Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (196)

Search Parameters:
Keywords = H1N1pdm09

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 852 KB  
Article
Effect of Influenza Vaccination on the Disease Severity and Viral Load Among Adult Outpatients and Inpatients
by Alexander Domnich, Vincenzo Paolozzi, Giada Garzillo, Andrea Orsi and Giancarlo Icardi
Vaccines 2025, 13(10), 1046; https://doi.org/10.3390/vaccines13101046 - 10 Oct 2025
Viewed by 180
Abstract
Background: Some studies suggest that, thanks to the mechanisms of immune-mediated attenuation, influenza vaccination reduces severity of influenza illness in breakthrough infections. This study aimed to assess whether influenza vaccination attenuates severity of laboratory-confirmed influenza among Italian adults. Methods: This secondary [...] Read more.
Background: Some studies suggest that, thanks to the mechanisms of immune-mediated attenuation, influenza vaccination reduces severity of influenza illness in breakthrough infections. This study aimed to assess whether influenza vaccination attenuates severity of laboratory-confirmed influenza among Italian adults. Methods: This secondary analysis included all influenza cases detected during respiratory surveillance studies conducted in outpatient and inpatient settings in Genoa (Italy), throughout the 2023/2024 and 2024/2025 seasons. Here, we compared viral load and the count of influenza-related symptoms in outpatients, alongside all-cause in-hospital mortality and radiologically confirmed pneumonia in inpatients, between vaccinated and unvaccinated adults. Results: The study included 188 influenza cases diagnosed in primary care and 281 influenza cases identified among inpatients. Of these, 37.2% and 31.7%, respectively, were vaccinated, constituting breakthrough infections. Compared to unvaccinated adults, vaccinated outpatients had a slightly lower viral load (difference in cycle threshold values of 1.36 corresponding to about 0.51 log10 reduction in the number of copies/mL; p = 0.077), primarily driven by influenza A(H1N1)pdm09. Vaccinated outpatients also reported 9% fewer influenza-related symptoms than unvaccinated counterparts [prevalence ratio 0.91; 95% confidence interval (CI): 0.84, 0.99]. Among hospitalized older adults, influenza vaccination was associated with 64% reduced odds of in-hospital death (odds ratio 0.36; 95% CI: 0.12, 0.94). Conversely, no association between vaccination and development of pneumonia was found. Conclusions: This study corroborates the idea that influenza vaccination attenuates disease severity in breakthrough infections. These effects are, however, dependent on the measure of severity used. Full article
(This article belongs to the Special Issue The Effectiveness of Influenza Vaccine)
Show Figures

Figure 1

20 pages, 2143 KB  
Article
Differences in Glycoproteins and the Potential for Early Protection Using LAIV Based on Drift Variants of the A/H1N1pdm09 Influenza Virus
by Yulia Desheva, Irina Mayorova, Andrey Rekstin, Daniil Sokolovsky, Polina Kudar, Nina Kopylova, Danila Guzenkov, Darya Petrachkova, Andrey Mamontov, Andrey Trullioff and Irina Kiseleva
Vaccines 2025, 13(9), 966; https://doi.org/10.3390/vaccines13090966 - 11 Sep 2025
Viewed by 508
Abstract
Background/Objectives: Antigenic drift of influenza A(H1N1pdm09) viruses has led to periodic replacement of vaccine strains. Understanding how structural differences in glycoproteins influence immune protection is crucial for improving vaccine effectiveness. Methods: We conducted a structural analysis of the hemagglutinin (HA) and neuraminidase (NA) [...] Read more.
Background/Objectives: Antigenic drift of influenza A(H1N1pdm09) viruses has led to periodic replacement of vaccine strains. Understanding how structural differences in glycoproteins influence immune protection is crucial for improving vaccine effectiveness. Methods: We conducted a structural analysis of the hemagglutinin (HA) and neuraminidase (NA) glycoproteins from drifted A(H1N1)pdm09 strains: A/South Africa/3626/2008 and A/Guangdong–Maonan/SWL1/2020, as well as their cold-adapted live attenuated vaccine (LAIV) reassortant strains (A/17/South Africa/2013/01(H1N1)pdm09 and A/17/Guangdong–Maonan/2019/211(H1N1)pdm09). We compared their replication in chicken embryo and mammalian cell culture, assessed type I interferon induction, and evaluated post-vaccine protection in mice after homologous and heterogeneous viral challenges. Results: The two vaccine strains had distinct glycosylation patterns for HA and NA. However, they had similar replication capacity in embryonated egg and mammalian cells. In the mouse respiratory tract, both strains replicated similarly. A/17/South Africa/2013/01(H1N1)pdm09 induced significantly higher levels of IFN-α and Mx1 in vitro, and it elicited earlier IgM and IgG response after vaccination in mice. At day 6 after immunization, it provided 70% protection from homologous challenge. A/17/Guangdong–Maonan/2019/211(H1N1)pdm09 did not prevent death, but it reduced viral titer in the lungs. Interestingly, A/17/South Africa/2013/01(H1N1)pdm09 provided full protection from heterologous H5N1 challenge, while A/17/Guangdong–Maonan/2019/211(H1N1)pdm09) only provided partial protection. Conclusions: Differences in HA and NA glycans among A(H1N1)pdm09 strains may influence innate and adaptive immunity, as well as cross-protection. These findings emphasize the importance of glycoprotein structure when selecting vaccine candidates for optimal homologous and cross-protection against influenza. Full article
(This article belongs to the Section Influenza Virus Vaccines)
Show Figures

Figure 1

12 pages, 1526 KB  
Article
Human-Derived H3N2 Influenza A Viruses Detected in Pigs in Northern Italy
by Laura Soliani, Ada Mescoli, Irene Zanni, Laura Baioni, Giovanni Alborali, Ana Moreno, Silvia Faccini, Carlo Rosignoli, Giorgia De Lorenzi, Laura Fiorentini, Camilla Torreggiani, Benedetta Cordioli, Alice Prosperi, Andrea Luppi and Chiara Chiapponi
Viruses 2025, 17(9), 1171; https://doi.org/10.3390/v17091171 - 27 Aug 2025
Viewed by 791
Abstract
In recent years, the four main swine influenza A virus (IAV-S) subtypes circulating in swine in the EU have been H1avN1, H1huN2, H1N1pdm09, and H3N2. The latter emerged in 1984 from a reassortment event between a human seasonal H3N2 and H1avN1, and is [...] Read more.
In recent years, the four main swine influenza A virus (IAV-S) subtypes circulating in swine in the EU have been H1avN1, H1huN2, H1N1pdm09, and H3N2. The latter emerged in 1984 from a reassortment event between a human seasonal H3N2 and H1avN1, and is currently detected at low prevalence in swine in Italy. Here, we describe nine H3N2 IAV-S isolates belonging to three novel genotypes, first detected in Italy in 2021, likely resulting from reassortment events between swine and human IAVs. The first genotype was characterized by a hemagglutinin (H3 HA) of human seasonal origin, a neuraminidase (N2 NA) derived from H1huN2 strains circulating in Italian swine, and an avian-like internal gene cassette (IGC). The second genotype differed in its IGC constellation: PB2, PB1, PA and NP segments were of pandemic origin (pdm09), while NS and M segments derived from the Eurasian avian-like lineage. The third genotype combined a human-derived H3, a Gent/84-derived N2, and a pdm09-origin IGC, except for an avian-like NS. This study aimed to characterize the genetic features of these novel H3huN2 and assess their epidemiological relevance, with implications for surveillance and control, improving preparedness and mitigating the risks posed by zoonotic influenza viruses. Full article
Show Figures

Figure 1

27 pages, 9202 KB  
Article
Enhancement in Corrosion and Wear Resistance of FeCoNiCrAl High-Entropy Alloy Coating Through Dual Heat Treatment with 3:1 N2/H2 Atmosphere
by Miqi Wang, Buxiang Li, Chi He, Jing Sun, Liyuan Li, Aihui Liu and Fang Shi
Coatings 2025, 15(9), 986; https://doi.org/10.3390/coatings15090986 - 23 Aug 2025
Viewed by 610
Abstract
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The [...] Read more.
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The heat treatment method was conducted in a vacuum tube furnace under 0.1 MPa total pressure, with gas flow rates set to 300 sccm N2 and 100 sccm H2. The XRD results indicated that the as-deposited coating exhibited α-Fe (BBC) and Al0.9Ni4.22 (FCC) phases, with an Fe0.64N0.36 nitride phase generated after 800 °C annealing. The electrochemical measurements suggested that an exceptional corrosion performance with higher thicknesses of passive film and double-layer capacitance can be detected based on the point defect model (PDM) and effective capacitance model. Wear tests revealed that the friction coefficient at 800 °C decreased by 3.84% compared to that in the as-sprayed state due to the formation of a dense nitride layer. Molecular orbital theory pointed out that the formation of bonding molecular orbitals, resulting from the overlap of valence electron orbitals of different atomic species in the HEA coating system, stabilized the structure by promoting atomic interactions. The wear mechanism associated with stress redistribution and energy balance from compositional synergy is proposed in this work. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

19 pages, 3163 KB  
Article
Hydrophobic, Durable, and Reprocessable PEDOT:PSS/PDMS-PUa/SiO2 Film with Conductive Self-Cleaning and De-Icing Functionality
by Jie Fang, Rongqing Dong, Meng Zhou, Lishan Liang, Mingna Yang, Huakun Xing, Yongluo Qiao and Shuai Chen
Coatings 2025, 15(9), 985; https://doi.org/10.3390/coatings15090985 - 23 Aug 2025
Viewed by 892
Abstract
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high [...] Read more.
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high moisture absorption, mechanical damage vulnerability, insufficient substrate adhesion ability, etc.) by uniformly blending them with polydimethylsiloxane polyurea (PDMS-PUa) and silica (SiO2) nanoparticles through a feasible mechanical stirring process, which effectively harnesses the intermolecular interactions, as well as the morphological and structural characteristics, among the various components. The Si−O bonds within PDMS-PUa and the −CH3 groups attached to Si atoms significantly enhance the hydrophobicity of the composite film (as evidenced by a water contact angle of 132.89° under optimized component ratios). Meanwhile, SiO2 microscopically modifies the surface morphology, resulting in increased surface roughness. This composite film not only maintains high conductivity (1.21 S/cm, in contrast to 0.83 S/cm for the PEDOT:PSS film) but also preserves its hydrophobicity and electrical properties under rigorous conditions, including high-temperature exposure (60–200 °C), ultraviolet (UV) aging (365.0 nm, 1.32 mW/cm2), and abradability testing (2000 CW abrasive paper, drag force of approximately 0.98 N, 40 cycles). Furthermore, the film demonstrates enhanced resistance to both acidic (1 mol/L, 24 h) and alkaline (1 mol/L, 24 h) environments, along with excellent self-cleaning and de-icing capabilities (−6 °C), and satisfactory adhesion (Level 2). Notably, the dried composite film can be re-dispersed into a solution with the aid of isopropanol through simple magnetic stirring, and the sequentially coated films also exhibit good surface hydrophobicity (136.49°), equivalent to that of the pristine film. This research aims to overcome the intrinsic performance drawbacks of PEDOT:PSS-based materials, enabling them to meet the demands of complex application scenarios in the field of organic electronics while endowing them with multifunctionality. Full article
Show Figures

Graphical abstract

10 pages, 2586 KB  
Case Report
Comprehensive Laboratory Analysis of a Scrub Typhus and H1N1 Influenza Co-Infection: A Case Report from Hainan, China
by Siqi Chen, Fahui Wang, Shannan Wu, Yuanze Chen, Yi Niu, Yijia Guo, Dachuan Lin, Xiuji Cui, Ruoyan Peng, Zhao Xu, Biao Wu, Min Liao, Yongguo Du, Liyuan Zhang and Feifei Yin
Pathogens 2025, 14(8), 810; https://doi.org/10.3390/pathogens14080810 - 15 Aug 2025
Viewed by 692
Abstract
Co-infection of Orientia tsutsugamushi and influenza A virus complicates diagnosis and treatment in endemic regions because of overlapping clinical features and potential synergistic inflammation. We describe a 68-year-old woman from Hainan, China, who presented with five days of high fever (39.2 °C), nonproductive [...] Read more.
Co-infection of Orientia tsutsugamushi and influenza A virus complicates diagnosis and treatment in endemic regions because of overlapping clinical features and potential synergistic inflammation. We describe a 68-year-old woman from Hainan, China, who presented with five days of high fever (39.2 °C), nonproductive cough, eschar formation, lymphadenopathy, cytopenias, elevated liver enzymes, and raised inflammatory markers. On the day of admission, influenza A was confirmed by rapid antigen test and Orientia tsutsugamushi IgM/IgG was detected via colloidal-gold immunochromatography, prompting concurrent oseltamivir and doxycycline therapy. Quantitative PCR on day 2 measured an Orientia tsutsugamushi load of 2.85 × 104 copies/mL (Cq 28.86), and targeted next-generation sequencing on day 3 revealed a high H1N1pdm09 viral burden (>1 × 106 copies/mL) with low-level human herpesvirus 1 co-detection. Nested PCR and Sanger sequencing assigned Orientia tsutsugamushi to the Karp_A lineage and influenza A to clade 6B.1A.5a.2a. The patient defervesced by hospital day 2, laboratory indices normalized by day 3, and radiographic abnormalities resolved by day 6. This first documented Orientia tsutsugamushi–influenza A co-infection in China highlights the value of integrating rapid serology, qPCR quantification, nested PCR genotyping, and tNGS for early, precise dual-pathogen identification. Systematic multi-pathogen screening during overlapping transmission seasons is recommended to guide timely combination therapy and enhance epidemiological surveillance. Full article
Show Figures

Figure 1

15 pages, 1758 KB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 - 1 Aug 2025
Viewed by 553
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

16 pages, 1182 KB  
Article
Machine Learning-Based Identification of Risk Factors for ICU Mortality in 8902 Critically Ill Patients with Pandemic Viral Infection
by Elisabeth Papiol, Ricard Ferrer, Juan C. Ruiz-Rodríguez, Emili Díaz, Rafael Zaragoza, Marcio Borges-Sa, Julen Berrueta, Josep Gómez, María Bodí, Susana Sancho, Borja Suberviola, Sandra Trefler and Alejandro Rodríguez
J. Clin. Med. 2025, 14(15), 5383; https://doi.org/10.3390/jcm14155383 - 30 Jul 2025
Cited by 1 | Viewed by 652
Abstract
Background/Objectives: The SARS-CoV-2 and influenza A (H1N1)pdm09 pandemics have resulted in high numbers of ICU admissions, with high mortality. Identifying risk factors for ICU mortality at the time of admission can help optimize clinical decision making. However, the risk factors identified may [...] Read more.
Background/Objectives: The SARS-CoV-2 and influenza A (H1N1)pdm09 pandemics have resulted in high numbers of ICU admissions, with high mortality. Identifying risk factors for ICU mortality at the time of admission can help optimize clinical decision making. However, the risk factors identified may differ, depending on the type of analysis used. Our aim is to compare the risk factors and performance of a linear model (multivariable logistic regression, GLM) with a non-linear model (random forest, RF) in a large national cohort. Methods: A retrospective analysis was performed on a multicenter database including 8902 critically ill patients with influenza A (H1N1)pdm09 or COVID-19 admitted to 184 Spanish ICUs. Demographic, clinical, laboratory, and microbiological data from the first 24 h were used. Prediction models were built using GLM and RF. The performance of the GLM was evaluated by area under the ROC curve (AUC), precision, sensitivity, and specificity, while the RF by out-of-bag (OOB) error and accuracy. In addition, in the RF, the im-portance of the variables in terms of accuracy reduction (AR) and Gini index reduction (GI) was determined. Results: Overall mortality in the ICU was 25.8%. Model performance was similar, with AUC = 76% for GLM, and AUC = 75.6% for RF. GLM identified 17 independent risk factors, while RF identified 19 for AR and 23 for GI. Thirteen variables were found to be important in both models. Laboratory variables such as procalcitonin, white blood cells, lactate, or D-dimer levels were not significant in GLM but were significant in RF. On the contrary, acute kidney injury and the presence of Acinetobacter spp. were important variables in the GLM but not in the RF. Conclusions: Although the performance of linear and non-linear models was similar, different risk factors were determined, depending on the model used. This alerts clinicians to the limitations and usefulness of studies limited to a single type of model. Full article
(This article belongs to the Special Issue Current Trends and Prospects of Critical Emergency Medicine)
Show Figures

Figure 1

11 pages, 1528 KB  
Brief Report
End-of-Season Influenza Vaccine Effectiveness Against Laboratory-Confirmed Influenza in Outpatient Settings, Beijing, China: A Test-Negative Design
by Jiaojiao Zhang, Zhaomin Feng, Ying Shen, Weixian Shi, Ying Sun, Jiachen Zhao, Dan Wu, Jia Li, Chunna Ma, Wei Duan, Jiaxin Ma, Yingying Wang, Lu Zhang, Xiaodi Hu, Quanyi Wang, Daitao Zhang and Peng Yang
Vaccines 2025, 13(8), 809; https://doi.org/10.3390/vaccines13080809 - 30 Jul 2025
Viewed by 943
Abstract
This study aimed to estimate the end-of-season influenza vaccine effectiveness (VE) for the 2024/25 season in Beijing, China. Methods: We used a test-negative design (TND) to assess influenza VE among outpatients with influenza-like illness (ILI) enrolled through the influenza virological surveillance in sentinel [...] Read more.
This study aimed to estimate the end-of-season influenza vaccine effectiveness (VE) for the 2024/25 season in Beijing, China. Methods: We used a test-negative design (TND) to assess influenza VE among outpatients with influenza-like illness (ILI) enrolled through the influenza virological surveillance in sentinel hospitals in Beijing from week 44, 2024 to week 14, 2025. Cases were ILI patients who tested positive for influenza; controls were those who tested negative. Results: Among 18,405 ILI patients tested, 3690 (20.0%) were positive for influenza, with A(H1N1)pdm09 as the predominant strain (98.9%). The overall influenza vaccination coverage was 12.4%. Adjusted VE was 48.3% (95%CI: 40.4%–55.3%) against any influenza and 48.2% (95%CI: 40.3%–55.1%) against A(H1N1)pdm09, with the highest VE observed in adults aged 18–59 years (79.0%). The adjusted VE was similar for those vaccinated in 2023/24 only (53.1%) or both 2023/24 and 2024/25 seasons (50.8%), but lower for those vaccinated only in the 2024/25 season (48.5%). The adjusted VE was higher during the epidemic period (52.5%) than in the pre-epidemic (48.1%) and post-epidemic (35.3%) periods. Conclusions: Our findings indicate moderate VE against laboratory-confirmed influenza, especially A(H1N1)pdm09, during the end of the 2024/25 season in Beijing, China. Influenza vaccination provided protective effects across different epidemic periods. These timely estimates support ongoing public health communication and immunization strategies. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
Show Figures

Figure 1

22 pages, 4670 KB  
Article
3,3′-Diindolylmethane Improves the Viral Pneumonia Outcomes After Influenza and SARS-CoV-2 Infection in Animal Models
by Vsevolod Kiselev, Irina Leneva, Anna Ivanina, Artem Poromov, Irina Falynskova, Nadezhda Kartashova, Ekaterina Glubokova, Galina Trunova, Sergey Sudakov, Vadim Drukh, Vitaly Zverev and Oleg Kiselev
Viruses 2025, 17(7), 964; https://doi.org/10.3390/v17070964 - 9 Jul 2025
Viewed by 699
Abstract
Influenza and SARS-CoV-2 are often associated with viral pneumonia, resulting from direct exposure of the virus to lung tissue. 3,3′-Diindolylmethane (DIM) is a naturally occurring substance with multi-target activity, including anti-inflammatory and epigenetic modulation. In this study, we evaluated the therapeutic efficacy in [...] Read more.
Influenza and SARS-CoV-2 are often associated with viral pneumonia, resulting from direct exposure of the virus to lung tissue. 3,3′-Diindolylmethane (DIM) is a naturally occurring substance with multi-target activity, including anti-inflammatory and epigenetic modulation. In this study, we evaluated the therapeutic efficacy in vivo of a DIM formulation with fish oil (Cesarox Epi) against influenza A (H1N1) infection in mice and against SARS-CoV-2 infection in Syrian hamsters. In a model of lethal influenza pneumonia induced by A/California/04/2009 (H1N1)pdm09 virus, we showed that 5 days’ treatment with DIM Epi at 10, 20, and 60 mg/kg/day delayed the time to death, prevented body weight loss, and resulted in significant improvements in survival. DIM Epi tested in hamsters infected with SARS-CoV2 Dubrovka (Wuhan-like) strain at doses 50 and 100 mg/kg/day reduced clinical signs, weight loss, temperature elevation, and lung pathology. In both models of infections, treatment with DIM Epi did not significantly decrease viral titer in the animals’ lungs. DIM Epi and Oseltamivir were more effective against influenza infection when given in combination than given singly, while co-administration of DIM Epi with Molnupiravir did not yield an additive benefit against SARS-CoV-2 infection. These findings support DIM Epi as a promising host-directed adjunct therapy for viral pneumonia with potential to enhance outcomes in respiratory infections. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

13 pages, 707 KB  
Article
Incidence of Circulating Antibodies Against Hemagglutinin of Influenza Viruses in Epidemic Season 2023/2024 in Poland
by Katarzyna Kondratiuk, Aleksander Masny, Anna Poznańska, Karol Szymański, Katarzyna Łuniewska, Emilia Czajkowska, Bartosz Mańkowski and Lidia B. Brydak
Biomolecules 2025, 15(7), 977; https://doi.org/10.3390/biom15070977 - 7 Jul 2025
Viewed by 814
Abstract
The aim of this study was to determine the level of anti-hemagglutinin antibodies using the hemagglutination inhibition test (HAI) in the blood sera of patients collected during the 2023/2024 epidemic season in Poland. This data is valuable for assessing the level of population [...] Read more.
The aim of this study was to determine the level of anti-hemagglutinin antibodies using the hemagglutination inhibition test (HAI) in the blood sera of patients collected during the 2023/2024 epidemic season in Poland. This data is valuable for assessing the level of population immunity to influenza viruses circulating in Poland during this epidemic season. The study material consisted of serum samples collected across the country and divided into seven age groups. The test results confirmed the presence of anti-hemagglutinin antibodies for the antigens included in the quadrivalent influenza vaccine recommended by the World Health Organization (WHO) for the 2023/2024 epidemic season: A/Victoria/4897/2022 (H1N1)pdm09, A/Darwin/9/2021 (H3N2), B/Austria/1359417/2021 (B/Victoria lineage) and B/Phuket/3073/2013 (B/Yamagata lineage). The highest values of the geometric mean (GMT = 121.0 [95% CI: 108.5–134.9]) and protective factor (70 [95% CI: 67–74]%) were recorded for the A/H3N2/influenza virus antigen. In Poland, the vaccination rate of the general population in the discussed season was only 5.52%. The obtained results can therefore be interpreted as a response of the immune system, consisting of the production of anti-hemagglutinin antibodies in patients who had previously had an infection caused by the influenza virus. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Viral Infections)
Show Figures

Figure 1

14 pages, 895 KB  
Article
Integrated In Silico, In Vitro, and In Vivo Studies Reveal Mangiferin as a Promising Antiviral Agent Against H1N1/pdm2009 Influenza Virus
by Yinde Gan, Fucheng Guo, Ayan Roy, Xiao Wang and Yongyi Shen
Viruses 2025, 17(7), 873; https://doi.org/10.3390/v17070873 - 21 Jun 2025
Viewed by 764
Abstract
The ongoing global threat posed by the influenza A virus, exacerbated by antigenic drift and the emergence of antiviral resistance, accentuates the urgent need for innovative therapeutic strategies. Through molecular docking, this study revealed that mangiferin has a strong binding affinity for the [...] Read more.
The ongoing global threat posed by the influenza A virus, exacerbated by antigenic drift and the emergence of antiviral resistance, accentuates the urgent need for innovative therapeutic strategies. Through molecular docking, this study revealed that mangiferin has a strong binding affinity for the active site of the neuraminidase (NA) protein of influenza virus A(H1N1)pdm09, with a binding energy of −8.1 kcal/mol. In vitro assays confirmed a dose-dependent inhibition of NA, with an IC50 of 88.65 μM, and minimal cytotoxicity, as indicated by a CC50 of 328.1 μM in MDCK cells. In murine models, the administration of mangiferin at a dosage of 25 mg/kg significantly mitigated weight loss, decreased viral loads in nasal turbinates and lungs by over 1 log10 TCID50, and enhanced survival rates from 0% in control groups to 20% in mangiferin-treated group at 14 days post-infection. In addition, mangiferin was found to modulate host immune responses by simultaneously inhibiting pro-inflammatory cytokines, IL-6 and TNF-α, and upregulating the expression of anti-inflammatory IL-10 and antiviral IFN-γ, thus mitigating infection-induced inflammation. Our findings elucidate the dual mechanism of mangiferin involving the direct inhibition of NA and immunomodulation, thereby providing experimental evidence for exploring dual-mechanism-based anti-influenza strategies against resistant strains of influenza. Full article
(This article belongs to the Special Issue Antiviral Development for Emerging and Re-Emerging Viruses)
Show Figures

Figure 1

26 pages, 1815 KB  
Article
A High-Yield Recombinant Inactivated Whole-Virion Nasal Influenza A(H1N1)pdm09 Virus Vaccine with an Attenuated PB2 Gene
by Seung-Eun Son, Jin-Ha Song, Ho-Won Kim, Se-Hee An, Seung-Ji Kim, Chung-Young Lee, Hyuk-Joon Kwon and Kang-Seuk Choi
Int. J. Mol. Sci. 2025, 26(12), 5489; https://doi.org/10.3390/ijms26125489 - 7 Jun 2025
Viewed by 1209
Abstract
During the 2009 H1N1 pandemic (pdm09), the poor replication of PR8-derived vaccine strains in embryonated chicken eggs (ECEs) delayed vaccine production, necessitating costly adjuvants. To improve egg-based yield, we generated PB2-substituted H1N1 strains via reverse genetics, replacing PR8 PB2 with a PB2 lacking [...] Read more.
During the 2009 H1N1 pandemic (pdm09), the poor replication of PR8-derived vaccine strains in embryonated chicken eggs (ECEs) delayed vaccine production, necessitating costly adjuvants. To improve egg-based yield, we generated PB2-substituted H1N1 strains via reverse genetics, replacing PR8 PB2 with a PB2 lacking mammalian-adaptive mutations (dtxPB2), cognate pdm09 PB2 (19PB2), or avian PB2. All PB2-substituted strains achieved over tenfold higher titers than the conventional PR8 PB2-containing strain (rGD19), with rGD19/dtxPB2 and rGD19/19PB2 exhibiting significantly higher titers and reduced murine virulence. Among these, rGD19/19PB2 produced the highest hemagglutinin (HA) yield and, when administered intranasally as a binary ethyleneimine (BEI)-inactivated whole-virion vaccine, elicited a significantly stronger broncho-alveolar IgA response than rGD19. Both rGD19 and rGD19/19PB2 provided comparable protection against a homologous H1N1 challenge, yet only rGD19/19PB2 conferred full survival protection after a lethal heterologous H3N2 challenge. These findings show that incorporation of cognate PB2 enhances H1N1 replication in ECEs and antigen yield, reduces murine virulence, and confers robust homo- and heterosubtypic protection via intranasal immunization, underscoring the promise of PB2-modified H1N1 strains as inactivated mucosal whole-virion vaccines for future vaccine development. Full article
(This article belongs to the Special Issue Current Advances in Antivirals and Vaccines)
Show Figures

Graphical abstract

16 pages, 4152 KB  
Article
Analysis of Epidemiological and Evolutionary Characteristics of Seasonal Influenza Viruses in Shenzhen City from 2018 to 2024
by Weiyu Peng, Hui Liu, Xin Wang, Chao Li, Shunwu Huang, Shiyu Qi, Zhongnan Hu, Xiaoying Xu, Haihai Jiang, Jinyu Duan, Hui Chen, Manyu Huang, Ying Sun, Weihua Wu, Min Jiang, Xuan Zou and Shisong Fang
Viruses 2025, 17(6), 798; https://doi.org/10.3390/v17060798 - 30 May 2025
Viewed by 1063
Abstract
The SARS-CoV-2 pandemic and the implementation of associated non-pharmaceutical interventions (NPIs) profoundly altered the epidemiology of seasonal influenza viruses. To investigate these changes, we analyzed influenza-like illness samples in Shenzhen, China, across six influenza seasons spanning 2018 to 2024. Influenza activity declined markedly [...] Read more.
The SARS-CoV-2 pandemic and the implementation of associated non-pharmaceutical interventions (NPIs) profoundly altered the epidemiology of seasonal influenza viruses. To investigate these changes, we analyzed influenza-like illness samples in Shenzhen, China, across six influenza seasons spanning 2018 to 2024. Influenza activity declined markedly during the SARS-CoV-2 pandemic compared with the pre-pandemic period but returned to or even exceeded pre-pandemic levels in the post-pandemic era. Phylogenetic analysis of hemagglutinin (HA) and neuraminidase (NA) genes from 58 H1N1pdm09, 78 H3N2, and 97 B/Victoria isolates revealed substantial genetic divergence from the WHO-recommended vaccine strains. Notably, key mutations in the HA genes of H1N1pdm09, H3N2, and B/Victoria viruses were concentrated in the receptor-binding site (RBS) and adjacent antigenic sites. Hemagglutination inhibition (HI) assays demonstrated that most circulating viruses remained antigenically matched to their corresponding vaccine strains. However, significant antigenic drift was observed in H3N2 clade 3C.2a1b.1b viruses during the 2018–2019 season and in B/Victoria clade V1A.3a.2 viruses during the 2023–2024 season. These findings highlight the impact of NPIs and pandemic-related disruptions on influenza virus circulation and evolution, providing critical insights for future surveillance and public health preparedness. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

17 pages, 630 KB  
Article
Acute Respiratory and Influenza Viruses Circulating in Kazakhstan During 2018–2024
by Tatyana Glebova, Nailya Klivleyeva, Assem Baimukhametova, Galina Lukmanova, Nurbol Saktaganov, Nuray Ongarbayeva, Baiken Baimakhanova, Gulmira Kassymova, Madisha Sagatova, Almagul Rachimbayeva, Nazgul Zhanuzakova, Tatyana Naidenova, Nigina Rakhmonova and Richard Webby
Pathogens 2025, 14(5), 493; https://doi.org/10.3390/pathogens14050493 - 16 May 2025
Cited by 1 | Viewed by 1396
Abstract
Respiratory tract infections cause serious morbidity and mortality and are a major public health problem. The objective of our study was detection of the prevalence of viral respiratory diseases in the territory of Kazakhstan during the epidemic period of 2018–2024. The presence of [...] Read more.
Respiratory tract infections cause serious morbidity and mortality and are a major public health problem. The objective of our study was detection of the prevalence of viral respiratory diseases in the territory of Kazakhstan during the epidemic period of 2018–2024. The presence of respiratory viruses in nasopharyngeal swabs was analyzed using real-time polymerase chain reaction. The level of specific antibodies in the blood serum was determined by hemagglutination inhibition assay and enzyme-linked immunosorbent assay. In rtRT-PCR, patients were diagnosed with non-influenza viral respiratory tract infections as well as influenza viruses A(H1N1), A(H3N2), and B. Antibodies were detected against A(H1N1)pdm09, influenza A(H3N2), and influenza B viruses and with simultaneous detection of both viruses. The circulation of influenza A(H3N2) viruses belonging to the 3C.2a1b.2a.2a.3a.1 clade was confirmed by whole-genome sequencing. According to the results, in the period 2018–2024, the spread of influenza A and B viruses and non-influenza respiratory tract infections was observed. The data of this study confirm the role of known causative agents of epidemic infection and indicate the need to continue monitoring their spread in Kazakhstan, which may add to the general quality of the health system. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

Back to TopTop