Differences in Glycoproteins and the Potential for Early Protection Using LAIV Based on Drift Variants of the A/H1N1pdm09 Influenza Virus
Abstract
1. Introduction
2. Materials and Methods
2.1. Viruses
2.2. Molecular Genetic Analysis
2.3. Cell Lines
2.4. Mice
2.5. Ethics Approval
2.6. Viral Replication in Mice
2.7. Immunization and Early Protection Activity Study
2.8. Sample Collection and Antibody Detection
2.9. Statistical Analysis
3. Results
3.1. Theoretical Analysis of Glycosylation in Two Surface Proteins of the Influenza A/H1N1pdm09 Virus
3.2. Reproduction of Vaccine Viruses in Chicken Eggs and MDCK Cell Culture
3.3. Reproduction of Vaccine Viruses in the Respiratory Tract of Mice and Immunogenicity
3.4. Protection Against Homologous and Heterologous Influenza Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IAV | Influenza A virus |
LAIV | Live attenuated influenza vaccine |
HA | Hemagglutinin |
NA | Neuraminidase |
MDS | Master donor strain |
EID50 | Fifty percent egg infectious dose |
TCID50 | Fifty percent tissue culture infectious dose |
MOI | Multiplicity of infection |
PBS | Phosphate-buffered saline |
ELISA | Enzyme-linked immunosorbent assay |
IFN | Interferon |
MX1 | Myxovirus resistance protein 1 |
NS | Nonstructural protein |
MDCK | Madin–Darby canine kidney (cell line) |
A549 | Human lung carcinoma (cell line) |
THP-1 | Human acute monocytic leukemia (cell line) |
IL-6 | Interleukin-6 |
TNF | Tumor Necrosis Factor |
MCP-1 | Monocyte Chemoattractant Protein-1 (also known as CCL2) |
References
- Desheva, Y.A.; Leontieva, G.F.; Kramskaya, T.A.; Landgraf, G.O.; Sychev, I.A.; Rekstin, A.R.; Suvorov, A.N. Factors of early protective action of live influenza vaccine combined with recombinant bacterial polypeptides against homologous and heterologous influenza infection. Heliyon 2019, 5, e01154. [Google Scholar] [CrossRef]
- Shannon, I.; White, C.L.; Nayak, J.L. Understanding immunity in children vaccinated with live attenuated influenza vaccine. J. Pediatric Infect. Dis. Soc. 2020, 9, S10–S14. [Google Scholar] [CrossRef] [PubMed]
- Hoft, D.F.; Babusis, E.; Worku, S.; Spencer, C.T.; Lottenbach, K.; Truscott, S.M.; Abate, G.; Sakala, I.G.; Edwards, K.M.; Creech, C.B.; et al. Live and inactivated influenza vaccines induce similar humoral responses, but only live vaccines induce diverse T-cell responses in young children. J. Infect. Dis. 2011, 204, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Boravleva, E.Y.; Lunitsin, A.V.; Kaplun, A.P.; Bykova, N.V.; Krasilnikov, I.V.; Gambaryan, A.S. Immune response and protective efficacy of inactivated and live influenza vaccines against homologous and heterosubtypic challenge. Biochemistry 2020, 85, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Kuang, Y.; Liang, J.; Jones, M.; Swain, S.L. Influenza vaccine–induced CD4 effectors require antigen recognition at an effector checkpoint to generate CD4 lung memory and antibody production. J. Immunol. 2020, 205, 2077–2090. [Google Scholar] [CrossRef]
- Turner, P.J.; Abdulla, A.F.; E Cole, M.; Javan, R.R.; Gould, V.; E O’DRiscoll, M.; Southern, J.; Zambon, M.; Miller, E.; Andrews, N.J.; et al. Differences in nasal immunoglobulin A responses to influenza vaccine strains after live attenuated influenza vaccine (LAIV) immunization in children. Clin. Exp. Immunol. 2020, 199, 109–118. [Google Scholar] [CrossRef]
- Brooks, W.A.; Zaman, K.; Lewis, K.D.; Ortiz, J.R.; Goswami, D.; Feser, J.; Sharmeen, A.T.; Nahar, K.; Rahman, M.; Rahman, M.Z.; et al. Efficacy of a Russian-backbone live attenuated influenza vaccine among young children in Bangladesh: A randomised, double-blind, placebo-controlled trial. Lancet Glob. Health 2016, 4, e946–e954. [Google Scholar] [CrossRef]
- Maassab, H.F. Adaptation and growth characteristics of influenza virus at 25 °C. Nature 1967, 213, 612–614. [Google Scholar] [CrossRef]
- Grohskopf, L.A. Update: ACIP recommendations for the use of quadrivalent live attenuated influenza vaccine (LAIV4)—United States, 2018–2019 influenza season. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 643–645. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, J.Y.; Jang, Y.H.; Seo, S.U.; Chang, J.; Seong, B.L. Non-specific effect of vaccines: Immediate protection against respiratory syncytial virus infection by a live attenuated influenza vaccine. Front. Microbiol. 2018, 9, 83. [Google Scholar] [CrossRef]
- Ochando, J.; Mulder, W.J.M.; Madsen, J.C.; Netea, M.G.; Duivenvoorden, R. Trained immunity—Basic concepts and contributions to immunopathology. Nat. Rev. Nephrol. 2023, 19, 23–37. [Google Scholar] [CrossRef]
- Shakin-Eshleman, S.H.; Spitalnik, S.L.; Kasturi, L. The Amino Acid at the X Position of an Asn-X-Ser Sequon Is an Important Determinant of N-Linked Core-Glycosylation Efficiency. J. Biol. Chem. 1996, 271, 6363–6366. [Google Scholar] [CrossRef] [PubMed]
- Helenius, A.; Aebi, M. Roles of N-Linked Glycans in the Endoplasmic Reticulum. Annu. Rev. Biochem. 2004, 73, 1019–1049. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Mandal, C.; Mandal, C. Unusual Glycosylation of Proteins: Beyond the Universal Sequon and Other Amino Acids. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 3096–3108. [Google Scholar] [CrossRef] [PubMed]
- Tate, M.D.; Job, E.R.; Deng, Y.M.; Gunalan, V.; Maurer-Stroh, S.; Reading, P.C. Playing hide and seek: How glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 2014, 6, 1294–1316. [Google Scholar] [CrossRef]
- Wu, C.Y.; Lin, C.W.; Tsai, T.I.; Lee, C.C.D.; Chuang, H.Y.; Chen, J.B.; Tsai, M.H.; Chen, B.R.; Lo, P.W.; Liu, C.P.; et al. Influenza A surface glycosylation and vaccine design. Proc. Natl. Acad. Sci. USA 2017, 114, 280–285. [Google Scholar] [CrossRef]
- Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 2019, 19, 383–397. [Google Scholar] [CrossRef]
- Rudenko, L.G.; Slepushkin, A.N.; Monto, A.S.; Kendal, A.P.; Grigorieva, E.P.; Burtseva, E.P.; Rekstin, A.R.; Beljaev, A.L.; Bragina, V.E.; Cox, N.; et al. Efficacy of live attenuated and inactivated influenza vaccines in schoolchildren and their unvaccinated contacts in Novgorod, Russia. J. Infect. Dis. 1993, 168, 881–887. [Google Scholar] [CrossRef]
- Rekstin, A.R.; Desheva, J.A.; Kiseleva, I.V.; Isakova-Sivak, I.N. Early protection against influenza by pandemic live attenuated influenza vaccines. Med. Acad. J. 2019, 19, 37–46. [Google Scholar] [CrossRef]
- Desheva, Y.; Leontieva, G.; Kramskaya, T.; Losev, I.; Rekstin, A.; Petkova, N.; Kudar, P.; Suvorov AKudar, P.; Suvorov, A. Live influenza vaccine provides early protection against homologous and heterologous influenza and may prevent post-influenza pneumococcal infections in mice. Microorganisms 2022, 10, 1150. [Google Scholar] [CrossRef]
- Rekstin, A.; Mayorova, I.; Kopylova, N.; Petrachkova, D.; Guzenkov, D.; Sokolovsky, D.; Desheva, Y. Early protective effect of live influenza vaccine against homologous and heterologous influenza infection at different times after immunization. Trends Sci. 2025, 22, 9166. [Google Scholar] [CrossRef]
- Rubino, G.; Bulati, M.; Aiello, A.; Aprile, S.; Gambino, C.M.; Gervasi, F.; Caruso, C.; Accardi, G. Sicilian centenarian offspring are more resistant to immune ageing. Aging Clin. Exp. Res. 2019, 31, 125–133. [Google Scholar] [CrossRef]
- Sladkova, T.; Kostolansky, F. The role of cytokines in the immune response to influenza A virus infection. Acta Virol. 2006, 50, 151–158. [Google Scholar] [PubMed]
- Haller, O.; Staeheli, P.; Schwemmle, M.; Kochs, G. Mx GTPases: Dynamin-Like Antiviral Machines of Innate Immunity. Trends Microbiol. 2015, 23, 154–163. [Google Scholar] [CrossRef]
- Rathnasinghe, R.; Salvatore, M.; Zheng, H.; Jangra, S.; Kehrer, T.; Mena, I.; Schotsaert, M.; Muster, T.; Palese, P.; García-Sastre, A. Interferon mediated prophylactic protection against respiratory viruses conferred by a prototype live attenuated influenza virus vaccine lacking non-structural protein 1. Sci. Rep. 2021, 11, 22164. [Google Scholar] [CrossRef]
- Rekstin, A.; Isakova-Sivak, I.; Petukhova, G.; Korenkov, D.; Losev, I.; Smolonogina, T.; Tretiak, T.; Donina, S.; Shcherbik, S.; Bousse, T.; et al. Immunogenicity and Cross Protection in Mice Afforded by Pandemic H1N1 Live Attenuated Influenza Vaccine Containing Wild-Type Nucleoprotein. Biomed. Res. Int. 2017, 2017, 9359276. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Cheng, Y.; Chen, T.; Li, X.; Tan, M.; Wei, H.; Wang, D. Characterization of influenza viruses—China, 2019−2020. China CDC Wkly. 2020, 2, 856. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Chen, Y.; Chen, B.; Bu, L.; Liu, Y.; Zeng, Z.; Song, W. Antigenic drift of the hemagglutinin from an influenza A(H1N1)pdm09 clinical isolate increases its pathogenicity in vitro. Virol. Sin. 2021, 36, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Mamontov, A.; Losev, I.; Korzhevskii, D.; Guselnikova, V.; Polevshchikov, A.; Desheva, Y. Study of antibody-dependent reactions of mast cells in vitro and in a model of severe influenza infection in mice. Front. Immunol. 2021, 12, 689436. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Swiss Institute of Bioinformatics. ExPASy Translate Tool. Available online: https://web.expasy.org/translate/ (accessed on 30 April 2025).
- Gupta, R.; Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 2002, 7, 310–322. [Google Scholar] [PubMed]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Mak, N.K.; Zhang, Y.H.; Ada, G.L.; Tannock, G.A. Humoral and Cellular Responses of Mice to Infection with a Cold-Adapted Influenza A Virus Variant. Infect. Immun. 1982, 38, 218–225. [Google Scholar] [CrossRef]
- Weber, E.M.; Zidar, J.; Ewaldsson, B.; Askevik, K.; Udén, E.; Svensk, E.; Törnqvist, E. Aggression in Group-Housed Male Mice: A Systematic Review. Animals 2022, 13, 143. [Google Scholar] [CrossRef]
- Hussain, M.; Ferguson-Ugorenko, A.; Macfarlane, R.; Orr, N.; Clarke, S.; Wilkinson, M.J.A.; Horan, L.; Perrie, Y. Mind the Age Gap: Expanding the Age Window for MRNA Vaccine Testing in Mice. Vaccines 2025, 13, 370. [Google Scholar] [CrossRef] [PubMed]
- Al Farroukh, M.; Kiseleva, I.; Bazhenova, E.; Stepanova, E.; Puchkova, L.; Rudenko, L. Understanding the variability of certain biological properties of H1N1pdm09 influenza viruses. Vaccines 2022, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Al Khatib, H.A.; Al Thani, A.A.; Yassine, H.M. Evolution and Dynamics of the Pandemic H1N1 Influenza Hemagglutinin Protein from 2009 to 2017. Arch. Virol. 2018, 163, 3035–3049. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Jang, Y.H.; Kwon, S.B.; Lee, C.M.; Han, G.; Seong, B.L. Glycosylation of hemagglutinin and neuraminidase of influenza A virus as signature for ecological spillover and adaptation among influenza reservoirs. Viruses 2018, 10, 183. [Google Scholar] [CrossRef]
- Job, E.R.; Deng, Y.M.; Barfod, K.K.; Tate, M.D.; Caldwell, N.; Reddiex, S.; Maurer-Stroh, S.; Brooks, A.G.; Reading, P.C. Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses. J. Immunol. 2013, 190, 2169–2177. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Suzuki, Y. Evidence for N-glycan shielding of antigenic sites during evolution of human influenza A virus hemagglutinin. J. Virol. 2012, 86, 3446–3452. [Google Scholar] [CrossRef]
- Thornlow, D.N.; Macintyre, A.N.; Oguin, T.H.; Karlsson, A.B.; Stover, E.L.; Lynch, H.E.; Sempowski, G.D.; Schmidt, A.G. Altering the immunogenicity of hemagglutinin immunogens by hyperglycosylation and disulfide stabilization. Front. Immunol. 2021, 12, 737973. [Google Scholar] [CrossRef]
- Altman, M.O.; Angel, M.; Košík, I.; Trovão, N.S.; Zost, S.J.; Gibbs, J.S.; Hensley, S.E.; Nelson, M.I.; Yewdell, J.W. Hemagglutinin Glycan Clock Guides Human Influenza A Virus Evolution. bioRxiv 2017, 163345. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Swayne, D.E.; Thomas, C.; Rameix-Welti, M.A.; Naffakh, N.; Warnes, C.; Altholtz, M.; Donis, R.; Subbarao, K. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. J. Virol. 2009, 83, 4704–4708. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, D.; Hiono, T.; Arakawa, H.; Kaji, H.; Ohkawara, A.; Ichikawa, T.; Ban, H.; Isoda, N.; Sakoda, Y. Deglycosylation and truncation in the neuraminidase stalk are functionally equivalent in enhancing the pathogenicity of a high pathogenicity avian influenza virus in chickens. J. Virol. 2025, 99, e01478-24. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, J.I.; Lee, I.; Bae, J.Y.; Yoo, K.; Nam, M.; Kim, J.; Park, M.S.; Song, K.-J.; Song, J.-W.; et al. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses. Sci. Rep. 2017, 7, 11348. [Google Scholar] [CrossRef]
- Östbye, H.; Gao, J.; Martinez, M.R.; Wang, H.; de Gier, J.W.; Daniels, R. N-linked glycan sites on the influenza A virus neuraminidase head domain are required for efficient viral incorporation and replication. J. Virol. 2020, 94, e00874-20. [Google Scholar] [CrossRef]
- Desheva, Y.; Sergeeva, M.; Kudar, P.; Rekstin, A.; Romanovskaya-Romanko, E.; Krivitskaya, V.; Kudria, K.; Bazhenova, E.; Stepanova, E.; Krylova, E.; et al. Neuraminidase antibody response to homologous and drifted influenza A viruses after immunization with seasonal influenza vaccines. Vaccines 2024, 12, 1334. [Google Scholar] [CrossRef]
- Mitnaul, L.J.; Matrosovich, M.N.; Castrucci, M.R.; Tuzikov, A.B.; Bovin, N.V.; Kobasa, D.; Kawaoka, Y. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J. Virol. 2000, 74, 6015–6020. [Google Scholar] [CrossRef]
- Muñoz-Moreno, R.; Martínez-Romero, C.; García-Sastre, A. Induction and evasion of type-I interferon responses during influenza A virus infection. Cold Spring Harb. Perspect. Med. 2012, 11, a038414. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef]
- Yan, N.; Chen, Z.J. Intrinsic antiviral immunity. Nat. Immunol. 2012, 13, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.E.; Oh, J.E.; Lee, H.K. Cell-penetrating Mx1 enhances anti-viral resistance against mucosal influenza viral infection. Viruses 2019, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Mänz, B.; Haller, O.; Schwemmle, M.; Kochs, G. The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J. Virol. 2011, 85, 8133–8140. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, A.; Pillai, P.S. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 2014, 14, 315–328. [Google Scholar] [CrossRef]
- Aguilar, C.; Lambertz, R.L.O.; Heise, M.; Eulalio, A.; Schughart, K. The host response to influenza infections in human lung and macrophages cell lines. BMC Genom. Data 2025, 26, 46. [Google Scholar] [CrossRef]
- Lee, S.; Ishitsuka, A.; Noguchi, M.; Hirohama, M.; Fujiyasu, Y.; Petric, P.P.; Kawaguchi, A. Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. Sci. Immunol. 2019, 4, eaau4643. [Google Scholar] [CrossRef]
- Rekstin, A.R.; Kiseleva, I.V.; Klimov, A.I.; Katz, J.M.; Rudenko, L.G. Interferon and other proinflamatory cytokine responses in vitro following infection with wild-type and cold-adapted reassortant influenza viruses. Vaccine 2006, 24, 6581–6584. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Zhang, Y.; Hu, Y.F.; Wahl, L.M.; Cisar, J.O.; Notkins, A.L. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 2007, 1, 51–61. [Google Scholar] [CrossRef]
- Miao, H.; Hollenbaugh, J.A.; Zand, M.S.; Holden-Wiltse, J.; Mosmann, T.R.; Perelson, A.S.; Topham, D.J. Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus. J. Virol. 2010, 84, 6687–6698. [Google Scholar] [CrossRef]
- Baumgarth, N.; Herman, O.C.; Jager, G.C.; Brown, L.E.; Herzenberg, L.A.; Chen, J. B-1 and B-2 cell–derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 2000, 192, 271–280. [Google Scholar] [CrossRef]
Position | Motif | 2013 Strain: Glycosylation | 2019 Strain: Glycosylation | Observed Changes |
---|---|---|---|---|
27 | NNST | – | – | No changes |
28 | NSTD | +++ | +++ | No changes |
40 | NVTV | ++ | ++ | No changes |
104 | NGTC | + | + | No changes |
179 | NQTY | Absent | ++ | New site in 2019 |
293 | NTTC | – | – | No changes |
304 | NTSL | ++ | ++ | No changes |
498 | NGTY | + | + | No changes |
557 | NGSL | ++ | ++ | No changes |
Position | Motif | 2013 Strain: Glycosylation | 2019 Strain: Glycosylation | Observed Changes |
---|---|---|---|---|
42 | NQSQ | + | ++ | Probability enhancement |
50 | NQSV | + | – | Vanishing (2019) |
58 | NNTW | + | + | No changes |
63 | NQTY | ++ | ++ | No changes |
68 | NISN | ++ | + | Minor decrease |
88 | NSSL | ++ | ++ | No changes |
146 | NGTI | ++ | ++ | No changes |
235 | NGSC | ++ | ++ | No changes |
386 | NFSI | – | – | No changes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desheva, Y.; Mayorova, I.; Rekstin, A.; Sokolovsky, D.; Kudar, P.; Kopylova, N.; Guzenkov, D.; Petrachkova, D.; Mamontov, A.; Trullioff, A.; et al. Differences in Glycoproteins and the Potential for Early Protection Using LAIV Based on Drift Variants of the A/H1N1pdm09 Influenza Virus. Vaccines 2025, 13, 966. https://doi.org/10.3390/vaccines13090966
Desheva Y, Mayorova I, Rekstin A, Sokolovsky D, Kudar P, Kopylova N, Guzenkov D, Petrachkova D, Mamontov A, Trullioff A, et al. Differences in Glycoproteins and the Potential for Early Protection Using LAIV Based on Drift Variants of the A/H1N1pdm09 Influenza Virus. Vaccines. 2025; 13(9):966. https://doi.org/10.3390/vaccines13090966
Chicago/Turabian StyleDesheva, Yulia, Irina Mayorova, Andrey Rekstin, Daniil Sokolovsky, Polina Kudar, Nina Kopylova, Danila Guzenkov, Darya Petrachkova, Andrey Mamontov, Andrey Trullioff, and et al. 2025. "Differences in Glycoproteins and the Potential for Early Protection Using LAIV Based on Drift Variants of the A/H1N1pdm09 Influenza Virus" Vaccines 13, no. 9: 966. https://doi.org/10.3390/vaccines13090966
APA StyleDesheva, Y., Mayorova, I., Rekstin, A., Sokolovsky, D., Kudar, P., Kopylova, N., Guzenkov, D., Petrachkova, D., Mamontov, A., Trullioff, A., & Kiseleva, I. (2025). Differences in Glycoproteins and the Potential for Early Protection Using LAIV Based on Drift Variants of the A/H1N1pdm09 Influenza Virus. Vaccines, 13(9), 966. https://doi.org/10.3390/vaccines13090966