Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = H2-PEMFCs anodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 11185 KiB  
Article
The Impact of Flow Rate Variations on the Power Performance and Efficiency of Proton Exchange Membrane Fuel Cells: A Focus on Anode Flooding Caused by Crossover Effect and Concentration Loss
by Byung-Yeon Seo and Hyun Kyu Suh
Energies 2025, 18(12), 3084; https://doi.org/10.3390/en18123084 - 11 Jun 2025
Viewed by 455
Abstract
This study investigates the effects of anode and cathode inlet flow rates (ṁ) on the power performance of bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The primary objective is to derive optimal flow rate conditions by comparatively analyzing concentration loss [...] Read more.
This study investigates the effects of anode and cathode inlet flow rates (ṁ) on the power performance of bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The primary objective is to derive optimal flow rate conditions by comparatively analyzing concentration loss in the I−V curve and crossover phenomena at the anode, thereby establishing flow rates that prevent reactant depletion and water flooding. A single-cell computational model was constructed by assembling a commercial bipolar plate with a gas diffusion layer (GDL), catalyst layer (CL), and proton exchange membrane (PEM). The model simulates current density generated by electrochemical oxidation-reduction reactions. Hydrogen and oxygen were supplied at a 1:3 ratio under five proportional flow rate conditions: hydrogen (m˙H2 = 0.76–3.77 LPM) and oxygen (m˙O2 = 2.39–11.94 LPM). The Butler–Volmer equation was employed to model voltage drop due to overpotential, while numerical simulations incorporated contact resistivity, surface permeability, and porous media properties. Simulation results demonstrated a 24.40% increase in current density when raising m˙H2 from 2.26 to 3.02 LPM and m˙O2 from 7.17 to 9.56 LPM. Further increases to m˙H2 = 3.77 LPM and m˙O2 = 11.94 LPM yielded a 10.20% improvement, indicating that performance enhancements diminish beyond a critical threshold. Conversely, lower flow rates (m˙H2 = 0.76 and 1.5 LPM, m˙O2 = 2.39 and 4.67 LPM) induced hydrogen-depleted regions, triggering crossover phenomena that exacerbated anode contamination and localized flooding. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

21 pages, 14426 KiB  
Article
Corrosion Resistance and Surface Conductivity of 446 Stainless Steel with Electrochemical Cr-Enrichment and Nitridation for Proton Exchange Membrane Fuel Cell (PEMFC) Bipolar Plates
by Ronghai Xu, Yangyue Zhu, Ruigang Zhu and Moucheng Li
Metals 2025, 15(5), 566; https://doi.org/10.3390/met15050566 - 21 May 2025
Viewed by 482
Abstract
The development of bipolar plate materials with enhanced corrosion resistance and surface conductivity is critical for the commercial application of proton exchange membrane fuel cells (PEMFCs). The corrosion behavior and surface conductivity of electrochemically nitrided 446 stainless steel with and without the pretreatment [...] Read more.
The development of bipolar plate materials with enhanced corrosion resistance and surface conductivity is critical for the commercial application of proton exchange membrane fuel cells (PEMFCs). The corrosion behavior and surface conductivity of electrochemically nitrided 446 stainless steel with and without the pretreatment of Cr-enrichment were investigated in the simulated PEMFC anode and cathode environments (i.e., 0.5 mol L−1 H2SO4 + 2 ppm HF solution bubbled with hydrogen or air at 80 °C) using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma–mass spectrometry (ICP-MS), and electrochemical measurement techniques. Extending the nitriding time from 5 to 30 min enhances the surface conductivity but reduces the corrosion resistance. After the pretreatment and 30 min of nitridation, a thin film formed on the specimen surface, which mainly consists of Cr-nitrides and -oxides with atomic fractions of 0.42 and 0.37, respectively. The Cr-enriched and nitrided specimen shows spontaneous passivation in both the simulated cathode and anode environments and higher corrosion potentials, lower passive current densities, and larger polarization resistances in comparison with the directly nitrided specimens. Its stable current densities are about 0.26 and −0.39 μA cm−2 after 5 h of polarization tests at 0.6 VSCE in the cathode environment and at −0.1 VSCE in the anode environment, respectively. Its contact resistance is about 5.0 mΩ cm2 under 1.4 MPa, which is close to that of the specimen directly nitrided for 120 min and slightly decreases after the potentiostatic polarization tests. These results indicate that Cr-rich pretreatment improves not only the corrosion resistance and surface conductivity of nitrided specimens but also the efficiency of electrochemical nitridation. Full article
Show Figures

Figure 1

15 pages, 2720 KiB  
Article
Ion Implantation Combined with Heat Treatment Enables Excellent Conductivity and Corrosion Resistance of Stainless Steel Bipolar Plate Anode for Hydrogen Fuel Cells
by Li Ding, Chaoqin Ren, Ruijuan Wang, Meng Yang and Yong Pan
Materials 2025, 18(7), 1483; https://doi.org/10.3390/ma18071483 - 26 Mar 2025
Viewed by 561
Abstract
The broad use of (stainless steel) SS 316 L bipolar plates (BPs) in proton exchange membrane fuel cells relies (PEMFC) on high conductivity and corrosion resistance. To enhance the properties of stainless steel, this study applies ion implantation and heat treatment to form [...] Read more.
The broad use of (stainless steel) SS 316 L bipolar plates (BPs) in proton exchange membrane fuel cells relies (PEMFC) on high conductivity and corrosion resistance. To enhance the properties of stainless steel, this study applies ion implantation and heat treatment to form a non-homogeneous modified layer on SS 316 L. The injection of C and Mo ions on the SS 316 L surface caused irradiation damage, producing holes. But with the heat treatment of the ion-implanted samples, the irradiation-damaged surface will be repaired to a certain extent. The corrosion current density (Icorr) of the 600 °C sample in the kinetic potential test (5.32 × 10−4 A/cm2) was 54% lower than that of the naked SS 316 L (1.17 × 10−3 A/cm2). In the electrostatic potential test, the corrosion current of the 600 °C sample stabilized at a low value (about 0.26 μA/cm2), with the lowest concentration of dissolved metal ions (Fe2+ 2.908 mg/L). After anodic electrostatic potential polarization, the interfacial contact resistance (ICR) of (Mo+C)600-1 was much lower than that of the untreated SS 316 L. Heat treatment experiments show that samples treated at 600 °C for 1 h exhibit significantly higher conductivity and anodic corrosion resistance than naked SS 316 L. This improvement is mainly due to the heat treatment under these conditions, which facilitated the formation of Mo carbides from the implanted C and Mo elements. Ion implantation and heat treatment enhance stainless steel surface conductivity and passive film corrosion resistance. These findings are useful in altering stainless steel BPs. Full article
Show Figures

Figure 1

16 pages, 12206 KiB  
Article
Unique Self-Phosphorylating Polybenzimidazole of the 6F Family for HT-PEM Fuel Cell Application
by Igor I. Ponomarev, Yulia A. Volkova, Kirill M. Skupov, Elizaveta S. Vtyurina, Ivan I. Ponomarev, Mikhail M. Ilyin, Roman Y. Nikiforov, Alexander Y. Alentiev, Olga M. Zhigalina, Dmitry N. Khmelenin, Tatyana V. Strelkova and Alexander D. Modestov
Int. J. Mol. Sci. 2024, 25(11), 6001; https://doi.org/10.3390/ijms25116001 - 30 May 2024
Cited by 3 | Viewed by 1595
Abstract
High-temperature polymer-electrolyte membrane fuel cells (HT-PEMFCs) are a very important type of fuel cells since they operate at 150–200 °C, making it possible to use hydrogen contaminated with CO. However, the need to improve the stability and other properties of gas-diffusion electrodes still [...] Read more.
High-temperature polymer-electrolyte membrane fuel cells (HT-PEMFCs) are a very important type of fuel cells since they operate at 150–200 °C, making it possible to use hydrogen contaminated with CO. However, the need to improve the stability and other properties of gas-diffusion electrodes still impedes their distribution. Self-supporting anodes based on carbon nanofibers (CNF) are prepared using the electrospinning method from a polyacrylonitrile solution containing zirconium salt, followed by pyrolysis. After the deposition of Pt nanoparticles on the CNF surface, the composite anodes are obtained. A new self-phosphorylating polybenzimidazole of the 6F family is applied to the Pt/CNF surface to improve the triple-phase boundary, gas transport, and proton conductivity of the anode. This polymer coating ensures a continuous interface between the anode and proton-conducting membrane. The polymer is investigated using CO2 adsorption, TGA, DTA, FTIR, GPC, and gas permeability measurements. The anodes are studied using SEM, HAADF STEM, and CV. The operation of the membrane–electrode assembly in the H2/air HT-PEMFC shows that the application of the new PBI of the 6F family with good gas permeability as a coating for the CNF anodes results in an enhancement of HT-PEMFC performance, reaching 500 mW/cm2 at 1.3 A/cm2 (at 180 °C), compared with the previously studied PBI-O-PhT-P polymer. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

11 pages, 1661 KiB  
Article
Determination of an Optimal Parameter Combination for Single PEMFC Using the Taguchi Method and Orthogonal Array
by Kwang-Hu Jung and Jung-Hyung Lee
Energies 2024, 17(7), 1690; https://doi.org/10.3390/en17071690 - 2 Apr 2024
Cited by 2 | Viewed by 1542
Abstract
In this study, the optimization of the operational parameters for a single proton exchange membrane fuel cell (PEMFC) was carried out using the Taguchi method and orthogonal array. The operating parameters were H2 stoichiometry, air stoichiometry, cell temperature, and back pressure of [...] Read more.
In this study, the optimization of the operational parameters for a single proton exchange membrane fuel cell (PEMFC) was carried out using the Taguchi method and orthogonal array. The operating parameters were H2 stoichiometry, air stoichiometry, cell temperature, and back pressure of the anode∙cathode, each with three levels. The performance of the PEMFC, operated according to the L9 orthogonal arrangement, was evaluated through I–V curves at a step-up current loading ranging from 0.1 to 0.7 A/cm2. The results indicated that the anode∙cathode back pressure had the greatest sensitivity to the output voltage compared to the other operating parameters. Increasing the back pressure resulted in higher current output densities at higher values than those applied in the orthogonal arrangement. As the back pressure increased, the output voltage tended to increase at each current density. However, for operating conditions above 150 kPa, the improvement in cell performance was either not significant or tended to decrease. Therefore, it can be concluded that the Taguchi method and orthogonal array are effective tools for selecting the optimal operating conditions for PEMFC. Full article
(This article belongs to the Special Issue Advances in Fault Diagnosis and Modeling of Fuel Cells)
Show Figures

Figure 1

17 pages, 11532 KiB  
Article
Proton-Conducting Polymer-Coated Carbon Nanofiber Mats for Pt-Anodes of High-Temperature Polymer-Electrolyte Membrane Fuel Cell
by Kirill M. Skupov, Igor I. Ponomarev, Elizaveta S. Vtyurina, Yulia A. Volkova, Ivan I. Ponomarev, Olga M. Zhigalina, Dmitry N. Khmelenin, Evgeny N. Cherkovskiy and Alexander D. Modestov
Membranes 2023, 13(5), 479; https://doi.org/10.3390/membranes13050479 - 29 Apr 2023
Cited by 6 | Viewed by 2658
Abstract
High-temperature polymer-electrolyte membrane fuel cells (HT-PEM FC) are a very important type of fuel cell since they operate at 150–200 °C, allowing the use of hydrogen contaminated with CO. However, the need to improve stability and other properties of gas diffusion electrodes still [...] Read more.
High-temperature polymer-electrolyte membrane fuel cells (HT-PEM FC) are a very important type of fuel cell since they operate at 150–200 °C, allowing the use of hydrogen contaminated with CO. However, the need to improve stability and other properties of gas diffusion electrodes still hinders their distribution. Anodes based on a mat (self-supporting entire non-woven nanofiber material) of carbon nanofibers (CNF) were prepared by the electrospinning method from a polyacrylonitrile solution followed by thermal stabilization and pyrolysis of the mat. To improve their proton conductivity, Zr salt was introduced into the electrospinning solution. As a result, after subsequent deposition of Pt-nanoparticles, Zr-containing composite anodes were obtained. To improve the proton conductivity of the nanofiber surface of the composite anode and reach HT-PEMFC better performance, dilute solutions of Nafion®, a polymer of intrinsic microporosity (PIM-1) and N-ethyl phosphonated polybenzimidazole (PBI-OPhT-P) were used to coat the CNF surface for the first time. These anodes were studied by electron microscopy and tested in membrane-electrode assembly for H2/air HT-PEMFC. The use of CNF anodes coated with PBI-OPhT-P has been shown to improve the HT-PEMFC performance. Full article
(This article belongs to the Special Issue Proton-Conducting Membranes)
Show Figures

Figure 1

15 pages, 4534 KiB  
Article
Corrosion Behavior of Coated Low Carbon Steel in a Simulated PEMFC Environment
by Diana Nicoleta Avram, Corneliu Mircea Davidescu, Iosif Hulka, Mircea Laurentiu Dan, Elena Manuela Stanciu, Alexandru Pascu and Julia Claudia Mirza-Rosca
Materials 2023, 16(8), 3056; https://doi.org/10.3390/ma16083056 - 12 Apr 2023
Cited by 7 | Viewed by 2285
Abstract
Here, potential metallic bipolar plate (BP) materials were manufactured by laser coating NiCr-based alloys with different Ti additions on low carbon steel substrates. The titanium content within the coating varied between 1.5 and 12.5 wt%. Our present study focussed on electrochemically testing the [...] Read more.
Here, potential metallic bipolar plate (BP) materials were manufactured by laser coating NiCr-based alloys with different Ti additions on low carbon steel substrates. The titanium content within the coating varied between 1.5 and 12.5 wt%. Our present study focussed on electrochemically testing the laser cladded samples in a milder solution. The electrolyte used for all of the electrochemical tests consisted of a 0.1 M Na2SO4 solution (acidulated with H2SO4 at pH = 5) with the addition of 0.1 ppm F. The corrosion resistance properties of the laser-cladded samples was evaluated using an electrochemical protocol, which consisted of the open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) measurements, and potentiodynamic polarization, followed by potentiostatic polarization under simulated proton exchange membrane fuel cell (PEMFC) anodic and cathodic environments for 6 h each. After the samples were subjected to potentiostatic polarization, the EIS measurements and potentiodynamic polarization were repeated. The microstructure and chemical composition of the laser cladded samples were investigated by scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX) analysis. Full article
(This article belongs to the Special Issue Corrosion Resistance Enhancement of the Materials Surface)
Show Figures

Figure 1

13 pages, 2302 KiB  
Article
Investigation of Electrochemical Characteristics and Interfacial Contact Resistance of TiN-Coated Titanium as Bipolar Plate in Polymer Electrolyte Membrane Fuel Cell
by Ho-Seong Heo and Seong-Jong Kim
Coatings 2023, 13(1), 123; https://doi.org/10.3390/coatings13010123 - 9 Jan 2023
Cited by 11 | Viewed by 4201
Abstract
In this research, titanium nitride (TiN) was applied to grade 1 titanium as a bipolar plate for a proton exchange membrane fuel cell (PEMFC). The TiN was deposited by the arc ion plating method (AIP) to investigate the electrochemical characteristics of the anode [...] Read more.
In this research, titanium nitride (TiN) was applied to grade 1 titanium as a bipolar plate for a proton exchange membrane fuel cell (PEMFC). The TiN was deposited by the arc ion plating method (AIP) to investigate the electrochemical characteristics of the anode and cathode environments in the PEMFC. The corrosion experiments were conducted in an aqueous solution of pH 3 (H2SO4 + 0.1 ppm HF, 80 °C) determined by the Department of Energy (DoE). The hydrogen gas and air were bubbled to simulate the anode and cathode environments. The potentiodynamic polarization experiment showed that there was no active peak. The potentiostatic experiment showed that the current densities of the TiN-coated specimens were less than 1 μA/cm2 in both the anode and cathode. As a result of observing the surface with an SEM before and after the potentiostatic experiment, only pinholes generated during the coating process were observed, and no corrosion damage was observed. Furthermore, electrochemical impedance spectroscopy (EIS) analysis showed that the coated specimens had a higher charge transfer resistance than the titanium substrate. In the case of interfacial contact resistance (ICR), the TiN-coated specimen displayed lower resistance than the titanium substrate and satisfied the DoE technical target of less than 10 mΩ·cm2 at 140 N/cm2. Full article
(This article belongs to the Special Issue Science and Engineering of Coating)
Show Figures

Figure 1

19 pages, 4324 KiB  
Communication
Performance of a Pd-Zn Cathode Electrode in a H2 Fueled Single PEM Fuel Cell
by Georgios Bampos and Symeon Bebelis
Electronics 2022, 11(17), 2776; https://doi.org/10.3390/electronics11172776 - 3 Sep 2022
Cited by 3 | Viewed by 2095
Abstract
A 21.7 wt.% Pd—7.3 wt.% Zn/C electrocatalyst prepared via the wet impregnation (w.i.) method was deposited onto commercial carbon cloth (E-TEK) and tested towards its electrocatalytic performance as a cathode electrode material for oxygen reduction reaction (ORR) in a H2 fueled single [...] Read more.
A 21.7 wt.% Pd—7.3 wt.% Zn/C electrocatalyst prepared via the wet impregnation (w.i.) method was deposited onto commercial carbon cloth (E-TEK) and tested towards its electrocatalytic performance as a cathode electrode material for oxygen reduction reaction (ORR) in a H2 fueled single proton-exchange membrane fuel cell (PEMFC). A commercial PtRu electrode (E-TEK) was used as PEM anode for hydrogen oxidation reaction (HOR). The performance of the aforementioned PEMFC was compared with that of the same PEMFC with two different Pt-based cathodes, which were prepared by deposition onto commercial carbon cloth (E-TEK) of 29 wt.% Pt/C synthesized via w.i. and of commercial 29 wt.% Pt/C (TKK). The metal loading of the tested cathode electrodes was 0.5 mgmet cm−2. Comparison was based both on polarization curves and on electrochemical impedance spectroscopy (EIS) measurements at varying cell potential. In terms of power density, the lowest and highest performance was exhibited by the PEMFC with the 21.7 wt.% Pd—7.3 wt.% Zn/C cathode and the PEMFC with the commercial 29 wt.% Pt/C (TKK) cathode electrode, respectively. This behavior was in accordance with the results of EIS measurements, which showed that the PEMFC with the 21.7 wt.% Pd—7.3 wt.% Zn/C cathode exhibited the highest polarization resistance. Full article
Show Figures

Figure 1

20 pages, 2478 KiB  
Article
Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell
by Lu Zhang, Yongfeng Liu, Pucheng Pei, Xintong Liu, Long Wang and Yuan Wan
Energies 2022, 15(9), 3280; https://doi.org/10.3390/en15093280 - 29 Apr 2022
Cited by 3 | Viewed by 2794
Abstract
The performance of proton exchange membrane fuel cells (PEMFCs) is directly affected by the nonlinear variations in water content. To study the variation in water content and its effect on PEMFC performance, the water condensation rate (WCR) model is established, which determines the [...] Read more.
The performance of proton exchange membrane fuel cells (PEMFCs) is directly affected by the nonlinear variations in water content. To study the variation in water content and its effect on PEMFC performance, the water condensation rate (WCR) model is established, which determines the proportional relationship between evaporation and condensation rates in terms of the switch function, and the two-phase flow evolution and pressure drop are considered as well. The WCR model is imported into Fluent software through a user-defined function for simulation, and the test system is established under different operating conditions. Then, the contours of H2O molar concentrations and polarization curves are analyzed and compared. The results show that the condensation rate value of the cathode channel is from 1.05 to 1.55 times higher than that of the anode channel. The WCR model can predict the variation in water content and improve the accuracy of the performance calculation by from 9% to 31%. The accuracy of the WCR model is especially improved, by 31%, at high current densities compared with the Fluent model when the inlet pressure is 30 kPa. Full article
(This article belongs to the Special Issue Design, Testing and Fault Diagnosis for Fuel Cells)
Show Figures

Figure 1

15 pages, 2780 KiB  
Article
Multi-Physical and Electrochemical Coupling Model for the Protonic Ceramic Fuel Cells with H+/e/O2− Mixed Conducting Cathodes
by Dongping Yan, Wansheng Wang, Runhua Li, Shanshan Jiang, Liu Lu, Aleksey Levtsev and Daifen Chen
Appl. Sci. 2022, 12(8), 3889; https://doi.org/10.3390/app12083889 - 12 Apr 2022
Cited by 7 | Viewed by 3378
Abstract
A protonic ceramic fuel cell (PCFC) has great potential for medium temperature power generation. Its working process, however, is complicated and quite different from the traditional oxygen ionic solid oxide fuel cell (O2−-SOFC) and proton exchange membrane fuel cell (PEMFC). In [...] Read more.
A protonic ceramic fuel cell (PCFC) has great potential for medium temperature power generation. Its working process, however, is complicated and quite different from the traditional oxygen ionic solid oxide fuel cell (O2−-SOFC) and proton exchange membrane fuel cell (PEMFC). In this paper, a multi-physical model for the PCFC with H+/e/O2− mixed conducting cathode is established, in which the fuel- and oxidant-diffusing processes; electron-, oxygen ion-, and proton-conducting processes; three electrochemical reactions; and their coupling working details are carefully considered. Taking Ni-BZCY/BZCY/BZCY-LSCF PCFC as an example, the validation of the model is well verified by good agreements with the experiment iop-Vop curves at different temperatures. The result shows that the cathodic electrochemical reactions will be concentrated to a small thickness near the electrolyte because of the greatly decreased ionic conductivity compared with the high electronic conductivity at an intermediate temperature. O2− within the PCFC cathode is only an intermediate transform substance between the electrons and protons. Thus, there is a peak oxygen ion current distribution within the composite cathode of PCFC. The cathodic oxygen reduction half reaction is found to be a key factor to dominate the total PCFC voltage loss at the intermediate temperature zone. The concentration polarization of anode-supported PCFC is small, due to the vapors that are generated in the cathode side instead of anode side. Full article
Show Figures

Figure 1

24 pages, 3690 KiB  
Article
Numerical Simulation on Impacts of Thickness of Nafion Series Membranes and Relative Humidity on PEMFC Operated at 363 K and 373 K
by Akira Nishimura, Kyohei Toyoda, Yuya Kojima, Syogo Ito and Eric Hu
Energies 2021, 14(24), 8256; https://doi.org/10.3390/en14248256 - 8 Dec 2021
Cited by 13 | Viewed by 3095
Abstract
The purpose of this study is to understand the impact of the thickness of Nafion membrane, which is a typical polymer electrolyte membrane (PEM) in Polymer Electrolyte Membrane Fuel Cells (PEMFCs), and relative humidity of supply gas on the distributions of H2 [...] Read more.
The purpose of this study is to understand the impact of the thickness of Nafion membrane, which is a typical polymer electrolyte membrane (PEM) in Polymer Electrolyte Membrane Fuel Cells (PEMFCs), and relative humidity of supply gas on the distributions of H2, O2, H2O concentration and current density on the interface between a Nafion membrane and anode catalyst layer or the interface between a Nafion membrane and cathode catalyst layer. The effect of the initial temperature of the cell (Tini) is also investigated by the numerical simulation using the 3D model by COMSOL Multiphysics. As a result, the current density decreases along with the gas flow through the gas channel irrespective of the Nafion membrane thickness and Tini, which can be explained by the concentration distribution of H2 and O2 consumed by electrochemical reaction. The molar concentration of H2O decreases when the thickness of Nafion membrane increases, irrespective of Tini and the relative humidity of the supply gas. The current density increases with the increase in relative humidity of the supply gas, irrespective of the Nafion membrane thickness and Tini. This study recommends that a thinner Nafion membrane with well-humidified supply gas would promote high power generation at the target temperature of 363 K and 373 K. Full article
Show Figures

Figure 1

14 pages, 5994 KiB  
Article
Hydrogen Oxidation and Oxygen Reduction Reactions on an OsRu-Based Electrocatalyst Synthesized by Microwave Irradiation
by Ángela Selva-Ochoa, Javier Su-Gallegos, Pathiyammattom Joseph Sebastian, Lorena Magallón-Cacho and Edgar Borja-Arco
Materials 2021, 14(19), 5692; https://doi.org/10.3390/ma14195692 - 30 Sep 2021
Cited by 2 | Viewed by 2062
Abstract
This work presents an OsRu-based electrocatalyst synthesis, by a rapid and efficient method through microwave irradiation. The outstanding electrocatalyst shows a dual catalytic activity, demonstrating both: hydrogen oxidation and oxygen reduction reactions. The material is structural and morphologically characterized by FT-IR, X-ray diffraction, [...] Read more.
This work presents an OsRu-based electrocatalyst synthesis, by a rapid and efficient method through microwave irradiation. The outstanding electrocatalyst shows a dual catalytic activity, demonstrating both: hydrogen oxidation and oxygen reduction reactions. The material is structural and morphologically characterized by FT-IR, X-ray diffraction, EDS, and SEM, indicating nanoparticulated Os and Ru metallic phases with a crystallite size of ∼6 nm, calculated by the Scherrer equation. The metal nanoparticles are apparently deposited on a carbonaceous sponge-like morphology structure. Its electrochemical characterization is performed in 0.5 M H2SO4 by the rotating disk electrode technique, employing cyclic and linear sweep voltammetry. Two different ink treatments have been studied to improve the obtained polarization curves. The material is also tested in the presence of methanol for the oxygen reduction reaction, showing an important resistance to this contaminant, making it viable for its use in direct methanol fuel cells (DMFCs) as a cathode and in polymer electrolyte fuel cells (PEMFCs) as an anode as much as a cathode. Full article
(This article belongs to the Special Issue Microwave Processing Technology for a Variety of Materials)
Show Figures

Graphical abstract

38 pages, 5802 KiB  
Review
Carbon Monoxide Tolerant Pt-Based Electrocatalysts for H2-PEMFC Applications: Current Progress and Challenges
by Costas Molochas and Panagiotis Tsiakaras
Catalysts 2021, 11(9), 1127; https://doi.org/10.3390/catal11091127 - 18 Sep 2021
Cited by 79 | Viewed by 10132
Abstract
The activity degradation of hydrogen-fed proton exchange membrane fuel cells (H2-PEMFCs) in the presence of even trace amounts of carbon monoxide (CO) in the H2 fuel is among the major drawbacks currently hindering their commercialization. Although significant progress has been [...] Read more.
The activity degradation of hydrogen-fed proton exchange membrane fuel cells (H2-PEMFCs) in the presence of even trace amounts of carbon monoxide (CO) in the H2 fuel is among the major drawbacks currently hindering their commercialization. Although significant progress has been made, the development of a practical anode electrocatalyst with both high CO tolerance and stability has still not occurred. Currently, efforts are being devoted to Pt-based electrocatalysts, including (i) alloys developed via novel synthesis methods, (ii) Pt combinations with metal oxides, (iii) core–shell structures, and (iv) surface-modified Pt/C catalysts. Additionally, the prospect of substituting the conventional carbon black support with advanced carbonaceous materials or metal oxides and carbides has been widely explored. In the present review, we provide a brief introduction to the fundamental aspects of CO tolerance, followed by a comprehensive presentation and thorough discussion of the recent strategies applied to enhance the CO tolerance and stability of anode electrocatalysts. The aim is to determine the progress made so far, highlight the most promising state-of-the-art CO-tolerant electrocatalysts, and identify the contributions of the novel strategies and the future challenges. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

18 pages, 2162 KiB  
Article
Effects of Impurities on Pre-Doped and Post-Doped Membranes for High Temperature PEM Fuel Cell Stacks
by Samuel Simon Araya, Sobi Thomas, Andrej Lotrič, Simon Lennart Sahlin, Vincenzo Liso and Søren Juhl Andreasen
Energies 2021, 14(11), 2994; https://doi.org/10.3390/en14112994 - 21 May 2021
Cited by 12 | Viewed by 3171
Abstract
In this paper, we experimentally investigated two high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) stacks for their response to the presence of reformate impurities in an anode gas stream. The investigation was aimed at characterizing the effects of reformate impurities at the [...] Read more.
In this paper, we experimentally investigated two high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) stacks for their response to the presence of reformate impurities in an anode gas stream. The investigation was aimed at characterizing the effects of reformate impurities at the stack level, including in humidified conditions and identifying fault features for diagnosis purposes. Two HT-PEMFC stacks of 37 cells each with active areas of 165 cm2 were used with one stack containing a pre-doped membrane with a woven gas diffusion layer (GDL) and the other containing a post-doped membrane with non-woven GDL. Polarization curves and galvanostatic electrochemical impedance spectroscopy (EIS) were used for characterization. We found that both N2 dilution and impurities in the anode feed affected mainly the charge transfer losses, especially on the anode side. We also found that humidification alleviated the poisoning effects of the impurities in the stack with pre-doped membrane electrode assemblies (MEA) and woven GDL but had detrimental effects on the stack with post-doped MEAs and non-woven GDL. We demonstrated that pure and dry hydrogen operation at the end of the tests resulted in significant recovery of the performance losses due to impurities for both stacks even after the humidified reformate operation. This implies that there was only limited acid loss during the test period of around 150 h for each stack. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy)
Show Figures

Graphical abstract

Back to TopTop