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Abstract: MicroRNAs (miRNAs) are regarded as important regulators in skeletal muscle development.
To reveal the regulatory roles of miRNAs and their target mRNAs underlying the skeletal muscle
development of Wuranke sheep, we investigated the miRNA and mRNA expression profiles in the
biceps femoris of these sheep at the fetal (3 months of gestation) and 3- and 15-month-old postnatal
stages. Consequently, a total of 1195 miRNAs and 24,959 genes were identified. Furthermore, 474,
461, and 54 differentially expressed miRNAs (DEMs) and 6783, 7407, and 78 differentially expressed
genes (DEGs) were detected among three comparative groups. Functional analysis demonstrated that
the target mRNAs of the DEMs were enriched in multiple pathways related to muscle development.
Moreover, the interactions among several predicted miRNA–mRNA pairs (oar-miR-133-HDAC1,
oar-miR-1185-5p-MYH1/HADHA/OXCT1, and PC-5p-3703_578-INSR/ACTG1) that potentially affect
skeletal muscle development were verified using dual-luciferase reporter assays. In this study, we
identified the miRNA and mRNA differences in the skeletal muscle of Wuranke sheep at different
developmental stages and revealed that a series of candidate miRNA–mRNA pairs may act as
modulators of muscle development. These results will contribute to future studies on the function of
miRNAs and their target mRNAs during skeletal muscle development in Wuranke sheep.

Keywords: Wuranke sheep; skeletal muscle; muscle development; miRNA; mRNA

1. Introduction

Skeletal muscle, the largest tissue by body mass, is closely related to the meat pro-
duction and quality of livestock. The development of skeletal muscle is a complex and
multistep biological process that has distinct embryonic and postnatal phases. The em-
bryonic period, the key period of myogenesis, includes the formation, proliferation, and
differentiation of myoblasts, the fusion of myotubes, and the maturation of myofibers. The
number of muscle fibers is determined during the embryonic period and remains constant
after birth, while postnatal muscle development is mainly manifested by an increase in
muscle fiber size [1]. These processes are precisely regulated by a complex molecular
regulatory network that is composed of a number of genetic factors [2,3].

MicroRNAs (miRNAs), a class of endogenous non-coding RNAs ranging in length
from 18 to 25 nucleotides, act as post-transcriptional regulators of target gene expression
by promoting mRNA decay or translational repression; they, thus, mediate a variety of
biological processes [4,5]. It is known that cell proliferation and differentiation are crucial
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for the myogenic program, and increasing evidence suggests that many miRNAs play
regulatory roles in balancing these two processes by regulating the expression of specific
genes, including both the muscle-specific and non-muscle-specific miRNAs reviewed by
Xu et al. [6]. Additionally, other studies showed that some miRNAs are also involved in
the processes of skeletal muscle regeneration [7], muscle-fiber-type transformation [8], and
energy metabolism [9].

Recently, several studies have analyzed miRNA profiles in sheep skeletal muscle
using a miRNA sequencing approach. Zhao et al. [10] analyzed the longissimus dorsi
muscle (LDM) at four developmental stages of Duolang sheep and obtained a total of
2396 miRNAs, including 1920 novel miRNAs. Further research found that some of these
were differentially expressed among the four stages; additionally, miR-192 was confirmed
to regulate the proliferation and differentiation of satellite cells in the skeletal muscle of
sheep by targeting retinoblastoma 1 (RB1), a negative regulator of the cell cycle, which is
involved in myogenesis. Liu et al. [11] identified 1086 known and 40 novel miRNAs in
embryonic and adult Kazak sheep, 345 of which were differentially expressed. It was shown
that these differentially expressed miRNAs (DEMs) were enriched in multiple signaling
pathways related to muscle development. Among them, several were identified as regu-
lators of sheep skeletal muscle cell proliferation and differentiation, such as miR-27b [12],
miR-378 [13], miR-181a [14], and miR-22 [15]. Hu et al. [16] studied the expression pro-
files of miRNAs and their potential roles in the muscle of Chinese Merino sheep at three
embryonic stages, detecting 4752 miRNAs, including 2275 novel ones. The expression
of miR-410-5p was reduced during the embryonic period and restrained the proliferation
of embryonic myoblasts by interacting with TEA domain transcription factor 1 (TEAD1),
which activates several muscle-specific genes and regulates myoblast proliferation and
differentiation. These studies were limited to the regulation of miRNAs relating to the
proliferation and differentiation of sheep skeletal muscle cells, and, compared with the
detected sheep miRNAs, most of their functions remain unclear. Thus, the identification of
more potential muscle-associated miRNA–mRNA pairs is required in order to reveal such
pairs’ underlying regulatory mechanisms.

The Wuranke sheep is an ancient Mongolian breed mainly raised in the northern border
area of Abaga, Xilingol, Inner Mongolia, China (E 113◦28′–116◦11′, N 43◦05′–45◦26′), a
region characterized by severe cold, drought, and wind. Through long-term natural selec-
tion and artificial breeding, these sheep demonstrate strong adaptability to the local alpine
pastoral ecological environment, a high coarse feeding tolerance, a rapid growth rate, and
good meat production performance under natural grazing conditions. Furthermore, they
are very popular with consumers because of their delicate flesh and good flavor. Previous
studies measured some indicators that reflect the meat performance of Wuranke sheep, such
as body weight, body size, and carcass traits, but the molecular regulatory mechanisms
involved in skeletal muscle development in this breed remain unclear. To better under-
stand the functions of miRNAs and their target mRNAs that underlie skeletal muscle
development in Wuranke sheep, we employed high-throughput sequencing to analyze and
compare the expression profiles of miRNA and mRNA in the skeletal muscle of natural
grazing Wuranke sheep at three developmental stages. The DEMs between any two stages
and their candidate target mRNAs were identified and used for functional enrichment
in order to reveal the potential miRNA–mRNA pairs involved in the process of muscle
development. Finally, we constructed three miRNA–mRNA interaction networks, and the
predicted targets of three miRNAs were validated via dual luciferase reporter assays. The
results provided valuable information about the regulatory mechanisms of skeletal muscle
development and basic data on the breeding and selection of Wuranke sheep.

2. Materials and Methods
2.1. Sample Collection and RNA Extraction

Wuranke sheep used in this study were collected from the “The original Breeding Farm
of Wuranke Sheep” in Abaga Banner, Inner Mongolia, China. All the animals were raised
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under natural grazing conditions. Pregnant ewes and 3- and 15-month-old male sheep were
randomly selected. Male fetuses were from a single birth and were collected at 3 months
of gestation via cesarean section. Biceps femoris samples were collected from three male
fetuses, three 3-month-old male sheep, and three 15-month-old male sheep, which were
as close to the median average body weight of their groups as possible. The collected
samples were immediately placed in liquid nitrogen and then stored at −80 ◦C. miRNeasy
Mini Kit (Qiagen, Hilden, Germany) was used to extract the total RNA from each sample.
The Agilent 2100 Bioanalyzer and RNA 6000 Nano LabChip Kit (Agilent Technologies,
Santa Clara, CA, USA) were used to detect the total RNA quantity and purity, and an RNA
integrity number of >7.0 was set as the selection criterion.

2.2. Small RNA Sequencing and Data Analysis

Small RNA libraries were constructed with approximately 1 µg of total RNA using
the TruSeq Small RNA Sample Prep Kits (Illumina, San Diego, CA, USA). Then, the
libraries were used for single-end (1 × 50 bp) deep sequencing using an Illumina HiSeq
2500 platform. The raw reads were submitted to ACGT101-miR v4.2 (LC Sciences, Houston,
TX, USA) to remove adapter dimers, junk, low complexity, common RNA families (rRNA,
tRNA, snRNA, and snoRNA), and repeats. Next, unique sequences ranging in length from
18 to 26 nucleotides were aligned to all mature mammalian miRNAs and their precursor
sequences in miRBase to identify known miRNAs using BLAST search. In addition, the
remaining unmapped sequences that we were able to match to the sheep reference genome
(Ovis aries v3.1) were used to predict novel miRNAs using miRDeep2 [17]. Meanwhile,
the expression level of each miRNA was normalized using the method described by
Li et al. [18], and differential miRNA expressions were analyzed using t-tests. miRNAs
with |log2 (fold-change)| ≥ 1 and p < 0.05 were deemed to be differentially expressed
between any two developmental stages.

2.3. mRNA Sequencing and Data Analysis

mRNA libraries were constructed with approximately 10 µg of total RNA using the
mRNA-Seq Sample Preparation Kit (Illumina, San Diego, CA, USA). Then, the libraries
were used for paired-end reads (2 × 150 bp) deep sequencing using an Illumina HiSeq
4000 platform. The raw data were subjected to Cutadapt [19] to remove adaptor sequences,
primers, and low-quality sequences in order to obtain clean reads. The HISAT v2.0.4
package (https://daehwankimlab.github.io/hisat2/, accessed on 21 August 2020) [20] was
used to align clean reads to the sheep reference genome (Ovis aries v3.1), and StringTie
v1.3.4 (http://ccb.jhu.edu/software/stringtie/, accessed on 21 August 2020) [21] was
used to assemble the mapped reads and evaluate the expression levels for mRNAs by
calculating fragments per kilobase of exon model per million mapped reads (FPKM).
Finally, differentially expressed genes (DEGs) with |log2 (fold-change)| ≥ 1 and p < 0.05
as thresholds were identified using the R package Ballgown [22].

2.4. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Analysis

Total RNA was reverse-transcribed using the RevertAid First Strand cDNA Synthesis
Kit (Thermo, Waltham, MA, USA), following the manufacturer’s instructions, and using
stem-loop primers for miRNA and random primers for mRNA. RT-qPCR was performed
using the ABI StepOnePlus Real-Time PCR System (Applied Biosystems) with THUNDER-
BIRD SYBR qPCR Mix (Toyobo, Osaka, Japan). U6 and GAPDH were used as internal
reference genes in normalizing miRNA and mRNA expression, respectively. The 2−∆∆Ct

method was employed to measure the relative gene expression [23]. The results are pre-
sented as mean ± standard error (SE) of triplicate for each sample. The sequences of the
primers are listed in Tables S1 and S2.

https://daehwankimlab.github.io/hisat2/
http://ccb.jhu.edu/software/stringtie/
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2.5. Target Gene Prediction and Functional Analysis

To predict target mRNAs of DEMs, we used TargetScan 50 and miRanda 3.3a al-
gorithms to identify miRNA binding sites. The predicted targets obtained using both
algorithms were calculated. Then, the results were combined with the DEG data. ACGT101-
CORR v1.1 was used to analyze differentially expressed miRNA–mRNA correlations. Only
target mRNAs with inverse relationships with corresponding miRNAs were identified
as candidate target mRNAs. To predict the potential function of candidate target mR-
NAs, we aligned them against the Gene Ontology (GO) [24] and Kyoto Encyclopedia of
Genes and Genomes (KEGG) [25] databases. The GO functional annotation is categorized
into three ontologies: biological process (BP), cellular components (CC), and molecular
functions (MF). GO function and KEGG pathway enrichment analysis were performed
using the Goseq v1.18.0 (https://bioconductor.org/packages/3.0/bioc/html/goseq.html,
accessed on 30 August 2020) [26] and KOBAS v2.0 (http://bioinfo.org/kobas/, accessed
on 30 August 2020) packages [27], respectively. A p-value of < 0.05 was defined as statisti-
cally significant. Then, the regulatory networks of miRNA–mRNA interactions related to
muscle development in all pairwise comparisons were visualized using Cytoscape v3.9.0
(http://www.cytoscape.org/, accessed on 10 September 2021).

2.6. Dual-Luciferase Reporter Assays

miRNA mimics and the negative control (NC) mimics were synthesized by GenePharama
(Shanghai, China). Wild-type (WT) and mutant (MUT) luciferase reporter vectors were
constructed by cloning predicted sequences or the corresponding mutated sequences for
the 3′UTR of individual genes into psiCHECK-2 vectors (Promega, Madison, WI, USA).
Before transfection, 293T cells were seeded in 96-well plates (3 × 104 cells/well) and
incubated at 37 ◦C. At 70% confluency, the cells were cotransfected using the WT or
MUT constructs along with miRNA mimics or NC mimics using LipoFiterTM Liposomal
Transfection Reagent (Hanbio, Shanghai, China). After 48 h of transfection, the firefly
and Renilla luciferase activities were detected with an Infinite M1000 PRO multimode
reader (Tecan, Mannedorf, Switzerland) using the dual-luciferase assay system (Promega,
Madison, WI, USA).

2.7. Statistical Analysis

The RNA-seq and RT-qPCR data were analyzed as described above. The Renilla lu-
ciferase activity data were analyzed using Student’s t-test and presented as mean ± standard
error (SE). A p-value < 0.05 was deemed as statistically significant. The principal component
analyses (PCA) of the miRNA and mRNA expression profiles were performed using the
OmicStudio tools at https://www.omicstudio.cn/tool, accessed on 21 August 2020.

3. Results
3.1. Overview of Small RNA and mRNA Sequencing Data

During the small RNA sequencing, a total of 109,558,270 raw reads were generated.
After filtering and size selection were carried out, 91,104,586 valid reads were obtained
(Table S3). The majority of the small RNA reads were 21–23 nt in size, with a length of 22 nt
being the most common (Figure 1), which was in line with the characteristics of classic
dicer-processed products and the mature miRNA length distribution [28]. The valid reads
were aligned to the reference sequence. A total of 1195 miRNAs were identified, including
988 known miRNAs and 207 novel miRNAs. Based on normalized counts, high expression
levels were observed in the known miRNAs, with oar-miR-133 being the most abundant
miRNA (Table S4). The novel miRNAs had much lower expression levels than the known
miRNAs, with only one miRNA (PC-3p-282_33957) having average normalized counts
greater than 1000 at any of the studied developmental stages (Table S5). During mRNA
sequencing, a total of 484,263,900 raw reads were generated, and more than 98% of them
were found to be valid reads after the low-quality bases were filtered out. On average,

https://bioconductor.org/packages/3.0/bioc/html/goseq.html
http://bioinfo.org/kobas/
http://www.cytoscape.org/
https://www.omicstudio.cn/tool
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about 91.58% of the valid reads were mapped to the sheep reference genome from each
library (Table S6), suggesting the high quality of the sequencing results.
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Figure 1. Sequence length distribution of total and unique valid reads. Data are presented as
mean ± SD from nine small RNA libraries.

Then, the mapped reads were assembled into 24,959 genes. The PCA analysis of the
miRNA (Figure 2A) and mRNA (Figure 2B) expression profiles showed that the triplicate
samples for each group were clustered together, and that the 3- and 15-month-old samples
were more similar to each other than and robustly separated from the fetal samples, sug-
gesting that there are great differences between fetal sheep and 3- and 15-month-old sheep.
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Figure 2. Principal component analysis (PCA) for miRNA (A) and mRNA (B) expression profiles.
Fetal: A1, A2, and A3; 3-month-old: B1, B2, and B3; 15-month-old: C1, C2, and C3.

3.2. Differential Expression Analysis of miRNAs and mRNAs

We compared the miRNA and mRNA expression levels of each stage with the others
(3-month-old vs. fetal, 15-month-old vs. fetal, and 15-month-old vs. 3-month-old). As a re-
sult, 474 DEMs (213 upregulated and 261 downregulated) were obtained in the 3-month-old
vs. fetal comparison, including 23 novel miRNAs. In the 15-month-old vs. fetal comparison,
461 DEMs (186 upregulated and 275 downregulated) were identified, including 17 novel
miRNAs. In the 15-month-old vs. 3-month-old comparison, 54 miRNAs (8 upregulated
and 46 downregulated) were differentially expressed, but no novel miRNAs were detected
(Figure 3A). We also obtained 6783 DEGs (749 upregulated and 6034 downregulated),
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7407 DEGs (795 upregulated and 6612 downregulated), and 78 DEGs (36 upregulated and
42 downregulated) in the 3-month-old vs. fetal, 15-month-old vs. fetal, and 15-month-old
vs. 3-month-old comparisons, respectively (Figure 3B). Most of these DEMs and DEGs
were found at the intersection of the 3-month-old vs. fetal and 15-month-old vs. fetal com-
parisons, with the lowest number of these being found in the 15-month-old vs. 3-month-old
comparison (Figure 3C,D). These findings indicated there were distinct miRNA and mRNA
expression patterns between the fetal and the two postnatal (3- and 15-month-old) samples,
which supports the results of the PCA analysis mentioned above.
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Figure 3. Analysis of differentially expressed miRNAs (DEMs) and differentially expressed genes
(DEGs) in the 3-month-old vs. fetal, 15-month-old vs. fetal, and 15-month-old vs. 3-month-old
comparisons. (A) Numbers of upregulated and downregulated DEMs in each pairwise comparison.
(B) Numbers of upregulated and downregulated DEGs in each pairwise comparison. (C) Venn dia-
gram of DEMs in each pairwise comparison. (D) Venn diagram of DEGs in each pairwise comparison.

3.3. Validation of RNA-seq Data Using RT-qPCR

To validate the sequencing data, nine DEMs (oar-miR-1185-5p, oar-miR-299-5p, oar-miR-
370-3p_R-2, oar-miR-380-3p, oar-miR-133, oar-miR-150, oar-miR-27a, oar-miR-29a_R+1, and
PC-5p-3703_578) and seven DEGs (FBP2, MYH10, HDAC1, ITGB1, COL4A1, HSP90B1, and
CANX) were randomly selected for examination of their expression levels using RT-qPCR
(Figure 4). The expression trends observed using RT-qPCR were consistent with those
based on the sequencing data, indicating that the sequencing results were reliable.
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3.4. Integrated miRNA–mRNA Interaction Analysis

As described in the “Materials and Methods” Section, we obtained the candidate
target mRNAs of all the DEMs for further analysis. The enriched GO functions for the
candidate target mRNAs in the 3-month-old vs. fetal comparison showed a high similarity
with those in the 15-month-old vs. fetal comparison and were mainly enriched in the
“regulation of transcription, DNA–templated” and “oxidation–reduction process” terms
in the BP ontology, the “membrane” and “integral component of membrane” terms in the
CC ontology, and the “metal ion binding” and “ATP binding” terms in the MF ontology
(Figure 5A,B). Alternatively, in the 15-month-old vs. 3-month-old comparison, the candidate
target mRNAs were primarily enriched in the “negative regulation of transcription, DNA-
templated” and “negative regulation of transcription from RNA polymerase II promoter”
terms in the BP ontology, the “nucleus” and “membrane” terms in the CC ontology, and
the “RNA binding” and “nucleotide binding” terms in the MF ontology (Figure 5C).
Some muscle-related GO terms were also enriched, including the “cell proliferation”, “cell
migration”, “cell adhesion”, “myotube differentiation”, and “canonical Wnt signaling
pathway” terms. The KEGG pathway analysis revealed that the candidate target mRNAs
of the DEMs were significantly enriched in 18, 11, and 1 pathways in the 3-month-old vs.
fetal (Figure 6A), 15-month-old vs. fetal (Figure 6B), and 15-month-old vs. 3-month-old
comparisons (Figure 6C), respectively (p < 0.05). Notably, the “PI3K–Akt signaling pathway”
was enriched by the largest number of candidate target mRNAs in both the 3-month-old vs.
fetal and 15-month-old vs. fetal comparisons, although the enrichment was not significant
(p > 0.05). Most of these pathways were associated with muscle growth and development,
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including the “Notch signaling pathway”, “PI3K-Akt signaling pathway”, and “Hippo
signaling pathway”, as well as the “focal adhesion”; “tight adhesion”; “cell cycle”; “citrate
cycle”; “biosynthesis of unsaturated fatty acids”; “sphingolipid metabolism”; “retinol
metabolism”; “valine, leucine and isoleucine degradation”; “thyroid hormone synthesis”;
and “ribosome” pathways.
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Figure 6. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of
candidate target mRNAs in 3-month-old vs. fetal (A), 15-month-old vs. fetal (B), and 15-month-old
vs. 3-month-old (C) comparisons.

Then, we constructed a miRNA–mRNA interaction network for each comparison
using DEMs with average normalized counts greater than 100 and their candidate target
mRNAs that were enriched in KEGG pathways associated with muscle development. As
a result, a total of 401 differentially expressed miRNA–mRNA pairs (163 miRNAs and
45 mRNAs), 267 differentially expressed miRNA–mRNA pairs (123 miRNAs and 33 mR-
NAs), and 3 differentially expressed miRNA–mRNA pairs (3 miRNAs and 1 mRNA) with
negative regulatory relationships were detected in the 3-month-old vs. fetal (Figure 7A),
15-month-old vs. fetal (Figure 7B), and 15-month-old vs. 3-month-old (Figure 7C) compar-
isons, respectively.
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3.5. Validation of miRNA–mRNA Interaction Using Dual-Luciferase Reporter Assays

To verify the interactions between the miRNAs and mRNAs involved in these net-
works, six miRNA–mRNA interactions were analyzed using dual-luciferase reporter assays.
The results showed that the luciferase activity in cells cotransfected with oar-miR-133 mim-
ics and the HDAC1 3′UTR-WT vector; oar-miR-1185-5p mimics and the MYH1, HADHA,
or OXCT1 3′UTR-WT vector; and PC-5p-3703_578 mimics and the INSR or ACTG1 3′UTR-
WT vector was significantly reduced compared with those transfected with NC mimics
(p < 0.001), whereas there was no effect on the corresponding mutant reporter activity
(Figure 8). These data suggest that HDAC1 is a direct target of oar-miR-133; MYH1, HADHA,
and OXCT1 are direct targets of oar-miR-1185-5p; and INSR and ACTG1 are direct targets of
PC-5p-3703_578.
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Figure 8. Prediction and validation of oar-miR-133, oar-miR-1185-5p, and PC-5p-3703_578 target
mRNAs. (A) The predicted binding sites of oar-miR-133 in the 3′UTR of HADC1. (B) The predicted
binding sites of oar-miR-1185-5p in the 3′UTR of MYH1, HADHA, and OXCT1. (C) The predicted
binding sites of PC-5p-3703_578 in the 3′UTR of INSR and ACTG1. (D) The luciferase reporter
assays were performed on 293T cells by cotransfecting the HADC1 3′UTR-WT or 3′UTR-MUT
psiCHECK-2 vector along with either oar-miR-133 mimics or NC mimics. (E) The luciferase reporter
assays were performed on 293T cells by cotransfecting the MYH1, HADHA or OXCT1 3′UTR-WT or
3′UTR-MUT psiCHECK-2 vector along with either oar-miR-1185-5p mimics or NC mimics. (F) The
luciferase reporter assays were performed on 293T cells by cotransfecting the INSR or ACTG1 3′UTR-
WT or 3′UTR-MUT psiCHECK-2 vector along with either PC-5p-3703_578 mimics or NC mimics.
*** p < 0.001.

4. Discussion

miRNAs are recognized as important regulators of skeletal muscle development
because of their modulation of gene expression. Thus, it is of great significance to study
their roles in skeletal muscle development. Muscle fibers are formed prenatally in sheep,
especially during mid-gestation [29]. In contrast, their postnatal muscle growth largely
relies on muscle fiber hypertrophy [30]. The growth rate of sheep is extremely rapid
between birth and six months of age. After 1–1.5 years of growth, their skeletal muscle
fibers are close to their mature size [31]. Therefore, high-throughput sequencing technology
was used to characterize the miRNA and mRNA expression profiles of the biceps femoris
of Wuranke sheep at the fetal (3 months of gestation) and 3- and 15-month-old postnatal
stages in this study.

We identified 1195 miRNAs (988 known and 207 novel miRNAs) in the small RNA
libraries. A total of 543 miRNAs were significantly differentially expressed among the
three stages, with most of these miRNAs being found both in the 3-month-old vs. fetal and
15-month-old vs. fetal comparisons, including some miRNAs that are highly expressed
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in skeletal muscle, such as oar-miR-133, bta-miR-1, chi-miR-206_R-1, oar-miR-127_L-1, and
chi-miR-378-3p. The muscle-specific miRNAs miR-1, miR-133, and miR-206 were extensively
studied for their regulatory roles in multiple aspects of skeletal muscle development [32].
It was shown in previous studies that the main function of miR-1/miR-206 is to promote
myogenic differentiation [33], while the main function of miR-133 is to promote myogenic
proliferation [34]. Furthermore, it was reported that miR-133a and miR-206 can regulate
the muscle-fiber-type transition in mice [35,36]. A local injection of double-stranded miR-1,
miR-133, and miR-206 in a rat skeletal muscle injury model was found to contribute to
muscle regeneration [37]. Further, miR-127 was found to be a differentially expressed
miRNA in the prenatal and postnatal skeletal muscle of sheep [11] and pigs [38]. Studies
with C2C12 cells revealed that miR-127 regulates myoblast proliferation and differentiation,
and its experimentally confirmed target genes include vesicle-associated membrane protein
2 (VAMP2) [39], sphingosine-1-phosphate receptor 3 (S1PR3) [40], lysine methyltransferase
5A (KMT5A) [41], and septin 7 (SEPT7) [42]. miR-378 was reported to facilitate C2C12
cell differentiation by targeting myogenic repressor (MYOR) [43] and bone morphogenetic
protein 4 (BMP4) [44] as well as to promote the differentiation of the bovine skeletal-muscle-
derived satellite cell by targeting DNA polymerase alpha subunit B (POLA2) [45]. In
addition, miR-378 was verified to promote myoblast proliferation in sheep [13].

In the present study, the expression levels of oar-miR-133, bta-miR-1, and chi-miR-378-3p
were significantly higher in the muscle of 3- and 15-month-old sheep than those of fetal
sheep, while the expression levels of chi-miR-206_R-1 and oar-miR-127_L-1 showed the
opposite pattern. These results suggested that different types of miRNA may play crucial
regulatory roles in different phases of sheep skeletal muscle development. Therefore, the
study of miRNA expression profiles in the skeletal muscle of Wuranke sheep at different
developmental stages is helpful for us to discover potential miRNAs and their regulatory
mechanisms related to skeletal muscle development.

By regulating their target genes’ expression, miRNAs exert their functions at the post-
transcriptional level. To perform miRNA–mRNA integrated analysis, we simultaneously
characterized the mRNA expression profiles at the three developmental stages. A total of
7978 DEGs were identified through pairwise comparisons of the three stages; the majority
of them were differentially expressed in the 3- and 15-month-old muscle samples compared
to in the fetal muscle samples. Some of these DEGs are known for their crucial roles in
regulating skeletal muscle development, such as myogenic factor 5 (MYF5) [46], myogenin
(MYOG) [47], myocyte enhancer factor 2C (MEF2C) [48], and paired box 7 (PAX7) [49].
Furthermore, in order to reveal the potential miRNAs that regulate muscle development,
the candidate target mRNAs of the DEMs were determined using integrated analysis.

The functional enrichment analysis revealed that the candidate target mRNAs were
enriched in 13 pathways that are related to muscle growth and development. Among them,
the “Notch signaling pathway” [50,51], “PI3K–Akt signaling pathway” [52], and “Hippo
signaling pathway” [53,54], as well as the “focal adhesion” [55], “tight adhesion” [56], and
“cell cycle” [57] pathways, were confirmed to regulate muscle proliferation and differentia-
tion. Metabolic pathways, including the “citrate cycle” [58]; “biosynthesis of unsaturated
fatty acids” [59]; “sphingolipid metabolism” [60]; “retinol metabolism” [61,62]; “valine,
leucine and isoleucine degradation” [63]; and “thyroid hormone synthesis” [35,64] path-
ways, are closely associated with muscle development. Notably, these pathways were not
enriched in the 15-month-old vs. 3-month-old comparison. As mentioned above, there
were great differences in the mechanisms of skeletal muscle development between the
fetal and postnatal period, which suggests that the DEMs and their target mRNAs that
were enriched in these pathways play more important roles in the early stages of skeletal
muscle development. In the 15-month-old vs. 3-month-old comparison, the “ribosome”
pathway was the only significantly enriched pathway (p < 0.05). It is known that ribo-
somes serve as macromolecular machines for protein synthesis, with such machines being
responsible for muscle growth [65,66]. Therefore, the miRNA–mRNA pairs involved in
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this pathway may exert roles in the regulation of protein synthesis rates, thus impacting
skeletal muscle development.

Previous studies revealed that miRNAs with lower abundances have no discernible
regulatory effects on their target genes [67,68]. Therefore, we constructed interaction
networks for each comparison after filtering out the lowly expressed DEMs (average
normalized counts < 100). In the interaction networks, each miRNA was shown to interact
with one or more mRNAs, and vice versa, highlighting the complex regulatory roles
of miRNAs.

Among the DEMs found in the networks, oar-miR-133 was the most abundantly ex-
pressed miRNA; its expression was significantly increased after birth. We further confirmed
that histone deacetylase 1 (HDAC1) was the target of oar-miR-133, according to a dual-
luciferase reporter assay. As a known muscle-specific miRNA, miR-133 was reported as a
regulator in muscle cell proliferation and differentiation by targeting the serum response
factor (SRF) [34], insulin-like growth factor-1 receptor (IGF-1R) [69], uncoupling protein 2
(UCP2) [70], forkhead transcriptional factor 2 (FOXL2) [71], etc. However, no studies to date
suggest that miR-133 and HDAC1 interact. HDAC1 plays a inhibiting role in the skeletal
muscle myogenesis by suppressing the transcriptional activities of myoblast determination
protein (MYOD), a key regulator of muscle differentiation [72]. Therefore, we hypothesized
that increases in oar-miR-133 expression may promote sheep skeletal muscle cell differenti-
ation by downregulating HDAC1; if confirmed, this would extend our understanding of
how miR-133 regulates skeletal muscle development.

Among the mRNAs whose expression levels were increased in the networks, myosin
heavy chain 1 (MYH1), hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-
CoA hydratase (trifunctional protein), alpha subunit (HADHA), and 3-oxoacid CoA-
transferase 1 (OXCT1) were the three genes targeted by the highest number of miRNAs.
MYH1, a highly expressed gene in MyHC-IIx fibers (fast-twitch fibers), is crucial for skeletal
muscle development and can be used as a myoblast differentiation marker gene [73,74].
The upregulation of MYH1 expression indicates that the proportion of MyHC-IIx fibers
increased. Previous studies showed that muscle fiber composition is correlated with muscle
fiber diameter and that the transformation of slow-twitch fibers into fast-twitch fibers can
induce an increase in muscle mass [75,76]. Both HADHA and OXCT1 are genes related
to metabolism. HADHA encodes the subunit of the mitochondrial trifunctional protein, a
key enzyme for the β-oxidation of fatty acid [77]. OXCT1 encodes succinyl-CoA:3-oxoacid
CoA transferase (SCOT), which is a key enzyme for ketolysis [78]. In skeletal muscle,
mitochondrial fatty acid β-oxidation and ketolysis represent aerobic energy sources [79,80].
Zheng et al. [81] detected the expression of OXCT1 and found it is associated with chicken
skeletal muscle hypertrophy, while Komatsu et al. [82] demonstrated that HADHA ex-
pression in skeletal muscle is associated with the growth rate of pigs. In our research,
oar-miR-1185-5p was found to be significantly downregulated in all three comparison
groups and to have interacted with the abovementioned three mRNAs. MYH1 was found
to be involved in the “tight junction” pathway, OXCT1 in the “valine, leucine and isoleucine
degradation” pathway, and HADHA in both the “valine, leucine and isoleucine degrada-
tion” and the “biosynthesis of unsaturated fatty acids” pathways. These results implied
that oar-miR-1185-5p may play a role in sheep muscle development through the related
cellular process and metabolism pathways. To the best of our knowledge, no research has
yet been reported on miR-1185 roles during skeletal muscle development. Therefore, the
results obtained from this research may provide a new perspective for understanding the
regulatory mechanisms of skeletal muscle.

Further, we found that PC-5p-3703_578 was the only novel miRNA that was involved in
the networks and that interacted with insulin receptor (INSR) and actin gamma 1 (ACTG1).
It is widely known that insulin is an important anabolic hormone in skeletal muscle [83].
INSR is an insulin receptor with tyrosine kinase activity, which acts as a molecular switch in
the insulin signal transduction pathway [84]. Following the binding of insulin to INSR, the
PI3K/AKT and MAPK/ERK signaling pathways, which regulate muscle development, are
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initiated, which, in turn, leads to muscle hypertrophy [85,86]. Furthermore, a recent study
using C2C12 cells showed that the knockdown of INSR induced cell cycle arrest at G1/G0
and inhibited cell proliferation [87]. The ACTG1-encoded protein (cytoplasmic γ-1-actin),
an actin isoform, is involved in cytoskeleton maintenance [88]. Previous studies revealed
that ACTG1 has a regulating effect in the myogenic cell migration, which is necessary for
skeletal muscle formation [1,89]. Other studies found that knocking out ACTG1 leads to
growth delay and skeletal myopathy in mice [90,91]. From these results, we can speculate
that PC-5p-3703_578 may be a potential negative regulator of skeletal muscle development.

Altogether, the results of the present study provide reference data that will be of
great use for investigating the regulatory mechanisms of skeletal muscle development in
Wuranke sheep.

5. Conclusions

In this study, it is revealed that a series of candidate miRNA–mRNA pairs may act as
modulators of muscle development. This study’s findings provide a theoretical basis for a
deeper understanding of the functions of the miRNAs and their candidate target mRNAs
that underlie skeletal muscle development in sheep.
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