2A8 methy-
lation and pregestational BMI. However, lower SLC2A8 methylation and higher SLC2A8
expression in placenta and umbilical cord were both related to a worse metabolic profile in
the offspring at 6 years. Specifically, lower levels of placental SLC2A8 methylation were
related to higher weight SDS, height SDS, and perirenal fat; and higher levels of placental
SLC2A8 expression were related to higher FM-SDS (all p < 0.05; Table 6A). Concerning
the umbilical cord, lower SLC2A8 methylation was related to higher weight SDS, height
SDS, BMI SDS, and perirenal fat; and higher SLC2A8 expression was related to higher TG,
glucose, and FM SDS (all p < 0.05; Table 6B). Some of these results remained significant
after adjusting for potential confounding factors.
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Table 5. Relationship between HADHA methylation, expression, and offspring parameters at 6 years
in (A) placenta and (B) umbilical cord.

(A) Placenta

HADHA Methylation HADHA Expression

Low Levels
(<p50)

High Levels
(>p50) p Value Low Levels

(<p50)
High Levels

(>p50) p Value

Weight SDS 0.57 ± 0.25 −0.10 ± 0.15 0.02 −0.19 ± 0.17 0.41 ± 0.22 0.03

Height SDS 0.03 ± 0.25 −0.14 ± 0.19 Ns −0.31 ± 0.21 0.13 ± 0.19 Ns

BMI SDS 0.58 ± 0.24 −0.01 ± 0.15 0.03 −0.03 ± 0.13 0.56 ± 0.26 0.03

∆ BW-BMI
SDS 0.67 ± 0.25 −0.13 ± 0.19 0.01 −0.13 ± 0.16 0.51 ± 0.29 0.04

Waist 58.8 ± 1.4 56.1 ± 1.1 Ns 55.0 ±0.8 58.6 ± 1.6 0.04

SBP 101.0 ± 2.1 92.3 ± 1.6 0.002 94.3 ± 1.9 98.8 ± 2.1 Ns

DBP 56.9 ± 1.2 55.4 ± 1.4 Ns 55.6 ± 1.3 56.3 ± 1.4 Ns

HDL-
cholesterol 56.4 ± 1.8 52.9 ± 1.7 Ns 54.5 ± 1.9 54.5 ± 1.5 Ns

Triglycerides 53.0 ± 3.4 48.8 ± 2.6 Ns 51.0 ± 3.0 50.4 ± 2.9 Ns

Glucose 83.7 ± 1.3 81.2 ± 1.4 Ns 82.0 ± 1.3 82.9 ± 1.5 Ns

Insulin 6.1 ± 0.3 5.0 ± 0.4 0.04 4.87 ± 0.32 6.10 ± 0.48 0.03

HOMA-IR 1.28 ± 0.10 1.03 ± 0.09 0.04 0.95 ± 0.07 1.21 ± 0.11 0.04

Perirenal fat 0.10 ±0.01 0.11 ± 0.01 Ns 0.11 ± 0.01 0.10 ± 0.01 Ns

FM SDS 1.11 ± 0.39 0.01 ± 0.23 0.01 0.02 ± 0.26 1.12 ± 0.39 0.02

(B) Umbilical Cord

HADHA Methylation HADHA Expression

Low Levels
(<p50)

High Levels
(>p50) p Value Low Levels

(<p50)
High Levels

(>p50) p Value

Weight SDS 0.16 ± 0.28 0.03 ± 0.17 Ns 0.49 ± 0.19 −0.09 ±
0.21 0.04

Height SDS −0.26 ±
0.26 0.04 ± 0.23 Ns 0.27 ± 0.19 −0.41 ±

0.20 0.01

BMI SDS 0.36 ± 0.25 0.03 ± 0.18 Ns 0.29 ± 0.19 0.15 ± 0.19 Ns

∆ BW-BMI
SDS 0.34 ± 0.26 −0.07 ± 0.24 Ns 0.15 ± 0.23 0.27 ± 0.21 Ns

Waist 55.6 ± 1.2 56.1 ± 1.2 Ns 57.3 ± 1.1 56.8 ± 1.4 Ns

SBP 97.4 ± 2.4 92.8 ± 2.1 Ns 97.0 ± 1.6 96.0 ± 2.2 Ns

DBP 54.9 ± 1.3 54.2 ± 1.5 Ns 57.8 ± 1.3 54.7 ± 1.3 Ns

HDL-
cholesterol 55.85 ± 1.92 53.56 ± 1.97 Ns 53.6 ± 1.6 54.9 ± 1.8 Ns

Triglycerides 46.41 ± 2.43 54.56 ± 3.96 Ns 52.1 ± 3.2 49.3 ± 2.5 Ns

Glucose 82.07 ± 1.53 80.68 ± 1.57 Ns 82.67 ± 1.47 82.36 ± 1.28 Ns

Insulin 5.13 ± 0.39 5.12 ± 0.43 Ns 5.71 ± 0.41 5.36 ± 0.38 Ns

HOMA-IR 1.07 ± 0.09 1.01 ± 0.08 Ns 1.18 ± 0.10 1.11 ± 0.08 Ns

Perirenal fat 0.11 ± 0.01 0.10 ± 0.01 Ns 0.10 ± 0.01 0.11 ± 0.01 Ns

FM SDS 0.51 ± 0.39 0.28 ± 0.33 Ns 0.61 ± 0.34 0.48 ± 0.32 Ns

Data are presented as mean ± standard error of mean (SEM). BMI: body mass index; SBP: systolic blood pressure;
DBP: diastolic blood pressure; HDL: high-density lipoprotein; HOMA-IR: homeostatic model assessment of
insulin resistance; FM: fat mass; Ns: non-significant. p Value was obtained using t test. Significant results after
adjustment for confounding variables in univariate general linear models are shown in bold.
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Table 6. Relationship between SLC2A8 methylation, expression, and offspring parameters at 6 years
in (A) placenta and (B) umbilical cord.

(A) Placenta

SLC2A8 Methylation SLC2A8 Expression

Low Levels
(<p50)

High Levels
(>p50) p Value Low Levels

(<p50)
High Levels

(>p50) p Value

Weight SDS 0.80 ± 0.31 0.01 ± 0.18 0.02 0.19 ± 0.21 −0.01 ±
0.19 Ns

Height SDS 0.75 ± 0.19 −0.13 ± 0.20 0.007 −0.19 ± 0.18 0.01 ± 0.24 Ns

BMI SDS 0.50 ± 0.31 0.23 ± 0.20 Ns 0.37 ± 0.20 0.01 ± 0.18 Ns

∆ BW-BMI
SDS 0.51 ± 0.35 0.18 ± 0.22 Ns 0.47 ± 0.22 −0.13 ±

0.21 Ns

Waist 58.4 ± 2.0 57.6 ± 1.3 Ns 56.0 ± 1.2 57.4 ± 1.3 Ns

SBP 96.0 ± 2.1 95.9 ± 1.8 Ns 96.3 ± 2.3 96.4 ± 1.6 Ns

DBP 56.5 ± 1.7 55.4 ± 1.5 Ns 55.8 ± 1.2 56.1 ± 1.5 Ns

HDL-
cholesterol 55.1 ± 3.0 55.9 ± 1.4 Ns 52.9 ± 1.7 56.2 ± 1.8 Ns

Triglycerides 47.8 ± 3.5 50.7 ± 2.7 Ns 50.8 ± 3.1 50.7 ± 2.8 Ns

Glucose 80.9 ± 1.5 82.8 ± 1.6 Ns 81.8 ± 1.2 83.1 ± 1.6 Ns

Insulin 5.6 ± 0.4 5.5 ± 0.4 Ns 5.3 ± 0.4 5.6 ± 0.3 Ns

HOMA-IR 1.14 ± 0.1 1.17 ± 0.1 Ns 1.10 ± 0.09 1.17 ± 0.10 Ns

Perirenal fat 0.13 ± 0.01 0.10 ± 0.01 0.02 0.12 ± 0.01 0.10 ± 0.01 Ns

FM SDS 1.02 ± 0.47 0.74 ± 0.36 Ns −0.15 ± 0.17 0.78 ± 0.36 0.02

(B) Umbilical Cord

SLC2A8 Methylation SLC2A8 Expression

Low Levels
(<p50)

High Levels
(>p50) p Value Low Levels

(<p50)
High Levels

(>p50) p Value

Weight SDS 0.75 ± 0.28 0.01 ± 0.18 0.03 0.05 ± 0.19 0.20 ± 0.21 Ns

Height SDS 0.50 ± 0.23 −0.16 ± 0.18 0.02 0.04 ± 0.21 −0.17 ±
0.20 Ns

BMI SDS 0.67 ± 0.27 0.10 ± 0.18 0.04 0.07 ± 0.16 0.37 ± 0.22 Ns

∆ BW-BMI
SDS 0.59 ± 0.32 0.14 ± 0.23 Ns 0.04 ± 0.20 0.38 ± 0.23 Ns

Waist 58.3 ± 1.9 57.7 ± 1.4 Ns 56.0 ± 1.2 58.0 ± 1.2 Ns

SBP 95.0 ± 2.0 96.3 ± 2.0 Ns 94.4 ± 1.8 98.6 ± 2.12 Ns

DBP 55.6 ± 1.9 56.1 ± 1.4 Ns 57.0 ± 1.4 55.5 ± 1.2 Ns

HDL-
cholesterol 56.9 ± 2.7 54.7 ± 1.5 Ns 53.9 ± 1.8 54.7 ± 1.7 Ns

Triglycerides 45.6 ± 3.4 51.6 ± 2.8 Ns 45.7 ± 2.3 55.3 ± 3.1 0.02

Glucose 80.0 ± 1.4 83.6 ± 1.6 Ns 80.72 ± 1.30 84.21 ± 1.38 0.05

Insulin 5.2 ± 0.4 5.7 ± 0.4 Ns 5.32 ± 0.41 5.73 ± 0.38 Ns

HOMA-IR 1.0 ± 0.1 1.2 ± 0.1 Ns 1.08 ± 0.09 1.21 ± 0.09 Ns

Perirenal fat 0.13 ± 0.01 0.10 ± 0.01 0.006 0.10 ± 0.01 0.11 ± 0.01 Ns

FM SDS 0.75 ± 0.42 0.84 ± 0.38 Ns 0.10 ± 0.26 1.02 ± 0.37 0.04

Data are presented as mean ± standard error of mean (SEM). BMI: body mass index, SDS: standard deviation
score; ∆ BW-BMI SDS: z score changes from weight at birth to BMI at 6 years; SBP: systolic blood pressure; DBP:
diastolic blood pressure; HDL: high-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin
resistance; FM: fat mass; Ns: non-significant. p value was obtained using t test. Significant results after adjustment
for confounding variables in univariate general linear models are shown in bold.
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4. Discussion

In this study, we report, for the first time, the DNA methylation signatures associated
with maternal pregestational BMI in paired placenta and umbilical cord tissue samples. The
key findings from our study include (1) an in silico approach, showing that those differen-
tially methylated CpGs/genes were likely involved in several metabolic pathways related
to cell proliferation and development, with potential effects on metabolic diseases; and
(2) the identification of HADHA and SLC2A8 genes, which were differentially methylated
in both placenta and umbilical cord tissue and related to several metabolic parameters in
the offspring at 6 years.

Our data showed that under obesogenic conditions, such as pregestational obesity,
placenta and umbilical cord tissue undergo extensive methylation changes in genomic
regions involved in important regulatory pathways. These methylation changes may be
relevant to disease processes, including type 2 diabetes and obesity. In this sense, the
bioinformatics functional analysis showed enrichment in several pathways related to fatty
acids, diabetes, and cardiovascular disease in placenta, and pathways related to the immune
response in umbilical cord.

The current evidence suggests that pregestational and gestational maternal BMI are
associated with some epigenetic signatures in the mother and the offspring [32–34], indicat-
ing that some of the effects proposed by the DOHaD (Developmental Origins of Health
and Disease) hypothesis may indeed be mediated by epigenetic signatures. However, the
high variability of methods applied, together with the multitude of different target tissues
analyzed and the small sample sets, have not permitted reaching causative conclusions so
far. A recent systematic review [35] identified 31 studies exploring the association between
pregestational BMI and DNA methylation profile in maternal tissues (2 in maternal blood
and 1 in adipose tissue), placenta (7 in placental tissue) and umbilical cord (21 in cord blood
and 3 in cord tissue). Most of them studied single samples and targeted specific CpGs, and
none of them studied the methylation of the HADHA and SLC2A8 genes.

The overlap of genes and regulatory pathways between placenta and umbilical cord
tissue highlights the potential effects of pregestational obesity on the fetus. Several authors
have previously shown that in utero conditions, such as gestational diabetes, preeclampsia
and obesity could affect the developing fetus by inducing epigenetic changes in fetal tissues
(cord blood and placental) [36–39], and that differentially methylated regions significantly
overlapped between both tissues. However, all the previous works investigated cord blood
instead of umbilical cord tissue. Our results showed that placenta and umbilical cord
tissue shared about 3–6% of the methylome, being HADHA and SLC2A8 among the top
differentially methylated CpGs in both tissues.

The HADHA gene (hydroxyl acyl-CoA dehydrogenase trifunctional multienzyme
complex subunit alpha) encodes the alpha subunit of the mitochondrial trifunctional
protein, an enzyme that catalyzes the last three steps of fatty acid beta-oxidation [40]. In
mice, the reduction of HADHA hepatic proteins led to an increase in triglyceride levels
and, consequently, to a fatty liver [41]. Moreover, deficiency of the HADHA gene causes
fetal growth retardation and neonatal hypoglycemia [42] and those mice heterozygotes
for the HADHA allele develop hepatic steatosis and insulin resistance [43]. Non-alcoholic
steatohepatitis in rats fed with a high-fat diet resulted in the downregulation of HADHA
protein expression in liver cells [44]. In this sense, our results show that pregestational BMI
relates to higher methylation and a lower expression of HADHA in placenta. Indeed, the
epigenetic changes induced by pregestational BMI may have an impact on the offspring
as lower placental HADHA methylation and higher HADHA expression were related to
a worse metabolic profile in the offspring at age 6 years (including an increased change
in BMI from birth and higher fat mass accumulation and HOMA-IR). We have not come
across any studies investigating DNA methylation in the HADHA gene; only genome-wide
DNA methylation in end-stage human heart failure showed that differential promoter
methylation of several metabolic intermediates (including HADHA) in heart tissue was
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associated with the expression of the same genes in opposite direction [45]. In agreement
with these results, our studied HADHA CpGs were associated with inverse gene expression.

The SLC2A8 gene (Solute carrier family 2 member 8), also known as GLUT8, is
a glucose and fructose transporter expressed in highly oxidative tissues that regulates
metabolic homeostasis [46]. GLUT8 deficiency prevents fructose-induced fat accumulation,
glycemic dysregulation, and dyslipidemia through PPARγ and its downstream targets [47].
SLC2A8 is expressed by the human placental trophoblast during pregnancy [48] and has
previously been related to reduced fetal growth [49]; SLC2A8 was hypomethylated in the
peripheral blood of small-for-gestational-age (SGA) infants aged 12 months and negatively
associated with obesity measures (BMI z-scores and fat mass) at 12 and 24 months [50].
Similarly, our results showed that pregestational BMI relates to SLC2A8 hypomethylation
in both placenta and umbilical cord in the methylation array. Children with higher SLC2A8
methylation showed decreased weight, height, BMI, and perirenal fat accumulation. Thus,
SLC2A8 methylation could play a role in the prevention of the obesity-related phenotype
induced by pregestational obesity. We acknowledge that our validation analysis failed to
demonstrate a relationship between SLC2A8 methylation and pregestational BMI; this could
be due to technical issues (the microarray technology is different from the pyrosequencing
technology) or the characteristics of the study population, which could differ in other
parameters not studied in this work (i.e., medication, diet, and exercise).

Our data suggest that methylation changes induced by pregestational obesity can
be similar in placenta and umbilical cord tissue. This may indicate that multiple other
tissues and cells experience similar fetal epigenetic programming, due to the same in
utero metabolic environmental exposure, and may be part of the mechanisms leading to
long-term offspring adverse outcomes. However, further work is needed to determine the
relevance of epigenetic changes in metabolic fetal programming. In fact, several differences
have been observed in the CpG distribution between placenta and umbilical cord, mainly
regarding the distribution within the gene. Recent data show that for some genomic regions,
methylation appears largely independent of the tissue of origin, whereas for others, there is
a clear tissue-specific dependence [51].

We acknowledge that our study has some limitations. One factor worth considering
is the heterogeneity of cells present in the studied tissues. Recent data suggest that the
variation in cell-type proportions across samples may confound associations of DNA methy-
lation with modeled outcomes; cell-type deconvolution approaches are being developed to
infer cell-type proportions and give insights into cell-specific methylation effects [52]. In our
study, although we did not adjust for cell-type proportions, the tissue samples were fully
homogenized to ensure homogeneity of the sample and ease the potential implementation
at a clinical level without previous cell-sorting requirements. In this study, the comparison
of DNA methylation signatures between placenta and umbilical cord samples allows us
to identify only a single CpG. The identification of several CpGs from a differentially
methylated region would have been more relevant and have had a higher biological effect.
Another weakness of the study is the lack of paternal information as parental size could
be an important confounding factor. We acknowledge that all these limitations may affect
our results and may have precluded us from identifying other interesting genes and/or
reaching relevant conclusions.

Although our data compare children with higher and lower levels of methylation and
gene expression and, thus, can only imply a relationship between DNA methylation at birth
and the later phenotype, the importance of the observation stands, irrespective of whether
the methylation is causally related to the increased risk for obesity. Despite being merely a
non-causal association, the changed epigenetic status provides a potential marker of the
altered developmental trajectory by the time of birth, which may have prognostic value
and potential utility for monitoring programs to optimize maternal health and nutrition to
provide long-term benefits to the offspring.

The epigenetic marks identified in this study could be used (1) as novel biomarkers
that may be determined in clinical laboratories at birth to diagnose the susceptibility of
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the offspring to developing overweight/obesity and associated metabolic diseases; (2) to
develop therapeutic strategies aimed at reversing the occurrence of epigenetic changes and
preventing subsequent metabolic implications.

5. Conclusions

In conclusion, by using DNA methylation signatures related to maternal pregestational
BMI from two different neonatal tissues (placenta and umbilical cord tissue), we provide
the epigenetic status of a broader spectrum of genes involved in several metabolic pathways
related to cell proliferation and development, with potential effects on metabolic diseases.
Moreover, we provide evidence that the methylation of the HADHA and SLC2A8 genes
is associated with several metabolic parameters in the offspring at 6 years. This suggests
that the epigenetic modifications induced by pregestational obesity may be of functional
relevance in the offspring’s metabolic phenotype.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biomedicines12020301/s1, Figure S1: Flow chart of the subjects
included for the array and validation; Table S1: Pyrosequencing primers design and PCR conditions;
Table S2: Full list of methylated CpGs associated with pregestational BMI; Table S3: Levels of HADHA
and SLC2A8 CpGs methylation (by pyrosequencing) and expression (by RT-qPCR) in placenta and
umbilical cord.
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