Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = H. italicum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1001 KiB  
Article
A Preliminary Evaluation of the Use of Solid Residues from the Distillation of Medicinal and Aromatic Plants as Fertilizers in Mediterranean Soils
by Anastasia-Garyfallia Karagianni, Anastasia Paraschou and Theodora Matsi
Agronomy 2025, 15(8), 1903; https://doi.org/10.3390/agronomy15081903 (registering DOI) - 7 Aug 2025
Abstract
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum [...] Read more.
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum (Roth) G. Don), lavender (Lavandula angustifolia Mill.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) were added in an alkaline and calcareous soil at the rates of 0 (control), 1, 2, 4 and 8%, in three replications (treatments), and the treated soils were analyzed. The results showed that upon application of the residues, soil electrical conductivity (EC), organic C, total N and the C/N ratio significantly increased, especially at the 4 and 8% rates. The same was found for soil available P, K, B, Cu and Mn. The effects of the residues on soil pH, cation exchange capacity (CEC) and available Zn and Fe were rather inconclusive, whereas soil available N significantly decreased, which was somewhat unexpected. From the different application rates tested, it seems that all residues could improve soil fertility (except N?) when they were applied to soil at rates of 2% and above, without exceeding the 8% rate. The reasons for the latter statement are soil EC and available Mn: the doubling of EC upon application of the residues and the excessive increase in soil available Mn in treatments with 8% residues raise concerns of soil salinization and Mn phytotoxicity risks, respectively. This work provides the first step towards the potential agronomic use of solid residues from MAP distillation in alkaline soils. However, for the establishment of such a perspective, further research is needed in respect to the effect of residues on plant growth and soil properties, by means of at least pot experiments. Based on the results of the current study, the undesirable effect of residues on soil available N should be investigated in depth, since N is the most important essential element for plant growth, and possible risks of micronutrient phytotoxicities should also be studied. In addition, application rates between 2 and 4% should be studied extensively in order to recommend optimum application rates of residues to producers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 2432 KiB  
Article
Interspecific Variation in the Antioxidant Potential of Culinary and Medicinal Herbs
by Anna Rusaczonek, Patryk Sankiewicz, Maria Duszyn, Mirosława Górecka, Katarzyna Chwedorzewska and Ewa Muszyńska
Agriculture 2025, 15(15), 1586; https://doi.org/10.3390/agriculture15151586 - 24 Jul 2025
Viewed by 261
Abstract
Herbs are valued for their antioxidant richness and traditional use in cuisine and medicine. This study analysed wild herbs (e.g., Achillea, Lamium) and cultivated spices (Salvia, Artemisia) for their bioactive compounds. It was found that antioxidant profiles varied notably among species, even within [...] Read more.
Herbs are valued for their antioxidant richness and traditional use in cuisine and medicine. This study analysed wild herbs (e.g., Achillea, Lamium) and cultivated spices (Salvia, Artemisia) for their bioactive compounds. It was found that antioxidant profiles varied notably among species, even within the same family. Helichrysum italicum and Salvia officinalis had the highest polyphenol levels, while Achillea millefolium and Ocimum basilicum had the lowest. Total polyphenols did not always correlate with antioxidant activity. For instance, Petroselinum hortense and Salvia rosmarinus showed high antioxidant activity despite low polyphenol levels, whereas Levisticum officinale and Artemisia dracunculus combined both. Mentha spicata, M. x citrata, Origanum vulgare, and S. officinalis were rich in carotenoids, while H. italicum showed high α-carotene but low levels of other carotenoids. Most Lamiaceae accumulated a high amount of chlorophylls and polyphenols. Cultivated herbs like M. spicata, M. x citrata, and S. officinalis exhibited stronger and more diverse properties than wild species. It can be concluded that taxonomy alone does not predict antioxidant potential. The differences observed may be attributed to species-specific metabolic pathways, ecological adaptations, or environmental factors influencing phytochemical expression. These findings highlight the importance of conducting species-level screenings in the search for plant-derived antioxidants with potential therapeutic applications. Full article
Show Figures

Graphical abstract

22 pages, 3650 KiB  
Article
Seasonal Biochemical Variations in Mediterranean Halophytes and Salt-Tolerant Plants: Targeting Sustainable Innovations in Ruminant Health
by Marta Oliveira, Catarina Guerreiro Pereira, Viana Castañeda-Loaiza, Maria João Rodrigues, Nuno R. Neng, Hervé Hoste, Karim Ben Hamed and Luísa Custódio
Appl. Sci. 2025, 15(14), 7625; https://doi.org/10.3390/app15147625 - 8 Jul 2025
Viewed by 482
Abstract
Climate change intensifies water scarcity and soil salinization, threatening agriculture and livestock systems, especially in arid Mediterranean regions. Halophytes and salt-tolerant plants offer sustainable alternatives to support ruminant health and productivity where traditional crops fail, helping mitigate climate impacts. This work evaluated seasonality [...] Read more.
Climate change intensifies water scarcity and soil salinization, threatening agriculture and livestock systems, especially in arid Mediterranean regions. Halophytes and salt-tolerant plants offer sustainable alternatives to support ruminant health and productivity where traditional crops fail, helping mitigate climate impacts. This work evaluated seasonality effects on the biochemical properties, including proximate composition, minerals, antioxidant properties, and the phenolic composition of the aerial organs of halophytes and salt-tolerant species, aiming at their future exploitation in ruminant production as novel nutraceutical or phytotherapeutic products. Target species included four halophytic species according to the eHaloph database (Calystegia soldanella (L.) R. Br. 1810, Medicago marina L. 1753, Plantago coronopus L. 1753, and Limoniastrum monopetalum (L.) Boiss. 1848) and five salt-tolerant plants (Pistacia lentiscus L. 1753, Cladium mariscus (L.) Pohl 1809, Inula crithmoides L. (syn. Limbarda crithmoides Dumort. 1827), Helichrysum italicum subsp. picardii (Boiss. & Reut.) Franco 1984, and Crucianella maritima L. 1753). H. italicum, M. marina, and C. soldanella appear well-suited for nutraceutical applications, while P. lentiscus, L. monopetalum, and C. mariscus hold promise for the development of, for example, phytotherapeutic products. This research underscores the significance of seasonal and species-specific variations in nutrient and phytochemical composition, displaying a range of opportunities for novel, sustainable, and tailored solutions to ruminant production systems in arid environments. Full article
(This article belongs to the Special Issue Recent Advances in Halophytes Plants)
Show Figures

Figure 1

16 pages, 1998 KiB  
Article
Antifungal Action of Edible Coating Comprising Artichoke-Mediated Nanosilver and Chitosan Nanoparticles for Biocontrol of Citrus Blue Mold
by Mousa Abdullah Alghuthaymi
Polymers 2025, 17(12), 1671; https://doi.org/10.3390/polym17121671 - 16 Jun 2025
Viewed by 468
Abstract
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their [...] Read more.
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their nanoconjugates with chitosan nanoparticles (Cht) to eradicate the blue mold fungus (Penicillium italicum) and preserve oranges during storage via nanocomposite-based edible coatings (ECs). The biosynthesis and conjugation of nanomaterials were verified using UV and infrared (FTIR) spectroscopy, electron microscopy (TEM and SEM) analysis, and DLS assessments. Art could effectually biosynthesize/cap AgNPs with a mean size of 10.35 nm, whereas the average size of Cht was 148.67 nm, and the particles of their nanocomposites had average diameters of 203.22 nm. All nanomaterials/composites exhibited potent antifungal action toward P. italicum isolates; the Cht/Art/AgNP nanocomposite was the most effectual, with an inhibition zone of 31.1 mm and a fungicidal concentration of 17.5 mg/mL, significantly exceeding the activity of other compounds and the fungicide Enilconazole (24.8 mm and 25.0 mg/mL, respectively). The microscopic imaging of P. italicum mycelia treated with Cht/Art/AgNP nanocomposites emphasized their action for the complete destruction of mycelia within 24 h. The orange (Citrus sinensis) fruit coatings, with nanomaterial-based ECs, were highly effectual for preventing blue mold development and preserved fruits for >14 days without any infestation signs; when the control infected fruits were fully covered with blue mold, the infestation remarks covered 12.4%, 5.2%, and 0% of the orange coated with Cht Art/AgNPs and Cht/Art/AgNPs. The constructed Cht/Art/AgNP nanocomposites have potential as effectual biomaterials for protecting citrus fruits from fungal deterioration and preserving their quality. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Graphical abstract

14 pages, 596 KiB  
Review
Lords-and-Ladies (Arum) as Food in Eurasia: A Review
by Łukasz Łuczaj and Gizem Emre
Plants 2025, 14(4), 577; https://doi.org/10.3390/plants14040577 - 13 Feb 2025
Cited by 1 | Viewed by 1537
Abstract
(1) Background. Although Arum spp. are toxic in their raw state, they are sometimes used as food within their native ranges. (2) Methods. We review the available literature in order to provide an overview of its use and detoxification procedures worldwide. (3) Results. [...] Read more.
(1) Background. Although Arum spp. are toxic in their raw state, they are sometimes used as food within their native ranges. (2) Methods. We review the available literature in order to provide an overview of its use and detoxification procedures worldwide. (3) Results. The food use of lords-and-ladies was already mentioned by Theophrastus, Dioscorides, Matthioli, Durante, Gerard, and Sirennius. In the references concerning 19th–21st-century use, seven species were identified: A. cyrenaicum, A. discoridis, A. italicum, A. maculatum, A. orientale, A. palaestinum, and A. rupicola. Past or current culinary use of the plant has been recorded in Morocco, Libya, the United Kingdom, the Scilly Islands, Germany, Switzerland, Italy, Romania, Ukraine (including Crimea), Czechia, Slovenia, Croatia, Bosnia-Herzegovina, Albania, Georgia, Türkiye, Syria, Palestine, Lebanon, Israel, Iraq, and Iran. (4) In Europe, rhizomes were used, mainly as a famine food. In SW Asia, the aerial parts remain an important element of local cuisine. Several detoxification procedures are used before consumption, such as prolonged boiling, often involving straining the boiled water and lowering the pH with lemon juice, sumac, citric acid, sorrel leaves, or pomegranate juice. (5) Conclusions. Further studies are needed to assess the safety of Arum use and record traditional local recipes in SW Asia. Full article
(This article belongs to the Special Issue Ethnobotany and Botany in the Euro-Mediterranean Region)
Show Figures

Figure 1

22 pages, 3364 KiB  
Article
Chitosan Coating Loaded with Spearmint Essential Oil Nanoemulsion for Antifungal Protection in Soft Citrus (Citrus reticulata) Fruits
by Lebogang T. C. Maswanganye, Sreejarani Kesavan Pillai and Dharini Sivakumar
Coatings 2025, 15(1), 105; https://doi.org/10.3390/coatings15010105 - 18 Jan 2025
Cited by 2 | Viewed by 1688
Abstract
In this study, chitosan (CH) was loaded with spearmint (S) essential oil nanoemulsion (EO) to provide antifungal properties during the postharvest storage of soft citrus fruits. (S)-EO (2%) nanoemulsion–CH (0.8%) coatings inhibited 100% of Penicillium italicum and Penicillium digitatum radial mycelial growth and [...] Read more.
In this study, chitosan (CH) was loaded with spearmint (S) essential oil nanoemulsion (EO) to provide antifungal properties during the postharvest storage of soft citrus fruits. (S)-EO (2%) nanoemulsion–CH (0.8%) coatings inhibited 100% of Penicillium italicum and Penicillium digitatum radial mycelial growth and spore germination in vitro. The (S)-EO (2%) nanoemulsion–CH coating (0.8%) enhanced the antifungal activity by achieving 100% inhibition of P. digitatum in soft citrus cultivars ‘Nova’ and ‘Tango’ compared to the control in vivo. However, P. italicum decay was reduced to 33% and 18% in ‘Nova’ and ‘Tango’ soft citrus compared to the control. The (S)-EO (2%)-CH nanoemulsion coating system prepared by high shear homogenization showed a particle size of 252.3 nm and zeta potential of +21.6 mV, indicating changes in molecular interactions and structural reorganization between EO and CH. The polydispersity index values indicated a stable system. pH remained acidic, antifungal activity was favored, and the incorporation of the EO nanoemulsion improved the thermal stability of the CH coating. The optical properties showed less transparency and more opacity. Despite cultivar differences affecting host specificity, the study recommends using a 2% (S)EO nanoemulsion–CH (0.8%) coating instead of synthetic chemicals to extend citrus fruit storage life. Full article
(This article belongs to the Special Issue Trends in Sustainable Food Packaging and Coatings)
Show Figures

Figure 1

18 pages, 2961 KiB  
Article
Protective Capacity of Helichrysum italicum Infusion Against Intestinal Barrier Disruption and Translocation of Salmonella Infantis
by Katja Kramberger, Katja Bezek Kranjc, Zala Jenko Pražnikar, Darja Barlič-Maganja and Saša Kenig
Pharmaceuticals 2024, 17(10), 1398; https://doi.org/10.3390/ph17101398 - 19 Oct 2024
Viewed by 2394
Abstract
Background: Helichrysum italicum is a Mediterranean plant with well-known anti-inflammatory activity, but our previous whole transcriptome analysis has found that H. italicum infusion (HII) can also affect cytoskeletal rearrangement and tight junctions. The goal of the present study was to determine if HII [...] Read more.
Background: Helichrysum italicum is a Mediterranean plant with well-known anti-inflammatory activity, but our previous whole transcriptome analysis has found that H. italicum infusion (HII) can also affect cytoskeletal rearrangement and tight junctions. The goal of the present study was to determine if HII improves the intestinal barrier (IB) dysfunction and by what mechanism. Methods: Caco-2 cells on Transwell inserts were used as a model of IB permeability. Heat-killed (HKB) or live Salmonella Infantis bacteria were used to induce IB integrity disruption upon three different testing conditions: pre-, co-, and post-treatment with 0.2 v/v% HII. Transepithelial electrical resistance values were used as an indicator of monolayer integrity before and after all treatments, and RT-PCR was used to assess the expression of tight junction proteins (TJPs) and inflammatory cytokines known to regulate intestinal permeability. Results: We found that all three treatments with HII improved the HKB-induced integrity disruption and decreased the down-regulation of TJP1, OCLN, and CLDN1, with the greatest effect observed in the pre-treated cells. Treatment with HII also decreased the up-regulation of CLDN2, TNF-α, IL-1β, and IL-6. In addition, pre-treatment of Caco-2 cells with HII prevented translocation of S. Infantis but did not prevent adhesion and invasion. Conclusion: This study showed that HII can improve inflammation-disrupted IB function by indirect modulation of mRNA expression of TJPs, especially in a preventive manner. Full article
Show Figures

Figure 1

31 pages, 444 KiB  
Review
Antibacterial and Antifungal Potential of Helichrysum italicum (Roth) G. Don Essential Oil
by Olja Šovljanski, Milica Aćimović, Ana Tomić, Biljana Lončar, Ana Miljković, Ivana Čabarkapa and Lato Pezo
Antibiotics 2024, 13(8), 722; https://doi.org/10.3390/antibiotics13080722 - 1 Aug 2024
Cited by 3 | Viewed by 2522
Abstract
Helichrysum italicum (Roth) G. Don is a typical Mediterranean plant, with limited distribution on the islands of Sardinia, Corsica, and the Iberian Peninsula, as well as the islands of the Adriatic Sea and the Balkan Peninsula. In these regions, H. italicum is mainly [...] Read more.
Helichrysum italicum (Roth) G. Don is a typical Mediterranean plant, with limited distribution on the islands of Sardinia, Corsica, and the Iberian Peninsula, as well as the islands of the Adriatic Sea and the Balkan Peninsula. In these regions, H. italicum is mainly collected from spontaneous nature, while in recent years, there has been a pronounced cultivation trend due to increased demand and market requirements for constant quality of raw materials. Bearing in mind that biological activity is linked with chemical composition, this review aimed to collect data from different scientific databases (Scopus, PubMed, Web of Science, and Google Scholar) on the antimicrobial activity of essential oil and its chemical composition. A total of 20 papers investigating the antibacterial, antibiofilm, and antifungal activities of H. italicum essential oil were found. Furthermore, in these samples, several compounds occurred as dominant: neryl acetate, α-pinene, and γ-curcumene. These compounds are known for their antimicrobial properties, which likely contribute to the essential oil’s efficacy against various microbial strains. Full article
(This article belongs to the Section Antimicrobial Materials and Surfaces)
18 pages, 1017 KiB  
Article
How the Management and Environmental Conditions Affect the Weed Vegetation in Canary Grass (Phalaris canariensis L.) Fields
by Zita Dorner, Endre Béla Kovács, Dóra Iványi and Mihály Zalai
Agronomy 2024, 14(6), 1169; https://doi.org/10.3390/agronomy14061169 - 29 May 2024
Cited by 5 | Viewed by 1233
Abstract
Canary grass (Phalaris canariensis L.) is a versatile crop with global significance; it is primarily cultivated for its small elliptical seeds, which are used as bird feed and for human consumption. This crop is adapted to various climates and soils, so it [...] Read more.
Canary grass (Phalaris canariensis L.) is a versatile crop with global significance; it is primarily cultivated for its small elliptical seeds, which are used as bird feed and for human consumption. This crop is adapted to various climates and soils, so it can be grown successfully in Hungary. However, challenges such as weed control, climate change impacts, and soil factors require strategic management for sustained success in canary grass cultivation. Our study investigated the impact of management and environmental (as seasonal and soil) factors on pre-harvest weed vegetation in canary grass fields in Southeast Hungary between 2017 and 2020. In addition to showing the weed vegetation of the canary grass, the aim of our work was to promote more effective weed management of canary grass by revealing correlations between soil, seasonality, and management variables, influencing weed diversity and coverage. Using the analysis of covariance (ANCOVA) and correlation tests, we tested significant variables, providing insights into the complex interactions affecting weed composition. A redundancy analysis (RDA) further unveiled the relationships between explanatory variables and weed species’ composition. The findings offer valuable information for effective weed management strategies in canary grass cultivation. Our comprehensive study on canary grass fields in Southeast Hungary sheds light on significant factors influencing weed composition and abundance. The average weed coverage was 10.8%, with summer annuals and creeping perennials being the most prevalent life forms. Echinochloa crus-galli, Cirsium arvense, Xanthium italicum, and Setaria viridis were among the dominant species. ANCOVAs revealed the impact of soil, management, and seasonal factors on weed cover, species richness, diversity, and yield levels. Soil properties like texture, pH, and nitrogen content showed varying effects on weed parameters. The vintage effect, tillage systems, and farming practices also played crucial roles. The redundancy analysis highlighted the influence of the year, soil sulfur content, and winter preceding crops on weed composition. In conclusion, the herbaceous vegetation in the studied area is dominated by summer germinating and creeping perennial species. Despite slight differences in average coverage and occurrence, a well-defined set of significant species is evident. Multicollinearity among variables suggests limitations to further increase the number of variables that can be included in the analysis. The ANCOVAs showed that the soil, seasonal, and farming variables significantly influence overall weed vegetation and crop yield, with a lesser impact on species richness and diversity. The reduced RDA model highlights the strong influence of the year on species’ composition, emphasizing the inherent factors during canary grass cultivation that are challenging to modify through farming practices. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

19 pages, 5712 KiB  
Article
Combination of Chromatographic Analysis and Chemometric Methods with Bioactivity Evaluation of the Antibacterial Properties of Helichrysum italicum Essential Oil
by Tijana Zeremski, Olja Šovljanski, Vladimir Vukić, Biljana Lončar, Milica Rat, Nataša Perković Vukčević, Milica Aćimović and Lato Pezo
Antibiotics 2024, 13(6), 499; https://doi.org/10.3390/antibiotics13060499 - 28 May 2024
Cited by 3 | Viewed by 1864
Abstract
Helichrysum italicum (immortelle) essential oil is one of the most popular essential oils worldwide and it has many beneficial properties, including antimicrobial. However, in this plant, the chemical diversity of the essential oil is very pronounced. The aim of this work was to [...] Read more.
Helichrysum italicum (immortelle) essential oil is one of the most popular essential oils worldwide and it has many beneficial properties, including antimicrobial. However, in this plant, the chemical diversity of the essential oil is very pronounced. The aim of this work was to process the GC-MS results of four samples of H. italicum essential oil of Serbian origin by chemometric tools, and evaluate the antimicrobial activity in vitro and in silico. Overall, 47 compounds were identified, the most abundant were γ-curcumene, α-pinene, and ar-curcumene, followed by α-ylangene, neryl acetate, trans-caryophyllene, italicene, α-selinene, limonene, and italidiones. Although the four samples of H. italicum essential oil used in this study were obtained from different producers in Serbia, they belong to the type of essential oil rich in sesquiterpenes (γ-curcumene and ar-curcumene chemotype). In vitro antimicrobial potential showed that five were sensitive among ten strains of tested microorganisms: Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Saccharomyces cerevisiae, and Candida albicans. Therefore, these microorganism models were used further for in silico molecular docking through the mechanism of ATP-ase inhibitory activity. Results showed that among all compounds from H. italicum essential oil, neryl acetate has the highest predicted binding energy. Artificial neural network modeling (ANN) showed that two major compounds γ-curcumene and α-pinene, as well as minor compounds such as trans-β-ocimene, terpinolene, terpinene-4-ol, isoitalicene, italicene, cis-α-bergamotene, trans-α-bergamotene, italidiones, trans-β-farnesene, γ-selinene, β-selinene, α-selinene, and guaiol are responsible for the antimicrobial activity of H. italicum essential oil. The results of this study indicate that H. italicum essential oil samples rich in γ-curcumene, α-pinene, and ar-curcumene cultivated in Serbia (Balkan) have antimicrobial potential both in vitro and in silico. In addition, according to ANN modeling, the proportion of neryl acetate and other compounds detected in these samples has the potential to exhibit antimicrobial activity. Full article
Show Figures

Figure 1

16 pages, 8893 KiB  
Article
SntB Affects Growth to Regulate Infecting Potential in Penicillium italicum
by Chunyan Li, Shuzhen Yang, Meihong Zhang, Yanting Yang, Zhengzheng Li and Litao Peng
J. Fungi 2024, 10(6), 368; https://doi.org/10.3390/jof10060368 - 21 May 2024
Cited by 1 | Viewed by 1933
Abstract
Penicillium italicum, a major postharvest pathogen, causes blue mold rot in citrus fruits through the deployment of various virulence factors. Recent studies highlight the role of the epigenetic reader, SntB, in modulating the pathogenicity of phytopathogenic fungi. Our research revealed that [...] Read more.
Penicillium italicum, a major postharvest pathogen, causes blue mold rot in citrus fruits through the deployment of various virulence factors. Recent studies highlight the role of the epigenetic reader, SntB, in modulating the pathogenicity of phytopathogenic fungi. Our research revealed that the deletion of the SntB gene in P. italicum led to significant phenotypic alterations, including delayed mycelial growth, reduced spore production, and decreased utilization of sucrose. Additionally, the mutant strain exhibited increased sensitivity to pH fluctuations and elevated iron and calcium ion stress, culminating in reduced virulence on Gannan Novel oranges. Ultrastructural analyses disclosed notable disruptions in cell membrane integrity, disorganization within the cellular matrix, and signs of autophagy. Transcriptomic data further indicated a pronounced upregulation of hydrolytic enzymes, oxidoreductases, and transport proteins, suggesting a heightened energy demand. The observed phenomena were consistent with a carbon starvation response potentially triggering apoptotic pathways, including iron-dependent cell death. These findings collectively underscored the pivotal role of SntB in maintaining the pathogenic traits of P. italicum, proposing that targeting PiSntB could offer a new avenue for controlling citrus fungal infections and subsequent fruit decay. Full article
(This article belongs to the Special Issue Control of Postharvest Fungal Diseases)
Show Figures

Figure 1

25 pages, 10099 KiB  
Article
Antifungal Activities of Biogenic Silver Nanoparticles Mediated by Marine Algae: In Vitro and In Vivo Insights of Coating Tomato Fruit to Protect against Penicillium italicum Blue Mold
by Ragaa A. Hamouda, Fatimah Q. Almaghrabi, Ohoud M. Alharbi, Abla D. M. Al-Harbi, Rahaf M. Alsulami and Abrar M. Alhumairi
Mar. Drugs 2024, 22(5), 225; https://doi.org/10.3390/md22050225 - 16 May 2024
Cited by 8 | Viewed by 2699
Abstract
In an attempt to reduce such decay induced by pathogenic causes, several studies investigated the effectiveness of nanoparticles (NPs) that play a vital role in saving food products, especially fruits. Current research delves into biogenic silver nanoparticles (using marine alga Turbinaria turbinata (Tt/Ag-NPs) [...] Read more.
In an attempt to reduce such decay induced by pathogenic causes, several studies investigated the effectiveness of nanoparticles (NPs) that play a vital role in saving food products, especially fruits. Current research delves into biogenic silver nanoparticles (using marine alga Turbinaria turbinata (Tt/Ag-NPs) and their characterization using FT-IR, TEM, EDS, and zeta potential. Some pathogenic fungi, which cause fruit spoilage, were isolated. We studied the impact of using Tt/Ag-NPs to protect against isolated fungi in vitro, and the influence of Tt/Ag-NPs as a coating of tomato fruit to protect against blue mold caused by Penicillium italicum (OR770486) over 17 days of storage time. Five treatments were examined: T1, healthy fruits were used as the positive control; T2, healthy fruits sprayed with Tt/Ag-NPs; T3, fruits infected with P. italicum followed by coating with Tt/Ag-NPs (pre-coating); T4, fruits coated with Tt/Ag-NPs followed by infection by P. italicum (post-coating); and T5, the negative control, fruits infected by P. italicum. The results displayed that Tt/Ag-NPs are crystalline, spherical in shape, with size ranges between 14.5 and 39.85 nm, and negative charges. Different concentrations of Tt/Ag-NPs possessed antifungal activities against Botrytis cinerea, Rhodotorula mucilaginosa, Penicillium expansum, Alternaria alternate, and Stemphylium vesicarium. After two days of tomatoes being infected with P. italicum, 55% of the fruits were spoilage. The tomato fruit coated with Tt/Ag-NPs delayed weight loss, increased titratable acidity (TA%), antioxidant%, and polyphenol contents, and decreased pH and total soluble solids (TSSs). There were no significant results between pre-coating and post-coating except in phenol contents increased in pre-coating. A particular focus is placed on the novel and promising approach of utilizing nanoparticles to combat foodborne pathogens and preserve commodities, with a spotlight on the application of nanoparticles in safeguarding tomatoes from decay. Full article
(This article belongs to the Special Issue Nanoparticle Synthesis with Marine Substances, 2nd Edition)
Show Figures

Figure 1

14 pages, 3138 KiB  
Article
Duration of Steam Distillation Affects Essential Oil Fractions in Immortelle (Helichrysum italicum)
by Marinko Petrović, Vesna Petrović, Zdenko Mlinar, Sandra Babić, Jerko Jukić, Tatjana Prebeg and Dario Kremer
Horticulturae 2024, 10(2), 183; https://doi.org/10.3390/horticulturae10020183 - 17 Feb 2024
Cited by 2 | Viewed by 2023
Abstract
The composition of the essential oil depends on the duration and conditions under which the distillation of the plant material is carried out. In this study, one sample without fractionation and eight fractions (each after 15 min of steam distillation) of the essential [...] Read more.
The composition of the essential oil depends on the duration and conditions under which the distillation of the plant material is carried out. In this study, one sample without fractionation and eight fractions (each after 15 min of steam distillation) of the essential oil of cultivated H. italicum were analysed by gas chromatography-mass spectrometry (GC-MS). The steam conditions for all samples were as follows: flow rate 800 L/h, temperature 104 °C, and pressure 0.4 bar. The test of the antimicrobial activity was performed with the modified Kirby–Bauer method (disc diffusion method) on non-selective nutrient media (blood agar) using the reference bacterial and fungal strains. A total of 75 different components were found in the essential oil samples obtained. A shorter distillation time makes the oil richer in monoterpenes and more suitable for the perfume and cosmetics industry. On the other hand, prolonged distillation leads to the essential oil being enriched with sesquiterpene oxides, which can have a negative effect on the fragrance of the essential oil. The essential oil of H. italicum showed antimicrobial activity only against Staphylococcus aureus ATCC 25923, and the best activity was shown by the sixth fraction. Full article
Show Figures

Figure 1

23 pages, 386 KiB  
Article
Lethal Toxicity of Thymus mastichina and Helichrysum italicum Essential Oils to Non-Target Aquatic Organisms: Tools to Screen Environmental Effects?
by Sandra Afonso, Juliana Nogueira, Carlos Cavaleiro, Fernanda M. L. Ferreira and Matilde Moreira-Santos
Water 2024, 16(1), 137; https://doi.org/10.3390/w16010137 - 29 Dec 2023
Cited by 1 | Viewed by 2963
Abstract
Essential oils (EOs) from Thymus mastichina (EO-thyme) and Helichrysum italicum (EO-curry) have wide commercial applications, but little is known about their ecotoxicity to aquatic life. We evaluated the lethal toxicity of both EOs toward standard freshwater (Daphnia. magna and Thamnocephalus platyurus) and [...] Read more.
Essential oils (EOs) from Thymus mastichina (EO-thyme) and Helichrysum italicum (EO-curry) have wide commercial applications, but little is known about their ecotoxicity to aquatic life. We evaluated the lethal toxicity of both EOs toward standard freshwater (Daphnia. magna and Thamnocephalus platyurus) and saltwater (Artemia sp.) species. Dimethylsulfoxide was used as a solvent after establishing a maximum safe but effective concentration of 1% (v/v). EO-curry was significantly more toxic than EO-thyme (24–48 h LC50 values of 15.93–55.80 and of 84.78–153.0 mg L−1, respectively) for all species; sensitivity ratios ranged from threefold for D. magna (48 h) and Artemia sp. (24 h) to fivefold for T. platyurus (24 h). Artemia sp. was the least sensitive, and T. platyurus was the most sensitive species, although significantly more so than D. magna only to EO-curry. The second major compound in EO-thyme, β-pinene (5%), is more toxic to aquatic life than major compound 1,8-cineole (62%), although 1,8-cineole facilitates penetration of other EO constituents into crustaceans’ epidermis. Among the main compounds of EO-curry, only α-pinene (13%) is known to be toxic to aquatic organisms. However, minor compounds present in both EOs, like p-cymene (0.3–1.1%), also cause synergistic effects by enhancing the penetration of other EO constituents. Before any of these standard tests can be recommended for the ecotoxicity characterization and environmental management of EOs, their sensitivity to a wider range of EOs, at least from closely related families, needs to be assessed. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Graphical abstract

36 pages, 6531 KiB  
Article
HPLC Analysis and In Vitro and In Silico Evaluation of the Biological Activity of Polyphenolic Components Separated with Solvents of Various Polarities from Helichrysum italicum
by Dimitar Bojilov, Stanimir Manolov, Sezan Ahmed, Soleya Dagnon, Iliyan Ivanov, Gabriel Marc, Smaranda Oniga, Ovidiu Oniga, Paraskev Nedialkov and Silviya Mollova
Molecules 2023, 28(17), 6198; https://doi.org/10.3390/molecules28176198 - 23 Aug 2023
Cited by 7 | Viewed by 3096
Abstract
Helichrysum italicum has piqued the interest of many researchers in recent years, mostly for its essential oil, but increasingly for its polyphenolic content as well. In the current study, we examine the polyphenolic composition of H. italicum grown in Bulgaria. The polyphenolic complex [...] Read more.
Helichrysum italicum has piqued the interest of many researchers in recent years, mostly for its essential oil, but increasingly for its polyphenolic content as well. In the current study, we examine the polyphenolic composition of H. italicum grown in Bulgaria. The polyphenolic complex was fractionated with solvents of various polarities, including hexane, chloroform, ethyl acetate, and butanol, in order to assess the biological impact of the components. HPLC-PDA and UHPLC-MS/MS were used to examine all fractions. The green coffee fingerprint profile was employed as a “surrogate standard” in the polyphenolic components detection approach. From the UHPLC-MS/MS analysis, we identified 60 components of the polyphenolic complex such as quercetin 3-O-glucuronide, quercetin acetyl-glycoside, isorhamnetin acetyl-glycoside, isorhamnetin caffeoyl-glycoside, quercetin caffeoyl-malonyl-glycoside, isorhamnetin coumaroyl-glycoside, coumaroyl-caffeoylquinic acid, and diCQA-acetyl-derivative were first reported in the composition of H. italicum. The biological activity of the fractions was evaluated in vitro and in silico, which included the fight against oxidative stress (hydrogen peroxide scavenging activity (HPSA), hydroxyl radical scavenging activity (HRSA), metal-chelating activity (MChA)) and nitrosative (nitric oxide scavenging activity) (NOSA)), in vitro anti-inflammatory, and anti-arthritic activity. Results are presented as IC50 ± SD μg/mL. The analysis showed that the EtOAc fraction was characterized by highest HPSA (57.12 ± 1.14 μg/mL), HRSA (92.23 ± 1.10 μg/mL), MChA (5.60 ± 0.17 μg/mL), and NOSA (89.81 ± 2.09 μg/mL), while the hexane and chloroform fractions showed significantly higher in vitro anti-inflammatory activity (30.48 ± 2.33 μg/mL, 62.50 ± 1.69 μg/mL) compared to the standard ibuprofen. All three fractions showed potential anti-arthritic activity (102.93 ± 8.62 μg/mL, 108.92 ± 4.42 μg/mL, 84.19 ± 3.89 μg/mL). Full article
Show Figures

Graphical abstract

Back to TopTop