HPLC Analysis and In Vitro and In Silico Evaluation of the Biological Activity of Polyphenolic Components Separated with Solvents of Various Polarities from Helichrysum italicum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fractionation of the Polyphenolic Complex with Solvents of Different Polarity—Yield
2.2. Determination of the Content of Total Phenols (TPC), Tannins (TTC) and Flavonoids (TFC)
2.3. Fingerprint Profile of Polyphenols of H. italicum Obtained by HPLC-PDA
Polyphenolic Component Identification Using a Green Coffee “Surrogate Standard”
2.4. Identification of Polyphenolic Components through UHPLC-MS/MS
2.5. Hydrogen Peroxide Scavenging Activity (HPSA)
2.6. Hydroxyl Radical Scavenging Activity (HRSA)
2.7. Metal-Chelating Activity
2.8. Nitric Oxide Scavenging Activity (NOSA)
2.9. Inhibition of Albumin Denaturation (IAD)
2.10. Docking of the Three Ligands (Arzanol and R/S-Bitalin A) Using AutoDock Vina- Molecular Dynamics Study for Validation of the Binding of Compounds to Albumin
2.11. Anti-Tryptic Activity (ATA)
2.12. UV-B Protection
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Fractionation of Polyphenols with Solvents of Different Polarity
3.4. Determination of Total Phenolic Content (TPC)
3.5. Determination of Total Tannin Content (TTC)
3.6. Determination of Total Flavonoid Content (TFC)
3.7. Analysis of Polyphenols by HPLC-PDA
3.8. Identification of Flavonoids by Orbitrap UHPLC-MS/MS
3.9. Methods for Investigation of Biological Activity
3.9.1. Hydrogen Peroxide Scavenging Activity (HPSA)
3.9.2. Hydroxyl radical scavenging activity (HRSA)
3.9.3. Metal-Chelating Activity on (MChA)
3.9.4. Nitric Oxide Scavenging Activity (NOSA)
3.9.5. Inhibition of Albumin Denaturation (IAD)
3.9.6. In Silico Evaluation of the Affinity of Arzanol and Bitalin A to a Human Serum Albumin
3.9.7. Anti-Tryptic Activity (ATA)
3.10. In Vitro UV-B Photoprotection Study
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
HPLC-PDA | High-performance liquid chromatography PDA detector |
UHPLC-MS/MS | Ultra-high-performance liquid chromatography-MS/MS |
CQA | Caffeoylquinic acid |
HPSA | Hydrogen peroxide scavenging activity |
HRSA | Hydroxyl radical scavenging activity |
MChA | Metal-chelating activity |
NOSA | Nitric oxide scavenging activity |
IAD | Inhibition albumin denaturation |
ATA | Antitryptic activity |
TPC | Total phenolic content |
TTC | Total tannin content |
TFC | Total flavonoid content |
QFs | Quercetin flavonoids |
PGH | Phloroglucinol |
ChA | Chlorogenic acid |
TRE | Tremeton |
SPF | Sun protection factor |
DiBA | Dibenzylideneacetone |
CA | Cinnamic acid |
Appendix A
Fractions | Peak № | Compound Name | RT | UHPLC-MS | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
[M-H]− | ∆m, ppm | MS/MS | [M+H]+ | ∆m, ppm | MS/MS | |||||
n-H Fraction | 1 | Arzanol | 21.27 | 401.1607 | 0.25 | 401, 247, 235, 205, 191, 166, 153, 123, 109 | 403.1750 | −0.25 | 403, 347, 249, 237, 193, 181, 175, 167, 163, 155, 139 | [8,35,38,85,86] |
2 | Helipyrone | 21.81 | 319.1193 | 1.87 | 153, 109 | 321.1333 | 0.00 | 321, 167, 155, 139, 57 | [85,86] | |
3 | 3-methyl-arzanol | 22.51 | 415.1767 | 1.20 | 415, 247, 235, 191, 167 | 417.1910 | 0.48 | 417, 361, 249, 237, 193, 181, 175, 169, 163 | [35,85,86] | |
4 | Italipyrone | 22.77 | 399.1455 | 1.55 | 399, 233, 189, 153, 147, 109 | 401.1598 | 0.75 | 401, 359, 247, 235, 229, 167, 155, 139 | [85,86] | |
5 | Methylarzanol-isomer | 23.34 | 415.1767 | 1.20 | 415, 261, 249, 205, 153, 137, 109 | 417.1910 | 0.48 | 417, 361, 263, 251, 207, 195, 189, 177, 167, 155, 139 | [35,86] | |
6 | Heliarzanol | 23.52 | 445.1879 | 2.47 | 291, 279, 210, 195, 168, 153, 125, 109 | 447.2002 | −2.46 | 447, 429, 321, 293, 281, 225, 207, 195, 213, 177, 167, 155, 139 | [8,85,86] | |
7 | Arzanol-derivative | 24.07 | 429.1922 | 0.70 | 429, 247, 235, 191, 166, 137 | 431.2065 | 0.23 | 431, 375, 249, 237, 193, 181, 175, 163 | [8] | |
8 | Arzanol-derivative | 24.97 | 429.1921 | 0.47 | 429, 275, 263, 249, 219, 205, 167, 161, 153 | 431.2066 | 0.23 | 431, 375, 247, 265, 251, 221, 209, 203, 195, 191, 181, 167, 163, 155, 149, 139 | [8] | |
9 | Italipyron-isomer | 25.61 | 399.1465 | 1.50 | 399, 233, 189, 153, 147, 109 | 401.1594 | −0.25 | 401, 247, 235, 229, 217, 193, 167, 155, 147, 139 | [85] | |
10 | Arzanol-isomer | 25.76 | 401.1635 | 7.23 | 247, 235, 179, 163, 153, 137, 109 | 403.1752 | 0.25 | 403, 347, 249, 237, 193, 181, 175, 167, 163, 155 | ||
CHCl3 Fraction | 11 | Caffeic acid | 6.52 | 179.0343 | −3.91 | 179, 164, 135, 117, 108 | 181.0491 | −2.21 | 181, 163, 153, 137, 135, 125 | [11,12,13,14,85] |
12 | Gnaphaliol | 7.56 | - | - | - | 235.0959 | −2.55 | 235, 217, 199, 189, 175, 171, 163, 157, 149, 147, 145, 129, 121 | [5,11] | |
13 | Bitalin A | 11.17 | - | - | - | 219.1014 | −0.91 | 201, 183, 173, 165, 159, 157, 155, 149, 144, 141, 131 | [5,6,11,12] | |
14 | Methoxyluteolin | 11.86 | 315.0512 | 0.63 | 300, 271, 255, 243, 227, 199, 165, 139, 137 | 317.0647 | −2.84 | 317, 302, 274, 245, 228, 187, 168, 125, 121, 107 | [14,19] | |
15 | Italipyrone-isomer | 12.04 | - | - | - | 401.1585 | −2.49 | 401, 247, 235, 187, 167 | [85] | |
16 | Quercetin-3-methyl ether | 12.12 | 315.0518 | 2.54 | 300, 271, 255, 243, 227, 199, 164, 151 | 317.0658 | 0.63 | 317, 302, 299, 274, 228, 153, 137, 121 | [19,85] | |
17 | 3-acetoxy-10-hydroxytremeton | 12.14 | - | - | - | 277.1064 | −2.53 | 219, 217, 201, 199, 175, 157, 147, 133, 129 | [5] | |
18 | 13-(2-methylpropanoyloxy)toxol | 12.75 | - | - | - | 305.1385 | 0.33 | 235, 217, 201, 189, 183, 179, 168, 165, 159, 157, 155, 151, 141, 131, 127, 123 | [5] | |
19 | Luteolin | 12.85 | 285.0405 | 0.00 | 151, 133, 107 | - | − | - | [20,85] | |
20 | Naringenin | 271.0613 | 0.37 | 271, 253, 215, 151, 137, 125, 107 | - | − | - | [14,20,85] | ||
21 | Herbacetin-3-methyl ether | 13.09 | 315.0514 | 1.27 | 300, 271, 255, 243, 227, 164, 163, 151, 124, 107 | 317.0648 | −2.52 | 317, 302, 285, 274, 245, 229, 217, 181, 165, 153, 121, 137 | [19,85] | |
22 | 3-hydroxy-10-propionyloxytremeton | 13.43 | - | - | - | 291.1223 | −1.37 | 291, 273, 235, 223, 217, 205, 189, 179, 167, 155, 151, 139, 137, 123, 113 | [5] | |
23 | Kaempferol-3-methyl ether | 13.95 | 299.0562 | 0.33 | 299, 284, 255, 239, 227, 211, 199, 183, 139 | 301.0707 | 0.00 | 301, 286, 285, 257, 240, 212, 187, 171, 107 | [19,85] | |
24 | Pinocembrin | 16.76 | 255.0662 | −0.39 | 227, 213, 185, 171, 151, 145, 107 | 257.0801 | −2.72 | 257, 153, 131, 123, 107, 103 | [6,19,85] | |
25 | Galangin | 17.00 | 269.0456 | 0.37 | 271.0601 | 0.00 | 253, 242, 215, 197, 165, 153, 141, 131 | [19,85] | ||
26 | Galangin-3-methyl ether | 17.73 | 283.0613 | 0.35 | 268, 239, 211, 195, 167 | 285.0759 | 0.70 | 271, 269, 242, 213, 137 | [19,85] | |
EtOAc Fraction | 27 | Neochlorogenic acid | 2.18 | 353.0886 | 2.27 | 191, 179, 161, 135 | - | − | - | [13,85] |
28 | Chlorogenic acid | 3.71 | 353.0880 | 0.57 | 191, 173, 161 | 355.1021 | −0.84 | 163, 154, 135, 117 | [11,12,14,85] | |
29 | Criptochlorogenic acid | 4.20 | 353.0885 | 1.98 | 191, 179, 173, 135 | 355.1021 | −0.84 | 355, 285, 268, 163, 145, 135, 117 | [13,85] | |
30 | 5-O-Feruloylquinic acid | 6.25 | 367.1041 | 1.63 | 367, 191, 179, 161, 135 | 369.1182 | 0.54 | 163, 145, 135, 117 | [85,86] | |
31 | Myricetin-glycoside | 6.76 | 479.0837 | 1.25 | 479, 317, 165, 139 | 481.0970 | −1.46 | 481, 319, 169, 137 | [14,85] | |
32 | Feruloylquinic acid-isomer | 7.25 | 367.1041 | 1.63 | 367, 191, 179, 161, 135 | 369.1182 | 0.54 | 163, 145, 135, 117 | [85] | |
33 | Quercetin-3-O-glucuronide | 7.94 | 477.0686 | 2.31 | 477, 301, 273, 255, 227, 211, 179, 151, 121, 107 | 479.0521 | 0.21 | 479, 303, 285, 257, 229, 201, 165, 153, 137, 109 | ||
34 | Quercetin-glycoside | 8.15 | 463.0889 | 1.51 | 463, 300, 271, 255, 243, 227, 179, 151, 107 | 465.1023 | −1.08 | 465, 303, 285, 229, 153, 137 | [11,85] | |
35 | 3.4-diCaffeoylquinic acid | 9.59 | 515.1196 | 0.19 | 515, 353, 335, 191, 179, 173, 161, 135 | 517.1337 | −0.77 | 163, 145, 135, 117 | [11,85] | |
36 | 3.5-diCaffeoylquinic acid | 9.81 | 515.1195 | 0 | 353, 191, 179, 161, 135 | 517.1334 | −1.35 | 499, 163, 145, 135, 117 | [11,85] | |
37 | 1.5-diCaffeoylquinic acid | 10.06 | 515.1199 | 0.78 | 353, 335, 191, 179, 173, 161, 135 | 517.1339 | −0.39 | 499, 163, 145, 135, 117 | [13,85] | |
38 | Isorhamnetin-glycoside | 10.16 | 477.1044 | 1.26 | 477, 315, 314, 299, 285, 271, 257, 243, 227, 199, 179, 151 | 479.1181 | −2.71 | 479, 317, 302, 274, 229, 181, 153, 121, 109 | [11,85,86] | |
39 | 4.5-diCaffeoylquinic acid | 10.49 | 515.1197 | 0.39 | 515, 353, 191, 179, 173, 161, 135, 93 | 517.1335 | −1.16 | 499, 163, 145, 135, 117 | [11,12,85] | |
40 | Quercetin-glycoside | 10.72 | 463.0890 | 1.73 | 463, 301, 273, 257, 229 | 465.1026 | −0.43 | 465, 303, 285. 257, 229, 153, 137, 127, 121 | [11,85] | |
41 | 3-Feruloyl-5-caffeoylquinic acid | 11.08 | 529.1362 | 2.08 | 529, 367, 193, 173, 161, 134, 117, 93 | - | - | - | [85] | |
42 | Quercetin-acetylglycoside | 11.25 | 505.1003 | 2.97 | 505, 301, 285, 273, 179, 151, 137, 121, 107 | - | - | - | ||
43 | Isorhamnetin-acetylglycoside | 11.29 | 519.1152 | 1.54 | 314, 299, 285, 271, 271, 257, 243, 227 | - | - | - | ||
44 | 3-Feruloyl-5-caffeoylquinic acid isomer | 11.27 | 529.1362 | 2.08 | 367, 193, 191, 179, 173, 161, 135, 93 | - | - | - | [85] | |
45 | Coumaroyl-Caffeoylquinic acid | 11.28 | 499.1265 | 3.81 | 499, 353, 191, 179, 173, 161, 135 | - | - | - | ||
46 | Quercetin coumaroyl-glycoside | 11.35 | 609.1271 | 3.45 | 609, 463, 300, 271, 255, 243, 227, 179, 151, 107 | 611.1393 | −0.33 | 449. 303, 165, 147, 119 | [85,86] | |
47 | 4-Feruloyl-5-caffeoylquinic acid | 11.47 | 529.1364 | 2.64 | 529, 367, 353, 349, 193, 191, 179, 173, 161, 135, 133, 117 | - | - | - | [85] | |
48 | Isorhamnetin-caffeoylglycoside | 11.49 | 639.1373 | 2.82 | 639, 477, 315, 300, 271, 255, 243, 227, 151, 135, 107 | - | - | - | ||
49 | Quercetin-coumaroyl-glycoside-isomer | 11.55 | 609.1270 | 3.28 | 609, 463, 300, 271, 255, 243, 227, 179, 151, 107 | 611.1398 | 0.49 | 611, 303, 147, 163 | [85,86] | |
50 | Quercetin | 11.75 | 301.0357 | 1.00 | 301, 179, 151, 121, 107 | 303.0490 | −2.97 | 303, 285, 257, 229, 201, 153, 137, 121, | [85] | |
51 | Quercetin-caffeoyl-malonylglycoside | 11.77 | 711.1224 | 2.95 | 667, 505, 487, 365, 300, 271, 255, 243, 227, 179, 151, 107 | 713.1341 | −0.95 | 713, 411, 303 | ||
52 | Tiliroside | 11.90 | 593.1314 | 2.19 | 593, 447, 385, 285, 255, 227, 211, 151, 132, 117 | - | - | - | [6,11,85,86] | |
53 | Isorhamnetin-coumaroyl-glycoside | 12.05 | 623.1420 | 2.25 | 623, 508, 315, 299, 271, 243, 182, 145, 135, 133 | - | - | - | ||
54 | diCQA-derivative (acyl) | 12.55 | 681.1848 | 639, 515, 353, 191, 179, 173, 161, 135, 93 | - | - | - | |||
55 | Coumaroylquinic acid | 20.05 | 337.0937 | 2.37 | 337, 277, 163, 119 | - | - | - | [85] | |
BuOH Fraction | 56 | Hydroxyphtalid-glycoside | 2.02 | 327.0725 | 0.92 | 327, 207, 165, 121 | - | - | - | [85] |
57 | Caffeic acid-glycoside 1 | 3.65 | 341.0885 | 2.05 | 341, 179, 135 | - | - | - | [85] | |
58 | Caffeic acid-glycoside 2 | 4.03 | 387.0937 | 1.29 | 179, 151, 135 | - | - | - | [85] | |
59 | Caffeoylquinic acid-isomer | 5.34 | 353.0885 | 1.98 | 191, 173, 161 | - | - | - | [85] | |
60 | Quercetin diglycoside | 6.63 | 625.1432 | 3.52 | 463, 301, 271, 255, 243, 179, 151, 107 | - | - | - | [85] |
References
- Antunes Viegas, D.; Palmeira-De-Oliveira, A.; Salgueiro, L.; Martinez-De-Oliveira, J.; Palmeira-De-Oliveira, R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol. 2014, 151, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Maksimovic, S.; Tadic, V.; Skala, D.; Zizovic, I. Separation of phytochemicals from Helichrysum italicum: An analysis of different isolation techniques and biological activity of prepared extracts. Phytochemistry 2017, 138, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Rigano, D.; Formisano, C.; Senatore, F.; Piacente, S.; Pagano, E.; Capasso, R.; Borrelli, F.; Izzo, A.A. Intestinal antispasmodic effects of Helichrysum italicum (Roth) Don ssp. italicum and chemical identification of the active ingredients. J. Ethnopharmacol. 2013, 150, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Recio, M.d.C.; Giner, R.M.; Máñez, S.; Tournier, H.; Schinella, G.; Ríos, J.-L. Anti-inflammatory and antioxidant properties of Helichrysum italicum. J. Pharm. Pharmacol. 2002, 54, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Rigano, D.; Formisano, C.; Pagano, E.; Senatore, F.; Piacente, S.; Masullo, M.; Capasso, R.; Izzo, A.A.; Borrelli, F. A new acetophenone derivative from flowers of Helichrysum italicum (Roth) Don ssp. italicum. Fitoterapia 2014, 99, 198–203. [Google Scholar] [CrossRef]
- Sala, A.; Del Carmen Recio, M.; Giner, R.M.; Máñez, S.; Ríos, J.-L. New acetophenone glucosides isolated from extracts of Helichrysum italicum with antiinflammatory activity. J. Nat. Prod. 2001, 64, 1360–1362. [Google Scholar] [CrossRef]
- Sala, A.; Recio, M.C.; Schinella, G.R.; Máñez, S.; Giner, R.M.; Ríos, J.-L. A new dual inhibitor of arachidonate metabolism isolated from Helichrysum italicum. Eur. J. Pharmacol. 2003, 460, 219–226. [Google Scholar] [CrossRef]
- Taglialatela-Scafati, O.; Pollastro, F.; Chianese, G.; Minassi, A.; Gibbons, S.; Arunotayanun, W.; Mabebie, B.; Ballero, M.; Appendino, G. Antimicrobial phenolics and unusual glycerides from Helichrysum italicum subsp. microphyllum. J. Nat. Prod. 2013, 76, 346–353. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.; Iniesta-Sanmartín, E.; Tomás-Lorente, F.; Rumbero, A. Antimicrobial phenolic compounds from three Spanish Helichrysum species. Phytochemistry 1990, 29, 1093–1095. [Google Scholar] [CrossRef]
- Garcia De Quesada, T.; Rodriguez, B.; Valverde, S. The constituents of Helichrysum stoechas. Phytochemistry 1972, 11, 446–449. [Google Scholar] [CrossRef]
- Mari, A.; Napolitano, A.; Masullo, M.; Pizza, C.; Piacente, S. Identification and quantitative determination of the polar constituents in Helichrysum italicum flowers and derived food supplements. J. Pharm. Biomed. Anal. 2014, 96, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Zapesochnaya, G.G.; Dzyadevich, T.V.; Karasartov, B.S. Phenolic compounds of Helichrysum italicum. Chem. Nat. Compd. 1990, 26, 342–343. [Google Scholar] [CrossRef]
- Zapesochnaya, G.G.; Kurkin, V.A.; Kudryavtseva, T.V.; Karasartov, B.S.; Cholponbaev, K.S.; Tyukavkina, N.A.; Ruchkin, V.E. Dicaffeolyquinic acids from Helichrysum italicum and Achillea cartilaginea. Chem. Nat. Compd. 1992, 28, 40–44. [Google Scholar] [CrossRef]
- De La Garza, A.L.; Etxeberria, U.; Lostao, M.P.; San Román, B.; Barrenetxe, J.; Alfredo Martínez, J.; Milagro, F.I. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats. J. Agric. Food Chem. 2013, 61, 12012–12019. [Google Scholar] [CrossRef]
- Weglarz, Z.; Kosakowska, O.; Pióro-Jabrucka, E.; Przybył, J.L.; Gniewosz, M.; Krasniewska, K.; Szyndel, M.S.; Costa, R.; Baczek, K.B. Antioxidant and Antibacterial Activity of Helichrysum italicum (Roth) G. Don. from Central Europe. Pharmaceuticals 2022, 15, 735. [Google Scholar] [CrossRef]
- Pietta, P.; Mauri, P.; Gardana, C.; Facino, R.M.; Carini, M. High-performance liquid chromatographic determination of flavonoid glucosides from Helichrysum italicum. J. Chromatogr. A 1991, 537, 449–452. [Google Scholar] [CrossRef]
- Pietta, P.; Mauri, P.; Facino, R.M.; Carini, M. Analysis of flavonoids by MECC with ultraviolet diode array detection. J. Pharm. Biomed. Anal. 1992, 10, 1041–1045. [Google Scholar] [CrossRef]
- Facino, R.M.; Carini, M.; Franzoi, L.; Pirola, O.; Bosisio, E. Phytochemical characterization and radical scavenger activity of flavonoids from Helichrysum italicum G. Don (Compositae). Pharmacol. Res. 1990, 22, 709–721. [Google Scholar] [CrossRef]
- Wollenweber, E.; Christ, M.; Dunstan, R.H.; Roitman, J.N.; Stevens, J.F. Exudate flavonoids in some Gnaphalieae and Inuleae (Asteraceae). Z. Naturforsch.-Sect. C J. Biosci. 2005, 60, 671–678. [Google Scholar] [CrossRef]
- Facino, R.M.; Carini, M.; Mariani, M.; Cipriani, C. Anti-erythematous and photoprotective activities in guinea pigs and in man of topically applied flavonoids from Helichrysum italicum G. Don. Acta Ther. 1988, 14, 323–346. [Google Scholar]
- Ninčević, T.; Grdiša, M.; Šatović, Z.; Jug-Dujaković, M. Helichrysum italicum (Roth) G. Don: Taxonomy, biological activity, biochemical and genetic diversity. Ind. Crops Prod. 2019, 138, 111487. [Google Scholar] [CrossRef]
- Nostro, A.; Bisignano, G.; Cannatelli, M.A.; Crisafi, G.; Germano, M.P.; Alonzo, V. Effects of Helichrysum italicum extract on growth and enzymatic activity of Staphylococcus aureus. Int. J. Antimicrob. Agents 2021, 17, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Germano, M.P.; D’Angelo, V.; Marino, A.; Cannatelli, M.A. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett. Appl. Microbiol. 2000, 30, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Coșar, G.; Çubukçu, B. Antibacterial activity of Helichrysum species growing in Turkey. Fitoterapia 1990, LXI, 161–164. [Google Scholar]
- Nostro, A.; Cannatelli, M.A.; Crisafi, G.; Musolino, A.D.; Procopio, F.; Alonzo, V. Modifications of hydrophobicity, in vitro adherence and cellular aggregation of Streptococcus mutans by Helichrysum italicum extract. Lett. Appl. Microbiol. 2004, 38, 423–427. [Google Scholar] [CrossRef]
- Giacaman, R.A.; Araneda, E.; Padilla, C. Association between biofilm-forming isolates of mutans streptococci and caries experience in adults. Arch. Oral Biol. 2010, 55, 550–554. [Google Scholar] [CrossRef]
- Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant polyphenols and their anti-cariogenic properties: A review. Molecules 2011, 16, 1486–1507. [Google Scholar] [CrossRef]
- Tundis, R.; Statti, G.A.; Conforti, F.; Bianchi, A.; Agrimonti, C.; Sacchetti, G.; Muzzoli, M.; Ballero, M.; Menichini, F.; Poli, F. Influence of environmental factors on composition of volatile constituents and biological activity of Helichrysum italicum (Roth) Don (Asteraceae). Nat. Prod. Res. 2005, 19, 379–387. [Google Scholar] [CrossRef]
- Mekinić, I.G.; Skroza, D.; Ljubenkov, I.; Krstulović, L.; Možina, S.S.; Katalinić, V. Phenolic acids profile, antioxidant and antibacterial activity of chamomile, common yarrow and immortelle (Asteraceae). Nat. Prod. Commun. 2014, 9, 1745–1748. [Google Scholar] [CrossRef]
- Djihane, B.; Wafa, N.; Elkhamssa, S.; Pedro, D.H.J.; Maria, A.E.; Mihoub, Z.M. Chemical constituents of Helichrysum italicum (Roth) G. Don. essential oil and their antimicrobial activity against gram-positive and gram-negative bacteria, filamentous fungi and Candida albicans. Saudi Pharm. J. 2017, 25, 780–787. [Google Scholar] [CrossRef]
- D’Abrosca, B.; Buommino, E.; Caputo, P.; Scognamiglio, M.; Chambery, A.; Donnarumma, G.; Fiorentino, A. Phytochemical study of Helichrysum italicum (Roth) G. Don.: Spectroscopic elucidation of unusual amino-phlorogucinols and antimicrobial assessment of secondary metabolites from medium-polar extract. Phytochemistry 2016, 132, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Cannatelli, M.A.; Marino, A.; Picerno, I.; Pizzimenti, F.C.; Scoglio, M.E.; Spataro, P. Evaluation of antiherpesvirus-1 and genotoxic activities of Helichrysum italicum extract. Microbiologica 2003, 26, 125–128. [Google Scholar] [PubMed]
- Wleklik, M.; Luczak, M.; Panasiak, W.; Kobus, M.; Lammerzarawska, E. Structura basis for antiviral activity of flavonoids—Naturally-occurring compounds. Acta Virol. 1988, 32, 522–525. [Google Scholar] [PubMed]
- Rosa, A.; Pollastro, F.; Atzeri, A.; Appendino, G.; Melis, M.P.; Deiana, M.; Incani, A.; Loru, D.; Dessi, A. Protective role of arzanol against lipid peroxidation in biological systems. Chem. Phys. Lipids 2011, 164, 24–32. [Google Scholar] [CrossRef]
- Rosa, A.; Deiana, M.; Atzeri, A.; Corona, G.; Incani, A.; Melis, M.P.; Appendino, G.; Dessi, M.A. Evaluation of the antioxidant and cytotoxic activity of arzanol, a prenylated alpha-pyrone-phloroglucinol etherodimer from Helichrysum italicum subsp. microphyllum. Chem.-Biol. Interact. 2007, 165, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Poli, F.; Muzzoli, M.; Sacchetti, G.; Tassinato, G.; Lazzarin, R.; Bruni, A. Antioxidant activity of supercritical CO2 extracts of Helichrysum italicum. Pharm. Biol. 2003, 41, 379–383. [Google Scholar] [CrossRef]
- Molnar, M.; Jerković, I.; Suknović, D.; Bilić Rajs, B.; Aladić, K.; Šubarić, D.; Jokić, S. Screening of six medicinal plant extracts obtained by two conventional methods and supercritical CO2 extraction targeted on coumarin content, 2,2-Diphenyl-1-picrylhydrazyl radical scavenging capacity and total phenols content. Molecules 2017, 22, 348. [Google Scholar] [CrossRef]
- Bauer, J.; Koeberle, A.; Dehm, F.; Pollastro, F.; Appendino, G.; Northoff, H.; Rossi, A.; Sautebin, L.; Werz, O. Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis and exhibits anti-inflammatory efficacy in vivo. Biochem. Pharmacol. 2011, 81, 259–268. [Google Scholar] [CrossRef]
- Bojilov, D.; Manolov, S.; Ivanov, I.; Mollova, S. Investigation of Antioxidant Activity of Different Extracts of Helichrysum Italicum from Bulgaria. Mater. Methods Technol. 2019, 13, 241–249. Available online: https://www.scientific-publications.net/en/article/1001898/ (accessed on 15 June 2023).
- Gonçalves, S.; Moreira, E.; Grosso, C.; Andrade, P.B.; Valentão, P.; Romano, A. Phenolic profile, antioxidant activity and enzyme inhibitory activities of extracts from aromatic plants used in Mediterranean diet. J. Food Sci. Technol. 2017, 54, 219–227. [Google Scholar] [CrossRef]
- Bojilov, D.; Manolov, S.; Nacheva, A.; Dagnon, S.; Ivanov, I. Characterization of polyphenols from Chenopodium botrys after fractionation with different solvents and study of their in vitro biological activity. Molecules 2023, 28, 4816. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Ong, P.S.; Liu, X. High Performance Liquid Chromatography Fingerprinting Technology of the Commonly Used Traditional Chinese Medicinal Herbs; Chemical Industry Press; World Scientific: London, UK, 2012; ISBN-13 978-9814291095. [Google Scholar]
- Clifford, M.N.; Shutler, S.; Thomas, G.A.; Ohiokpehai, O. The chlorogenic acids content of coffee substitutes. Food Chem. 1987, 24, 99–107. [Google Scholar] [CrossRef]
- Winterbourn, C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Galano, A.; Macías-Ruvalcaba, N.A.; Campos, O.N.M.; Pedraza-Chaverri, J. Mechanism of the OH radical scavenging activity of nordihydroguaiaretic acid: A combined theoretical and experimental study. J. Phys. Chem. B 2010, 114, 6625–6635. [Google Scholar] [CrossRef] [PubMed]
- Chalana, A.; Kumar Rai, R.; Karri, R.; Kumar Jha, K.; Kumar, B.; Roy, G. Interplay of the intermolecular and intramolecular interactions in stabilizing the thione-based copper(I) complexes and their significance in protecting the biomolecules against metal-mediated oxidative damage. Polyhedron 2022, 215, 115647. [Google Scholar] [CrossRef]
- Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Aldini, G.; Carini, M.; Colombo, R.; Rossi, R.; Milzani, A. Protein carbonylation, cellular dysfunction, and disease progression. J. Cell. Mol. Med. 2006, 10, 389–406. [Google Scholar] [CrossRef]
- Sirin, S.; Duyar, H.; Aslım, B.; Seferoğlu, Z. Synthesis and biological activity of pyrrolidine/piperidine substituted 3-amido-9-ethylcarbazole derivatives. J. Mol. Struct. 2021, 1242, 130687. [Google Scholar] [CrossRef]
- Jagetia, G.; Baliga, M. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: A preliminary study. J. Med. Food 2004, 7, 343–348. [Google Scholar] [CrossRef]
- Lala, P. Significance of nitric oxide in carcinogenesis, tumor progression and cancer therapy. Cancer Metastasis Rev. 1998, 17, 1–6. [Google Scholar] [CrossRef]
- Vane, J.R.; Botting, R.M. New insights into the mode of action of anti-inflammatory drugs. Inflamm. Res. 1995, 44, 1–10. [Google Scholar] [CrossRef]
- Jayashree, V.; Bagyalakshmi, S.; Manjula Devi, K.; Richard Daniel, D. In vitro anti-inflamatory activity of 4-benzylpiperidine. Asian J. Pharm. Clin. Res. 2016, 9, 108–110. [Google Scholar] [CrossRef]
- Mondal, M.; Lakshmi, P.; Krishna, R.; Sakthivel, N. Molecular interaction between human serum albumin (HSA) and phloroglucinol derivative that shows selective anti-proliferative potential. J. Lumin. 2017, 192, 990–998. [Google Scholar] [CrossRef]
- Oyedapo, O.O.; Famurewa, A.J. Antiprotease and membrane stabilizing activities of extracts of fagara zanthoxyloides, olax subscorpioides and tetrapleura tetraptera. Int. J. Pharmacogn. 1995, 33, 65–69. [Google Scholar] [CrossRef]
- Wilson, B.D.; Moon, S.; Armstrong, F. Comprehensive Review of Ulyraviolet Radiation and the Current Status on Sunscreens. J. Clin. Aesthet. Dermatol. 2012, 5, 18–23. Available online: http://www.bioscience.org/1997/v2/d/soehnge/3.html (accessed on 30 July 2023).
- Bojilov, D.; Dagnon, S.; Ivanov, I. New insight into the flavonoid composition of Chenopodium botrys. Phytochem. Lett. 2017, 20, 316–321. [Google Scholar] [CrossRef]
- Singleton, V.; Orthofer, R.; Lamuela-Ravent, R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Bojilov, D.; Manolov, S.; Bazadzhiev, B.; Stremski, J.; Ivanov, I. Antioxidant Activity in Two Species Common Beans (Phaseolus vulgaris L.) from Village of Smilyan, Bulgaria. J. Int. Sci. Publ. Agric. Food 2018, 6, 314–324. Available online: https://www.scientific-publications.net/en/article/1001751/ (accessed on 15 July 2023).
- Haile, M.; Kang, W. Antioxidant activity, total polyphenol, flavonoid and tannin contents of fermented green coffee beans with selected yeasts. Fermentation 2019, 5, 29. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Clifford, M.N. Technical Report: Some Notes on the Chlorogenic Acids. Part 4. Botanical Distribution of the Chlorogenic Acids. Available online: https://www.researchgate.net/publication/312591202_Some_Notes_on_the_Chlorogenic_Acids_Part_4_Botanical_Distribution_of_the_Chlorogenic_acids_Version_1_January_2017 (accessed on 23 July 2023).
- Manolov, S.; Ivanov, I.; Bojilov, D. Synthesis of new 1,2,3,4-tetrahydroquinoline hybrid of ibuprofen and its biological evaluation. Molbank 2022, 2022, M1350. [Google Scholar] [CrossRef]
- Guo, T.; Wei, L.; Sun, J.; Hou, C.; Fan, L. Antioxidant activities of extract and fractions from Tuber indicum Cooke & Massee. Food Chem. 2011, 127, 1634–1640. [Google Scholar] [CrossRef]
- Marcocci, L.; Maguire, J.J.; Droylefaix, M.T.; Packer, L. The nitric oxide-scavenging properties of Ginkgo Biloba extract EGb 761. Biochem. Biophys. Res. Commun. 1994, 201, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Manolov, S.; Ivanov, I.; Bojilov, D. Microwave-assisted synthesis of 1,2,3,4-tetrahydroisoquinoline sulfonamide derivatives and their biological evaluation. J. Serb. Chem. Soc. 2021, 86, 139–151. [Google Scholar] [CrossRef]
- Manolov, S.; Bojilov, D.; Ivanov, I.; Marc, G.; Bataklieva, N.; Oniga, S.; Oniga, O.; Nedialkov, P. Synthesis, molecular docking, molecular dynamics studies, and in vitro biological evaluation of new biofunctional ketoprofen derivatives with different N-containing heterocycles. Processes 2023, 11, 1837. [Google Scholar] [CrossRef]
- Crişan, O.; Marc, G.; Nastasă, C.; Oniga, S.; Vlase, L.; Pĵrnău, A.; Oniga, O. Synthesis and In Silico Approaches of New Symmetric Bis-thiazolidine-2,4-diones as Ras and Raf Oncoproteins Inhibitors. Farmacia 2023, 71, 254–263. Available online: https://farmaciajournal.com/wp-content/uploads/art-04-Crisan_Marc_Oniga_254-263.pdf (accessed on 21 June 2023). [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Borlan, R.; Stoia, D.; Gaina, L.; Campu, A.; Marc, G.; Perde-Schrepler, M.; Silion, M.; Maniu, D.; Focsan, M.; Astilean, S. Fluorescent phthalocyanine-encapsulated bovine serum albumin nanoparticles: Their deployment as therapeutic agents in the NIR region. Molecules 2021, 26, 4679. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [PubMed]
- Stoica, C.I.; Marc, G.; Pîrnău, A.; Vlase, L.; Araniciu, C.; Oniga, S.; Palage, M.; Oniga, O. Thiazolyl-oxadiazole derivatives targeting lanosterol 14α-demethylase as potential antifungal agents: Design, synthesis and molecular docking studies. Farmacia 2016, 64, 390–397. [Google Scholar]
- Yang, F.; Zhang, Y.; Liang, H. Interactive association of drugs binding to human serum albumin. Int. J. Mol. Sci. 2014, 15, 3580–3595. [Google Scholar] [CrossRef] [PubMed]
- Zsila, F. Subdomain IB Is the third major drug binding region of human serum albumin: Toward the three-sites model. Mol. Pharm. 2013, 10, 1668–1682. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2009, 34, 671–690. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, H.S.; Niu, X.D. Molecular dynamics simulations reveal insight into key structural elements of aaptamines as sortase inhibitors with free energy calculations. Chem. Phys. Lett. 2013, 585, 171–177. [Google Scholar] [CrossRef]
- Jin, H.; Zhou, Z.; Wang, D.; Guan, S.; Han, W. Molecular dynamics simulations of acylpeptide hydrolase bound to chlorpyrifosmethyl oxon and dichlorvos. Int. J. Mol. Sci. 2015, 16, 6217–6234. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Mansur, J.S.; Breder, M.N.R.; Mansur, M.C.A.; Azulay, R.D. Determinação do fator de proteção solar por espectrofotometria. Bras Dermatol Rio Jan. 1986, 61, 121–124. [Google Scholar]
- Kramberger, K.; Barlič-Maganja, D.; Bandelj, D.; Baruca Arbeiter, A.; Peeters, K.; Miklavčič Višnjevec, A.; Jenko Pražnikar, Z. HPLC-DAD-ESI-QTOF-MS Determination of bioactive compounds and antioxidant activity comparison of the hydroalcoholic and water extracts from two Helichrysum italicum species. Metabolites 2020, 10, 403. [Google Scholar] [CrossRef]
- Pereira, C.G.; Barreira, L.; Bijttebier, S.; Pieters, L.; Neves, V.; Rodrigues, M.J.; Rivas, R.; Varela, J.; Custódio, L. Chemical profiling of infusions and decoctions of Helichrysum italicum subsp. picardii by UHPLC-PDA-MS and in vitro biological activities comparatively with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis). J. Pharm. Biomed. Anal. 2017, 145, 593–603. [Google Scholar] [CrossRef]
Fractions | TPC | TTC | TFC | CQAs | QFs | TREs | PGHs |
---|---|---|---|---|---|---|---|
mgGAE/g Extr | mgTAE/g Extr | mgQE/g Extr | mg/g Extr | ||||
n-H | 224.47 ± 31.00 | 170.64 ± 4.19 | - | - | - | - | 7.98 ± 0.26 |
CHCl3 | 194.00 ± 6.49 | 128.14 ± 9.52 | - | - | - | 26.84 ± 0.69 | - |
EtOAc | 694.45 ± 17.08 | 468.35 ± 21.44 | 3.08 ± 0.09 | 45.82 ± 0.92 | 2.24 ± 0.05 | - | - |
BuOH | 100.81 ± 6.28 | 57.80 ± 4.19 | 0.36 ± 0.01 | 12.68 ± 0.31 | 1.56 ± 0.04 | - | - |
Fractions | HPSA | HRSA | NOSA | MChA | IAD | ATA |
---|---|---|---|---|---|---|
IC50 ± SD, μg/mL | ||||||
n-H | 96.56 ± 2.66 | 94.58 ± 4.79 | 162.42 ± 13.16 | 8.87 ± 0.56 | 30.48 ± 2.33 | 102.93 ± 8.62 |
CHCl3 | 85.84 ± 1.08 | 123.65 ± 0.30 | 195.64 ± 19.03 | 6.27 ± 0.29 | 62.50 ± 1.69 | 108.92 ± 4.42 |
EtOAc | 57.12 ± 1.14 | 92.23 ± 1.10 | 89.81 ± 2.09 | 5.60 ± 0.17 | 141.20 ± 3.27 | 84.19 ± 3.89 |
BuOH | 218.86 ± 4.33 | 133.31 ± 5.66 | 236.71 ± 23.31 | 6.42 ± 0.24 | 892.21 ± 60.22 | 242.23 ± 44.98 |
Standards | ||||||
Qrc | 69.25 ± 1.82 | 149.18 ± 9.27 | 64.82 ± 0.74 | 7.80 ± 0.17 | - | - |
PGH | 52.98 ± 0.94 | 115.89 ± 4.85 | 98.11 ± 1.58 | 11.52 ± 1.55 | - | - |
ChA | 56.70 ± 0.10 | 81.96 ± 2.80 | 75.37 ± 2.47 | 6.75 ± 0.66 | - | - |
Ibu | - | - | - | - | 81.50 ± 4.95 | 259.82 ± 9.14 |
Compound | Sudlow 1 | Sudlow 2 | Site 3 | Cleft |
---|---|---|---|---|
arzanol | −7.9 | −9.6 | −9.0 | −7.0 |
(R)-bitalin A | −6.5 | −8.0 | −8.4 | −7.4 |
(S)-bitalin A | −6.6 | −8.1 | −8.8 | −7.5 |
System Evaluated | RMSD-Protein (nm) | RMSD-Ligand (nm) | RG (nm) | NoHB (no/ns) |
---|---|---|---|---|
arzanol in site Sudlow 2 | 0.32 | 0.36 | 2.78 | 0.11 |
(R)-bitalin A in site 3 | 0.31 | 0.48 | 2.74 | 0.01 |
(S)-bitalin A in site 3 | 0.28 | 0.24 | 2.76 | 0.33 |
apo albumin | 0.38 | N/A | 2.78 | N/A |
λ, nm | EE (λ) × I (λ) |
---|---|
290 | 0.015 |
295 | 0.0817 |
300 | 0.2874 |
305 | 0.3278 |
310 | 0.1864 |
315 | 0.0839 |
320 | 0.018 |
∑ | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojilov, D.; Manolov, S.; Ahmed, S.; Dagnon, S.; Ivanov, I.; Marc, G.; Oniga, S.; Oniga, O.; Nedialkov, P.; Mollova, S. HPLC Analysis and In Vitro and In Silico Evaluation of the Biological Activity of Polyphenolic Components Separated with Solvents of Various Polarities from Helichrysum italicum. Molecules 2023, 28, 6198. https://doi.org/10.3390/molecules28176198
Bojilov D, Manolov S, Ahmed S, Dagnon S, Ivanov I, Marc G, Oniga S, Oniga O, Nedialkov P, Mollova S. HPLC Analysis and In Vitro and In Silico Evaluation of the Biological Activity of Polyphenolic Components Separated with Solvents of Various Polarities from Helichrysum italicum. Molecules. 2023; 28(17):6198. https://doi.org/10.3390/molecules28176198
Chicago/Turabian StyleBojilov, Dimitar, Stanimir Manolov, Sezan Ahmed, Soleya Dagnon, Iliyan Ivanov, Gabriel Marc, Smaranda Oniga, Ovidiu Oniga, Paraskev Nedialkov, and Silviya Mollova. 2023. "HPLC Analysis and In Vitro and In Silico Evaluation of the Biological Activity of Polyphenolic Components Separated with Solvents of Various Polarities from Helichrysum italicum" Molecules 28, no. 17: 6198. https://doi.org/10.3390/molecules28176198
APA StyleBojilov, D., Manolov, S., Ahmed, S., Dagnon, S., Ivanov, I., Marc, G., Oniga, S., Oniga, O., Nedialkov, P., & Mollova, S. (2023). HPLC Analysis and In Vitro and In Silico Evaluation of the Biological Activity of Polyphenolic Components Separated with Solvents of Various Polarities from Helichrysum italicum. Molecules, 28(17), 6198. https://doi.org/10.3390/molecules28176198