Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (200,449)

Search Parameters:
Keywords = H ∞

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1993 KiB  
Article
Supplementation of Calcium Through Seed Enrichment Technique Enhances Germinability and Early Growth of Timothy (Phleum pratense L.) Under Salinity Conditions
by Masahiro Akimoto and Li Ma
Agronomy 2025, 15(8), 1905; https://doi.org/10.3390/agronomy15081905 (registering DOI) - 7 Aug 2025
Abstract
Calcium ameliorates salt-related growth defects in plants. The objective of this study was to determine whether supplying calcium through a seed enrichment technique enhances the germinability and early growth of timothy (Phleum pratense L.) under saline conditions. For seed enrichment, timothy seeds [...] Read more.
Calcium ameliorates salt-related growth defects in plants. The objective of this study was to determine whether supplying calcium through a seed enrichment technique enhances the germinability and early growth of timothy (Phleum pratense L.) under saline conditions. For seed enrichment, timothy seeds were soaked in CaCl2 solutions at concentrations of 50 mM or 100 mM for 24 h at room temperature. Seeds treated with distilled water served as the control. Under distilled water conditions, germination rates among the seeds showed minimal variation, approximately 95% on average. However, in a 200 mM NaCl environment, the germination rate of the control seeds significantly decreased to 25%, while the germination rates of the Ca-enriched seeds remained high, exceeding 86%. Additionally, the Ca-enriched seeds germinated more quickly than the control seeds. When plants were grown with distilled water, the total dry matter weights did not differ significantly among the treatment types. However, under salt stress with 100 mM NaCl, the plants derived from Ca-enriched seeds thrived and exhibited higher dry matter weights compared to the control plants. The Ca-enriched seeds contained more soluble sugars and demonstrated higher catalase activity than the control seeds, and their corresponding plants accumulated less sodium under salt stress compared to the control plants. Seed enrichment is an effective technique for supplying calcium to timothy, and a concentration of 50 mM of CaCl2 in the treatment solution is sufficient to achieve salt tolerance. Full article
Show Figures

Figure 1

17 pages, 1001 KiB  
Article
A Preliminary Evaluation of the Use of Solid Residues from the Distillation of Medicinal and Aromatic Plants as Fertilizers in Mediterranean Soils
by Anastasia-Garyfallia Karagianni, Anastasia Paraschou and Theodora Matsi
Agronomy 2025, 15(8), 1903; https://doi.org/10.3390/agronomy15081903 (registering DOI) - 7 Aug 2025
Abstract
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum [...] Read more.
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum (Roth) G. Don), lavender (Lavandula angustifolia Mill.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) were added in an alkaline and calcareous soil at the rates of 0 (control), 1, 2, 4 and 8%, in three replications (treatments), and the treated soils were analyzed. The results showed that upon application of the residues, soil electrical conductivity (EC), organic C, total N and the C/N ratio significantly increased, especially at the 4 and 8% rates. The same was found for soil available P, K, B, Cu and Mn. The effects of the residues on soil pH, cation exchange capacity (CEC) and available Zn and Fe were rather inconclusive, whereas soil available N significantly decreased, which was somewhat unexpected. From the different application rates tested, it seems that all residues could improve soil fertility (except N?) when they were applied to soil at rates of 2% and above, without exceeding the 8% rate. The reasons for the latter statement are soil EC and available Mn: the doubling of EC upon application of the residues and the excessive increase in soil available Mn in treatments with 8% residues raise concerns of soil salinization and Mn phytotoxicity risks, respectively. This work provides the first step towards the potential agronomic use of solid residues from MAP distillation in alkaline soils. However, for the establishment of such a perspective, further research is needed in respect to the effect of residues on plant growth and soil properties, by means of at least pot experiments. Based on the results of the current study, the undesirable effect of residues on soil available N should be investigated in depth, since N is the most important essential element for plant growth, and possible risks of micronutrient phytotoxicities should also be studied. In addition, application rates between 2 and 4% should be studied extensively in order to recommend optimum application rates of residues to producers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 3221 KiB  
Article
Development of a Deer Tick Virus Infection Model in C3H/HeJ Mice to Mimic Human Clinical Outcomes
by Dakota N. Paine, Erin S. Reynolds, Charles E. Hart, Jessica Crooker and Saravanan Thangamani
Viruses 2025, 17(8), 1092; https://doi.org/10.3390/v17081092 (registering DOI) - 7 Aug 2025
Abstract
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human [...] Read more.
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human infection with DTV can result in acute febrile illness followed by central nervous system complications, such as encephalitis and meningoencephalitis. Currently, there are mouse models established for investigating the pathogenesis and clinical outcomes of DTV that mimic human infections, but the strains of mice utilized are refractory to infection with B. burgdorferi s.l. Here, we describe the pathogenesis and clinical outcomes of DTV infection in C3H/HeJ mice. Neurological clinical signs, mortality, and weight loss were observed in all DTV-infected mice during the investigation. Infected animals demonstrated consistent viral infection in their organs. Additionally, neuropathology of brain sections indicated the presence of meningoencephalitis throughout the brain. This data, along with the clinical outcomes for the mice, indicates successful infection and showcases the neuroinvasive nature of the virus. This is the first study to identify C3H/HeJ mice as an appropriate model for DTV infection. As C3H/HeJ mice are already an established model for B. burgdorferi s.l. infection, this model could serve as an ideal system for investigating disease progression and pathogenesis of co-infections. Full article
(This article belongs to the Special Issue Tick-Borne Viruses 2026)
Show Figures

Figure 1

17 pages, 4768 KiB  
Article
New Functional Food for the Treatment of Gastric Ulcer Based on Bioadhesive Microparticles Containing Sage Extract: Anti-Ulcerogenic, Anti-Helicobacter pylori, and H+/K+-ATPase-Inhibiting Activity Enhancement
by Yacine Nait Bachir, Ryma Nait Bachir, Meriem Medjkane, Nouara Boudjema and Roberta Foligni
Foods 2025, 14(15), 2757; https://doi.org/10.3390/foods14152757 (registering DOI) - 7 Aug 2025
Abstract
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was [...] Read more.
Salvia officinalis is an aromatic plant of Mediterranean origin traditionally used to treat inflammatory, cardiovascular, endocrine, and digestive diseases. In this work, the ability of the Salvia officinalis extract in the treatment of gastric ulcers was evaluated, and an innovative administration system was proposed to increase the therapeutic effect of this plant. Salvia officinalis ethanolic extract was prepared and analyzed by HPLC/UV-DAD and encapsulated in a matrix based on gelatin and pectin using an emulsion–coacervation process. The prepared microcapsules were analyzed by laser particle size, optical microscopy, in vitro dissolution kinetics, and ex vivo bioadhesion. In order to determine the action mechanism of Salvia officinalis extract, in the treatment of gastric ulcer, the in vivo anti-ulcerogenic activity in rats, using the ulcer model induced by ethanol; the in vivo anti-Helicobacter pylori activity; and in vitro inhibitory activity of H+/K+-ATPase were carried out. These three biological activities were evaluated for ethanolic extract and microcapsules to determine the effect of formulation on biological activities. Ethanolic extract of Salvia officinalis was mainly composed of polyphenols (chlorogenic acid 7.43%, rutin 21.74%, rosmarinic acid 5.88%, and quercitrin 14.39%). Microencapsulation of this extract allowed us to obtain microcapsules of 104.2 ± 7.5 µm in diameter, an encapsulation rate of 96.57 ± 3.05%, and adequate bioadhesion. The kinetics of in vitro dissolution of the extract increase significantly after its microencapsulation. Percentages of ulcer inhibition for 100 mg/kg of extract increase from 71.71 ± 2.43% to 89.67 ± 2.54% after microencapsulation. In vitro H+/K+-ATPase-inhibiting activity resulted in an IC50 of 86.08 ± 8.69 µM/h/mg protein for free extract and 57.43 ± 5.78 µM/h/mg protein for encapsulated extract. Anti-Helicobacter pylori activity showed a similar Minimum Inhibitory Concentration (MIC) of 50 µg/mL for the extract and microcapsules. Salvia officinalis ethanolic extract has a significant efficacy for the treatment of gastric ulcer; its mechanism of action is based on its gastroprotective effect, anti-Helicobacter pylori, and H+/K+-ATPase inhibitor. Moreover, the microencapsulation of this extract increases its gastroprotective and H+/K+-ATPase-inhibiting activities significantly. Full article
Show Figures

Figure 1

16 pages, 3573 KiB  
Article
Combining Time-Restricted Wheel Running and Feeding During the Light Phase Increases Running Intensity Under High-Fat Diet Conditions Without Altering the Total Amount of Daily Running
by Ayano Shiba, Roberta Tandari, Ewout Foppen, Chun-Xia Yi, Joram D. Mul, Dirk Jan Stenvers and Andries Kalsbeek
Int. J. Mol. Sci. 2025, 26(15), 7658; https://doi.org/10.3390/ijms26157658 (registering DOI) - 7 Aug 2025
Abstract
Excess caloric intake and insufficient physical activity are the two major drivers underlying the global obesity and type 2 diabetes mellitus epidemics. However, circadian misalignment of caloric intake and physical activity, as commonly experienced by nightshift workers, can also have detrimental effects on [...] Read more.
Excess caloric intake and insufficient physical activity are the two major drivers underlying the global obesity and type 2 diabetes mellitus epidemics. However, circadian misalignment of caloric intake and physical activity, as commonly experienced by nightshift workers, can also have detrimental effects on body weight and glucose homeostasis. We have previously reported that combined restriction of eating and voluntary wheel running to the inactive phase (i.e., a rat model for circadian misalignment) shifted liver and muscle clock rhythms by ~12 h and prevented the reduction in the amplitude of the muscle clock oscillation otherwise induced by light-phase feeding. Here, we extended on these findings and investigated how a high-fat diet (HFD) affects body composition and liver and muscle clock gene rhythms in male Wistar rats while restricting both eating and exercise to either the inactive or active phase. To do this, we used four experimental conditions: sedentary controls with no wheel access on a non-obesogenic diet (NR), sedentary controls with no wheel access on an HFD (NR-H), and two experimental groups on an HFD with simultaneous access to a running wheel and HFD time-restricted to either the light phase (light-run-light-fed + HFD, LRLF-H) or the dark phase (dark-run-dark-fed + HFD. DRDF-H). Consumption of an HFD did not alter the daily running distance of the time-restricted groups but did increase the running intensity in the LRLF-H group compared to a previously published LRLF chow fed group. However, no such increase was observed for the DRDF-H group. LRLF-H ameliorated light phase-induced disturbances in the soleus clock more effectively than under chow conditions and had a protective effect against HFD-induced changes in liver clock gene expression. Together with (our) previously published results, these data suggest that eating healthy and being active at the wrong time of the day can be as detrimental as eating unhealthy and being active at the right time of the day. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes and Obesity)
24 pages, 3156 KiB  
Article
Study on Gel–Resin Composite for Losting Circulation Control to Improve Plugging Effect in Fracture Formation
by Jinzhi Zhu, Tao Wang, Shaojun Zhang, Yingrui Bai, Guochuan Qin and Jingbin Yang
Gels 2025, 11(8), 617; https://doi.org/10.3390/gels11080617 (registering DOI) - 7 Aug 2025
Abstract
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a [...] Read more.
Lost circulation, a prevalent challenge in drilling engineering, poses significant risks including drilling fluid loss, wellbore instability, and environmental contamination. Conventional plugging materials often exhibit an inadequate performance under high-temperature, high-pressure (HTHP), and complex formation conditions. To address that, this study developed a high-performance gel–resin composite plugging material resistant to HTHP environments. By optimizing the formulation of bisphenol-A epoxy resin (20%), hexamethylenetetramine (3%), and hydroxyethyl cellulose (1%), and incorporating fillers such as nano-silica and walnut shell particles, a controllable high-strength plugging system was constructed. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed the structural stability of the resin, with an initial decomposition temperature of 220 °C and a compressive strength retention of 14.4 MPa after 45 days of aging at 140 °C. Rheological tests revealed shear-thinning behavior (initial viscosity: 300–350 mPa·s), with viscosity increasing marginally to 51 mPa·s after 10 h of stirring at ambient temperature, demonstrating superior pumpability. Experimental results indicated excellent adaptability of the system to drilling fluid contamination (compressive strength: 5.04 MPa at 20% dosage), high salinity (formation water salinity: 166.5 g/L), and elevated temperatures (140 °C). In pressure-bearing plugging tests, the resin achieved a breakthrough pressure of 15.19 MPa in wedge-shaped fractures (inlet: 7 mm/outlet: 5 mm) and a sand-packed tube sealing pressure of 11.25 MPa. Acid solubility tests further demonstrated outstanding degradability, with a 97.69% degradation rate after 24 h in 15% hydrochloric acid at 140 °C. This study provides an efficient, stable, and environmentally friendly solution for mitigating drilling fluid loss in complex formations, exhibiting significant potential for engineering applications. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
29 pages, 4749 KiB  
Article
Experimental and Computational Analysis of Large-Amplitude Flutter in the Tacoma Narrows Bridge: Wind Tunnel Testing and Finite Element Time-Domain Simulation
by Bishang Zhang and Ledong Zhu
Buildings 2025, 15(15), 2800; https://doi.org/10.3390/buildings15152800 (registering DOI) - 7 Aug 2025
Abstract
Nonlinear wind-induced vibrations and coupled static–dynamic instabilities pose significant challenges for long-span suspension bridges, especially under large-amplitude and high-angle-of-attack conditions. However, existing studies have yet to fully capture the mechanisms behind large-amplitude torsional flutter. To address this, wind tunnel experiments were performed on [...] Read more.
Nonlinear wind-induced vibrations and coupled static–dynamic instabilities pose significant challenges for long-span suspension bridges, especially under large-amplitude and high-angle-of-attack conditions. However, existing studies have yet to fully capture the mechanisms behind large-amplitude torsional flutter. To address this, wind tunnel experiments were performed on H-shaped bluff sections and closed box girders using a high-precision five-component piezoelectric balance combined with a custom support system. Complementing these experiments, a finite element time-domain simulation framework was developed, incorporating experimentally derived nonlinear flutter derivatives. Validation was achieved through aeroelastic testing of a 1:110-scale model of the original Tacoma Narrows Bridge and corresponding numerical simulations. The results revealed Hopf bifurcation phenomena in H-shaped bluff sections, indicated by amplitude-dependent flutter derivatives and equivalent damping coefficients. The simulation results showed less than a 10% deviation from experimental and historical wind speed–amplitude data, confirming the model’s accuracy. Failure analysis identified suspenders as the critical failure components in the Tacoma collapse. This work develops a comprehensive performance-based design framework that improves the safety, robustness, and resilience of long-span suspension bridges against complex nonlinear aerodynamic effects while enabling cost-effective, targeted reinforcement strategies to advance modern bridge engineering. Full article
18 pages, 5419 KiB  
Article
Molecular Surveillance and Whole Genomic Characterization of Bovine Rotavirus A G6P[1] Reveals Interspecies Reassortment with Human and Feline Strains in China
by Ahmed H. Ghonaim, Mingkai Lei, Yang Zeng, Qian Xu, Bo Hong, Dongfan Li, Zhengxin Yang, Jiaru Zhou, Changcheng Liu, Qigai He, Yufei Zhang and Wentao Li
Vet. Sci. 2025, 12(8), 742; https://doi.org/10.3390/vetsci12080742 (registering DOI) - 7 Aug 2025
Abstract
Group A rotavirus (RVA) is a leading causative agent of diarrhea in both young animals and humans. In China, multiple genotypes are commonly found within the bovine population. In this study, we investigated 1917 fecal samples from calves with diarrhea between 2022 and [...] Read more.
Group A rotavirus (RVA) is a leading causative agent of diarrhea in both young animals and humans. In China, multiple genotypes are commonly found within the bovine population. In this study, we investigated 1917 fecal samples from calves with diarrhea between 2022 and 2025, with 695 testing positive for RVA, yielding an overall detection rate of 36.25%. The highest positivity rate was observed in Hohhot (38.98%), and annual detection rates ranged from 26.75% in 2022 to 42.22% in 2025. A bovine rotavirus (BRV) strain, designated 0205HG, was successfully isolated from a fecal sample of a newborn calf. Its presence was confirmed through cytopathic effects (CPEs), the indirect immunofluorescence assay (IFA), electron microscopy (EM), and high-throughput sequencing. Genomic characterization identified the strain as having the G6-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3 genotype constellation. The structural proteins VP2 and VP7, along with nonstructural genes NSP1–NSP4, shared high sequence identity with Chinese bovine strains, whereas VP1, VP4, and NSP5 clustered more closely with human rotaviruses, and VP3 was related to feline strains. These findings highlight the genetic diversity and interspecies reassortment of BRVs in China, underlining the importance of continued surveillance and evolutionary analysis. Full article
(This article belongs to the Special Issue Viral Infections in Wild and Domestic Animals)
25 pages, 6742 KiB  
Article
Reservoir Computing with a Single Oscillating Gas Bubble: Emphasizing the Chaotic Regime
by Hend Abdel-Ghani, A. H. Abbas and Ivan S. Maksymov
AppliedMath 2025, 5(3), 101; https://doi.org/10.3390/appliedmath5030101 (registering DOI) - 7 Aug 2025
Abstract
The rising computational and energy demands of artificial intelligence systems urge the exploration of alternative software and hardware solutions that exploit physical effects for computation. According to machine learning theory, a neural network-based computational system must exhibit nonlinearity to effectively model complex patterns [...] Read more.
The rising computational and energy demands of artificial intelligence systems urge the exploration of alternative software and hardware solutions that exploit physical effects for computation. According to machine learning theory, a neural network-based computational system must exhibit nonlinearity to effectively model complex patterns and relationships. This requirement has driven extensive research into various nonlinear physical systems to enhance the performance of neural networks. In this paper, we propose and theoretically validate a reservoir-computing system based on a single bubble trapped within a bulk of liquid. By applying an external acoustic pressure wave to both encode input information and excite the complex nonlinear dynamics, we showcase the ability of this single-bubble reservoir-computing system to forecast a Hénon benchmarking time series and undertake classification tasks with high accuracy. Specifically, we demonstrate that a chaotic physical regime of bubble oscillation—where tiny differences in initial conditions lead to wildly different outcomes, making the system unpredictable despite following clear rules, yet still suitable for accurate computations—proves to be the most effective for such tasks. Full article
(This article belongs to the Topic A Real-World Application of Chaos Theory)
Show Figures

Figure 1

14 pages, 3029 KiB  
Article
In Vitro Bioactivity and Cytotoxicity Assessment of Two Root Canal Sealers
by Yicheng Ye, Sepanta Hosseinpour, Juan Wen and Ove A. Peters
Materials 2025, 18(15), 3717; https://doi.org/10.3390/ma18153717 (registering DOI) - 7 Aug 2025
Abstract
The development of bioactive materials in endodontics has advanced tissue regeneration by enhancing the biological responses of periradicular tissues. Recently, calcium silicate-based sealers have gained attention for their superior biological properties, including biocompatibility, osteoconductivity, and cementogenic potential. This study aimed to evaluate the [...] Read more.
The development of bioactive materials in endodontics has advanced tissue regeneration by enhancing the biological responses of periradicular tissues. Recently, calcium silicate-based sealers have gained attention for their superior biological properties, including biocompatibility, osteoconductivity, and cementogenic potential. This study aimed to evaluate the cytotoxicity, biocompatibility, and bioactivity of EndoSequence BC Sealer (ES BC) and AH Plus Bioceramic Sealer (AHP BC) using human periodontal ligament stromal cells (hPDLSCs). Biocompatibility was assessed using MTT, Live/Dead, and wound healing assays. ES BC and AHP BC demonstrated significantly higher cell viability and proliferation compared to AH Plus used as a control. Gene expression analysis via real-time quantitative PCR demonstrated that ES BC, especially in set form, significantly upregulated osteogenic markers—alkaline phosphatase (2.49 ± 0.10, p < 0.01), runt-related transcription factor 2 (2.33 ± 0.13), and collagen type I alpha 1 chain (2.85 ± 0.40, p < 0.001)—more than cementogenic markers (cementum protein 1, cementum attachment protein, and cementum protein 23). This differential response may reflect the fibroblast-dominant nature of hPDLSCs, which contain limited cementoblast-like cells. This study supports the superior biocompatibility and regenerative capacity of ES BC and AHP BC compared to AH Plus. While in vitro models provide foundational insights, advanced ex vivo approaches are crucial for translating findings to clinical practice. Full article
Show Figures

Figure 1

13 pages, 1045 KiB  
Article
Antiviral Activity of Haematococcus pluvialis Algae Extract Is Not Exclusively Due to Astaxanthin
by Paula Peinsipp, Tanja Gerlza, Julia Kircher, Kurt Zatloukal, Corinna Jäger, Peter Pucher and Andreas J. Kungl
Pathogens 2025, 14(8), 791; https://doi.org/10.3390/pathogens14080791 (registering DOI) - 7 Aug 2025
Abstract
In this study, astaxanthin, which has previously been shown to have antiviral effects, was examined for its dose-dependent potency to inhibit cellular SARS-CoV-2 infections. Naturally occurring astaxanthin is obtained and orally administered as ASX-oleoresin, a composition of different astaxanthin fatty acid esters. We [...] Read more.
In this study, astaxanthin, which has previously been shown to have antiviral effects, was examined for its dose-dependent potency to inhibit cellular SARS-CoV-2 infections. Naturally occurring astaxanthin is obtained and orally administered as ASX-oleoresin, a composition of different astaxanthin fatty acid esters. We therefore hypothesized that the compound’s beneficial effects are not only related to astaxanthin. Thus, a “green” algae extract (i.e., poor astaxanthin content < 0.2%; ASXp) of the microalgae Haematococcus pluvialis, as well as an astaxanthin-rich algae extract (astaxanthin content = 20%; ASXr), were tested in in vitro cellular viral infection assays. Thereby, it was found that both extracts reduced viral infections significantly. As a potential mode of inhibitory action, the binding of ASX-oleoresin to the viral spike protein was investigated by isothermal fluorescence titration, revealing binding affinities of Kd = 1.05 µM for ASXr and Kd = 1.42 µM for ASXp. Based on our data, we conclude that several ASX-oleoresin fractions from H. pluvialis exhibit antiviral activity, which extends beyond the known antioxidant activity of astaxanthin. From a molecular dynamic simulation of ASX-oleoresin, fatty acid domains could be considered as activity-chaperoning factors of ASX. Therefore, microalgae biomass should be considered in the future for further antiviral activities. Full article
(This article belongs to the Special Issue Virus–Host Cell Interactions and Research of New Antivirals)
15 pages, 3707 KiB  
Article
Biodegradation of Both Ethanol and Acetaldehyde by Acetobacter ghanensis JN01
by Hongyan Liu, Jingjing Wang, Qianqian Xu, Xiaoyu Cao, Xinyue Du, Kun Lin and Hai Yan
Catalysts 2025, 15(8), 756; https://doi.org/10.3390/catal15080756 (registering DOI) - 7 Aug 2025
Abstract
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was [...] Read more.
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was successfully isolated from the traditional fermented food Jiaosu and identified as Acetobacter ghanensis JN01 based on average nucleotide identity (ANI) analysis. Initial ethanol of 1 g/L was completely biodegraded within 4 h, while initial acetaldehyde of 1 g/L was also rapidly removed at 2 or 1 h by whole cells or cell-free extracts (CEs) of JN01, respectively, which indicated that JN01 indeed has a strong ability in the biodegradation of both ethanol and acetaldehyde. Whole-genome sequencing revealed a 2.85 Mb draft genome of JN01 with 57.0% guanine–cytosine (GC) content and the key metabolic genes (adh1, adh2, and aldh) encoding involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), co-located with NADH dehydrogenase genes and ethanol-responsive regulatory motifs, supporting the metabolic pathway of transforming ethanol to acetaldehyde, and, subsequently, converting acetaldehyde to acetic acid. Furthermore, selected in vitro safety-related traits of JN01 were also assessed, which is very important in the development of microbial catalysts against both ethanol and acetaldehyde. Full article
(This article belongs to the Section Biocatalysis)
13 pages, 1135 KiB  
Article
A Study on the Beneficiation of Very Fine Particle Rutile Ore Using Flotation
by Oyku Bilgin and Ilhan Ehsani
Minerals 2025, 15(8), 838; https://doi.org/10.3390/min15080838 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the beneficiation of finely grinded rutile ore utilizing a combination of flocculation and flotation methods. Rutile, a Ti-bearing mineral with industrial significance, is often associated with heavy minerals found in coastal and metamorphic environments. A rutile ore sample from Azıtepe [...] Read more.
This study investigates the beneficiation of finely grinded rutile ore utilizing a combination of flocculation and flotation methods. Rutile, a Ti-bearing mineral with industrial significance, is often associated with heavy minerals found in coastal and metamorphic environments. A rutile ore sample from Azıtepe (Alaşehir, Türkiye) was reduced to −63 µm and enriched under varying pH conditions (2.5–12) using different reagent combinations and was used for our investigation of both flocculation and flotation processes using reagents such as Aero801(SIPX), Aero825, tannic acid (TA), and pomace oil. The best results were achieved at pH: 8 using Aero801(SIPX) and pomace oil during flocculation, and Aero801(SIPX), Aero825, and Aerofroth88 during flotation, yielding a concentrate with an 8.99% TiO2 grade and an 89.5% recovery rate. Meanwhile, a 7.00% TiO2 grade concentrate was obtained with a recovery rate of 71.92% at neutral pH. This study found that pH and reagent selection had an important effect on TiO2 enrichment efficiency in fine size, low-grade rutile ores. Future research is recommended to investigate selective depressants and multi-stage cleaning to improve separation. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
20 pages, 859 KiB  
Article
MultiHeart: Secure and Robust Heartbeat Pattern Recognition in Multimodal Cardiac Monitoring System
by Hossein Ahmadi, Yan Zhang and Nghi H. Tran
Electronics 2025, 14(15), 3149; https://doi.org/10.3390/electronics14153149 (registering DOI) - 7 Aug 2025
Abstract
The widespread adoption of heartbeat monitoring sensors has increased the demand for secure and trustworthy multimodal cardiac monitoring systems capable of accurate heartbeat pattern recognition. While existing systems offer convenience, they often suffer from critical limitations, such as variability in the number of [...] Read more.
The widespread adoption of heartbeat monitoring sensors has increased the demand for secure and trustworthy multimodal cardiac monitoring systems capable of accurate heartbeat pattern recognition. While existing systems offer convenience, they often suffer from critical limitations, such as variability in the number of available modalities and missing or noisy data during multimodal fusion, which may compromise both performance and data security. To address these challenges, we propose MultiHeart, which is a robust and secure multimodal interactive cardiac monitoring system designed to provide reliable heartbeat pattern recognition through the integration of diverse and trustworthy cardiac signals. MultiHeart features a novel multi-task learning architecture that includes a reconstruction module to handle missing or noisy modalities and a classification module dedicated to heartbeat pattern recognition. At its core, the system employs a multimodal autoencoder for feature extraction with shared latent representations used by lightweight decoders in the reconstruction module and by a classifier in the classification module. This design enables resilient multimodal fusion while supporting both data reconstruction and heartbeat pattern classification tasks. We implement MultiHeart and conduct comprehensive experiments to evaluate its performance. The system achieves 99.80% accuracy in heartbeat recognition, surpassing single-modal methods by 10% and outperforming existing multimodal approaches by 4%. Even under conditions of partial data input, MultiHeart maintains 94.64% accuracy, demonstrating strong robustness, high reliability, and its effectiveness as a secure solution for next-generation health-monitoring applications. Full article
(This article belongs to the Special Issue New Technologies in Applied Cryptography and Network Security)
Show Figures

Figure 1

22 pages, 4006 KiB  
Article
Biochar and Melatonin Partnership Mitigates Arsenic Toxicity in Rice by Modulating Antioxidant Defense, Phytochelatin Synthesis, and Down-Regulating the Transporters Involved in Arsenic Uptake
by Mehmood Ali Noor, Muhammad Umair Hassan, Tahir Abbas Khan, Baoyuan Zhou and Guoqin Huang
Plants 2025, 14(15), 2453; https://doi.org/10.3390/plants14152453 (registering DOI) - 7 Aug 2025
Abstract
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also [...] Read more.
Arsenic (As) contamination has significantly increased in recent decades due to anthropogenic activities. This is a serious challenge for human health, environmental quality, and crop productivity. Biochar (BC) is an important practice used globally to remediate polluted soils. Likewise, melatonin (MT) has also shown tremendous results in mitigating metal toxicity and improving crop productivity. Nevertheless, the mechanism of combined BC and MT in alleviating As toxicity in rice (Oryza sativa L.) remains unexplored. In this study, we investigated how As affected rice and how the combined BC and MT facilitated As tolerance. The study comprised a control, As stress (100 mg kg−1), As stress (100 mg kg−1) + BC (2%), As stress (100 mg kg−1) + MT (100 µM) and As stress (100 mg kg−1) + BC (2%) + MT (100 µM). Arsenic significantly decreased rice growth and yield by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Co-applying BC and MT substantially enhanced rice growth and yield by increasing chlorophyll synthesis (48.12–92.42%) leaf water contents (40%), antioxidant activities (ascorbate peroxide: 56.43%, catalase: 55.14%, peroxidase: 57.77% and superoxide dismutase: 57.52%), proline synthesis (41.35%), MT synthesis (91.53%), and phytochelatins synthesis (125%) nutrient accumulation in rice seedlings and soil nutrient availability. The increased rice yield with BC + MT was also linked with reduced H2O2 production, As accumulation, soil As availability, and an increase in OsAPx6, OsCAT, OsPOD, OsSOD OsASMT1, and OsASMT2 and a decrease in expression of OsABCC1. Biochar + MT enhanced residual OM- and Fe, ((Fe2As) and Mn (Mn3(AsO4)2) bound forms of As leading to a substantial increase in rice growth and yield. Thus, the combination of BC and MT is an eco-friendly approach to mitigate As toxicity and improve rice productivity. Full article
Show Figures

Figure 1

Back to TopTop