Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,979)

Search Parameters:
Keywords = Gy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3023 KiB  
Article
Improving Grain Safety Using Radiation Dose Technologies
by Raushangul Uazhanova, Meruyert Ametova, Zhanar Nabiyeva, Igor Danko, Gulzhan Kurtibayeva, Kamilya Tyutebayeva, Aruzhan Khamit, Dana Myrzamet, Ece Sogut and Maxat Toishimanov
Agriculture 2025, 15(15), 1669; https://doi.org/10.3390/agriculture15151669 (registering DOI) - 1 Aug 2025
Abstract
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various [...] Read more.
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various cereal crops cultivated in Kazakhstan. Samples were irradiated at doses ranging from 1 to 5 kGy, and microbiological indicators—including Quantity of Mesophilic Aerobic and Facultative Anaerobic Microorganisms (QMAFAnM), yeasts, and molds—were quantified according to national standards. Experimental results demonstrated an exponential decline in microbial contamination, with a >99% reduction achieved at doses of 4–5 kGy. The modeled inactivation kinetics showed strong agreement with the experimental data: R2 = 0.995 for QMAFAnM and R2 = 0.948 for mold, confirming the reliability of the exponential decay models. Additionally, key quality parameters—including protein content, moisture, and gluten—were evaluated post-irradiation. The results showed that protein levels remained largely stable across all doses, while slight but statistically insignificant fluctuations were observed in moisture and gluten contents. Principal component analysis and scatterplot matrix visualization confirmed clustering patterns related to radiation dose and crop type. The findings substantiate the feasibility of electron beam treatment as a scalable and safe technology for improving the microbiological quality and storage stability of cereal crops. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

12 pages, 2016 KiB  
Article
Risk Factors for Radiation-Induced Keratoconjunctivitis Sicca in Dogs Treated with Hypofractionated Intensity-Modulated Radiation Therapy for Intranasal Tumors
by Akihiro Ohnishi, Soichirou Takeda, Yoshiki Okada, Manami Tokoro, Saki Kageyama, Yoshiki Itoh and Taketoshi Asanuma
Animals 2025, 15(15), 2258; https://doi.org/10.3390/ani15152258 (registering DOI) - 1 Aug 2025
Abstract
Radiation-induced keratoconjunctivitis sicca (KCS) is a significant late complication in dogs receiving radiation therapy for intranasal tumors, particularly with hypofractionated intensity-modulated radiation therapy (IMRT). This retrospective case-control study was performed to identify anatomical and dosimetric risk factors for KCS in 15 canine patients [...] Read more.
Radiation-induced keratoconjunctivitis sicca (KCS) is a significant late complication in dogs receiving radiation therapy for intranasal tumors, particularly with hypofractionated intensity-modulated radiation therapy (IMRT). This retrospective case-control study was performed to identify anatomical and dosimetric risk factors for KCS in 15 canine patients treated with IMRT delivered in 4–6 weekly fractions of 8 Gy. Orbital structures were retrospectively contoured, and dose–volume metrics (D50) were calculated. Receiver operating characteristic (ROC) curve analysis and odds ratios were used to evaluate the associations between radiation dose and KCS development. Six dogs (33%) developed KCS within three months post-treatment. Statistically significant dose differences were observed between affected and unaffected eyes for the eyeball, cornea, and retina. ROC analyses identified dose thresholds predictive of KCS: 13.8 Gy (eyeball), 14.9 Gy (cornea), and 17.0 Gy (retina), with the retina showing the highest odds ratio (28.33). To ensure clinical relevance, KCS was diagnosed based on decreased tear production combined with corneal damage to ensure clinical relevance. This study proposes dose thresholds for ocular structures that may guide treatment planning and reduce the risk of KCS in canine patients undergoing IMRT. Further prospective studies are warranted to validate these thresholds and explore mitigation strategies for high-risk cases. Full article
(This article belongs to the Special Issue Imaging Techniques and Radiation Therapy in Veterinary Medicine)
Show Figures

Graphical abstract

29 pages, 28274 KiB  
Article
Long-Term Neuroprotective Effects of Hydrogen-Rich Water and Memantine in Chronic Radiation-Induced Brain Injury: Behavioral, Histological, and Molecular Insights
by Kai Xu, Huan Liu, Yinhui Wang, Yushan He, Mengya Liu, Haili Lu, Yuhao Wang, Piye Niu and Xiujun Qin
Antioxidants 2025, 14(8), 948; https://doi.org/10.3390/antiox14080948 (registering DOI) - 1 Aug 2025
Abstract
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male [...] Read more.
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male Sprague Dawley rats were randomly divided into five groups: control, irradiation (IR), IR with memantine, IR with HRW, and IR with combined treatment. All but the control group received 20 Gy whole-brain X-ray irradiation, followed by daily interventions for 60 days. Behavioral assessments, histopathological analyses, oxidative stress measurements, 18F-FDG PET/CT imaging, transcriptomic sequencing, RT-qPCR, Western blot, and serum ELISA were performed. HRW significantly improved anxiety-like behavior, memory, and learning performance compared to the IR group. Histological results revealed that HRW reduced neuronal swelling, degeneration, and loss and enhanced dendritic spine density and neurogenesis. PET/CT imaging showed increased hippocampal glucose uptake in the IR group, which was alleviated by HRW treatment. Transcriptomic and molecular analyses indicated that HRW modulated key genes and proteins, including CD44, CD74, SPP1, and Wnt1, potentially through the MIF, Wnt, and SPP1 signaling pathways. Serum CD44 levels were also lower in treated rats, suggesting its potential as a biomarker for chronic RIBI. These findings demonstrate that HRW can alleviate chronic RIBI by preserving neuronal structure, reducing inflammation, and enhancing neuroplasticity, supporting its potential as a therapeutic strategy for radiation-induced cognitive impairment. Full article
Show Figures

Graphical abstract

12 pages, 955 KiB  
Article
Single-Center Preliminary Experience Treating Endometrial Cancer Patients with Fiducial Markers
by Francesca Titone, Eugenia Moretti, Alice Poli, Marika Guernieri, Sarah Bassi, Claudio Foti, Martina Arcieri, Gianluca Vullo, Giuseppe Facondo, Marco Trovò, Pantaleo Greco, Gabriella Macchia, Giuseppe Vizzielli and Stefano Restaino
Life 2025, 15(8), 1218; https://doi.org/10.3390/life15081218 - 1 Aug 2025
Abstract
Purpose: To present the findings of our preliminary experience using daily image-guided radiotherapy (IGRT) supported by implanted fiducial markers (FMs) in the radiotherapy of the vaginal cuff, in a cohort of post-surgery endometrial cancer patients. Methods: Patients with vaginal cuff cancer [...] Read more.
Purpose: To present the findings of our preliminary experience using daily image-guided radiotherapy (IGRT) supported by implanted fiducial markers (FMs) in the radiotherapy of the vaginal cuff, in a cohort of post-surgery endometrial cancer patients. Methods: Patients with vaginal cuff cancer requiring adjuvant radiation with external beams were enrolled. Five patients underwent radiation therapy targeting the pelvic disease and positive lymph nodes, with doses of 50.4 Gy in twenty-eight fractions and a subsequent stereotactic boost on the vaginal vault at a dose of 5 Gy in a single fraction. One patient was administered 30 Gy in five fractions to the vaginal vault. These patients underwent external beam RT following the implantation of three 0.40 × 10 mm gold fiducial markers (FMs). Our IGRT strategy involved real-time 2D kV image-based monitoring of the fiducial markers during the treatment delivery as a surrogate of the vaginal cuff. To explore the potential role of FMs throughout the treatment process, we analyzed cine movies of the 2D kV-triggered images during delivery, as well as the image registration between pre- and post-treatment CBCT scans and the planning CT (pCT). Each CBCT used to trigger fraction delivery was segmented to define the rectum, bladder, and vaginal cuff. We calculated a standard metric to assess the similarity among the images (Dice index). Results: All the patients completed radiotherapy and experienced good tolerance without any reported acute or long-term toxicity. We did not observe any loss of FMs during or before treatment. A total of twenty CBCTs were analyzed across ten fractions. The observed trend showed a relatively emptier bladder compared to the simulation phase, with the bladder filling during the delivery. This resulted in a final median Dice similarity coefficient (DSC) of 0.90, indicating strong performance. The rectum reproducibility revealed greater variability, negatively affecting the quality of the delivery. Only in two patients, FMs showed intrafractional shift > 5 mm, probably associated with considerable rectal volume changes. Target coverage was preserved due to a safe CTV-to-PTV margin (10 mm). Conclusions: In our preliminary study, CBCT in combination with the use of fiducial markers to guide the delivery proved to be a feasible method for IGRT both before and during the treatment of post-operative gynecological cancer. In particular, this approach seems to be promising in selected patients to facilitate the use of SBRT instead of BRT (brachytherapy), thanks to margin reduction and adaptive strategies to optimize dose delivery while minimizing toxicity. A larger sample of patients is needed to confirm our results. Full article
Show Figures

Figure 1

13 pages, 1123 KiB  
Article
Protective Effects of Grape Seed Extract on Lipopolysaccharide Exposure and Radiation-Induced Intestinal Mucosal Damage: Insights from an In Vitro Study
by Annamaria Altomare, Michele Fiore, Elena Imperia, Gabriele D’Ercole, Ludovica Spagnuolo, Laura De Gara, Gabriella Pasqua, Michele Cicala, Sara Ramella and Michele Pier Luca Guarino
Microbiol. Res. 2025, 16(8), 176; https://doi.org/10.3390/microbiolres16080176 - 1 Aug 2025
Abstract
Backgrounds and aim: Protective effects of natural compounds have been suggested in the prevention and treatment of radiation-induced mucositis or bacterial infections. In this study, the protective effects of proanthocyanidin-rich grape seed extract (GSE) on bacterial Lipopolysaccharide (LPS) and radiation-induced epithelial barrier damage [...] Read more.
Backgrounds and aim: Protective effects of natural compounds have been suggested in the prevention and treatment of radiation-induced mucositis or bacterial infections. In this study, the protective effects of proanthocyanidin-rich grape seed extract (GSE) on bacterial Lipopolysaccharide (LPS) and radiation-induced epithelial barrier damage and Reactive Oxygen Species (ROS) production were investigated in an in vitro model. Methods: Human intestinal epithelial cells Caco-2, previously treated with LPS, GSE, or LPS + GSE, were irradiated with 10 Gy divided into five daily treatments. Epithelial barrier integrity and ROS production were measured before and after each treatment. Results: Irradiation, at different doses, significantly increased intestinal permeability and ROS production; pretreatment with GSE was able to significantly prevent the increased intestinal permeability (4.63 ± 0.76 vs. 15.04 ± 1.5; p < 0.05) and ROS production (12.9 ± 1.08 vs. 1048 ± 0.5; p < 0.0001) induced by irradiation treatment. When the cells were pretreated with LPS, the same results were observed: GSE cotreatment was responsible for preventing permeability alterations (5.36 ± 0.16 vs. 49.26 ± 0.82; p < 0.05) and ROS production (349 ± 1 vs. 7897.67 ± 1.53; p < 0.0001) induced by LPS exposure when added to the irradiation treatment. Conclusions: The results of the present investigation demonstrated, in an in vitro model, that GSE prevents the damage to intestinal permeability and the production of ROS that are induced by LPS and ionizing radiation, suggesting a potential protective effect of this extract on the intestinal mucosa during irradiation treatment. Full article
Show Figures

Figure 1

14 pages, 1168 KiB  
Article
Adverse Events After Carbon-Ion Radiotherapy (CIRT) for Hepatocellular Carcinoma and Risk Factors for Biliary Stricture After CIRT: A Retrospective Study
by Keita Maki, Hiroaki Haga, Tomohiro Katsumi, Kyoko Hoshikawa, Fumiya Suzuki, Fumi Uchiyama, Takashi Kaneko, Masashi Koto and Yoshiyuki Ueno
Cancers 2025, 17(15), 2542; https://doi.org/10.3390/cancers17152542 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: This study investigated the timing of adverse events (AEs) after carbon-ion radiotherapy (CIRT) for hepatocellular carcinoma (HCC) and identified the risk factors for biliary stricture post CIRT. Methods: This retrospective study included 103 patients with HCC who had undergone CIRT [...] Read more.
Background/Objectives: This study investigated the timing of adverse events (AEs) after carbon-ion radiotherapy (CIRT) for hepatocellular carcinoma (HCC) and identified the risk factors for biliary stricture post CIRT. Methods: This retrospective study included 103 patients with HCC who had undergone CIRT (60 Gy/4 fractions). The onset, frequency, and grade of AEs after CIRT were analyzed. HCC was classified into perihilar and distal types to assess the frequency of biliary stricture, and the risk factors for biliary stricture were investigated. Results: AEs after CIRT were more frequent in patients with liver dysfunction, skin redness/dermatitis, and pigmentation. Biliary stricture occurred long after CIRT (3.0–17.0 months). Most AEs were of grade 1–2. Grade ≥ 3 AEs included biliary stricture (2.9%) and radiation gastric ulcer (1.0%), whereas grade 5 AEs included biliary stricture (1.9%). Biliary stricture was exclusively observed in patients with perihilar-type HCC. Among patients with perihilar-type HCC, those having a tumor in the portal vein trunk branch area were more prone to biliary stricture than those with a tumor in the primary portal vein branch area (p = 0.0018), and all grade ≥ 3 biliary strictures (2.9%) were observed in the portal vein trunk branch area. Patients with perihilar-type HCC and biliary stricture were more likely to have macrovascular invasion (p = 0.0052) and previous local therapy targeting the perihilar region (p = 0.0371) than those without biliary stricture. Conclusions: This study reported the detailed data of AEs post CIRT for HCC and the risk factors for biliary stricture post CIRT. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Graphical abstract

20 pages, 3148 KiB  
Article
Development and Evaluation of Graphene Oxide-Enhanced Chitosan Sponges as a Potential Antimicrobial Wound Dressing for Infected Wound Management
by Przemysław Sareło, Maria Wiśniewska-Wrona, Monika Sikora, Bartosz Mielan, Yuriy Gerasymchuk, Anna Wędzyńska, Vitalii Boiko, Dariusz Hreniak, Maria Szymonowicz, Beata Sobieszczańska and Magdalena Wawrzyńska
Int. J. Mol. Sci. 2025, 26(15), 7403; https://doi.org/10.3390/ijms26157403 (registering DOI) - 31 Jul 2025
Abstract
Chronic infected wounds remain a major medical challenge, particularly in the context of increasing antibiotic resistance. The objective of this study was to develop and evaluate chitosan-based (CS) sponges enhanced with graphene oxide (GO) as potential antimicrobial wound dressings. The composite sponges were [...] Read more.
Chronic infected wounds remain a major medical challenge, particularly in the context of increasing antibiotic resistance. The objective of this study was to develop and evaluate chitosan-based (CS) sponges enhanced with graphene oxide (GO) as potential antimicrobial wound dressings. The composite sponges were fabricated using microcrystalline CS (MKCh) and 5% (w/w) GO, followed by freeze-drying and γ-sterilization (25 kGy). Physico-mechanical characterization showed that GO incorporation did not significantly alter tensile strength, while absorption and sorption capacities were improved, especially after sterilization. Structural and spectroscopic analyses confirmed increased porosity and molecular interaction between CS and GO. Cytocompatibility was verified in vitro using L-929 fibroblasts, with no cytotoxic effects observed in indirect contact. Antimicrobial activity tests demonstrated that GO-modified dressings exhibited enhanced activity against E. coli and S. aureus, though results were strain-dependent and not uniformly superior to CS alone. Notably, antifungal efficacy against C. albicans was reduced with GO addition. Overall, the developed GO-enriched CS sponges present favorable biocompatibility, mechanical resilience, and selective antimicrobial activity, supporting their potential application in chronic wound management. Further optimization of GO concentration and formulation is warranted to maximize antimicrobial efficacy across a broader spectrum of pathogens. Full article
Show Figures

Figure 1

30 pages, 4804 KiB  
Article
Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China
by Xiaodong Fan, Dianyu Chen, Haitao Che, Yakun Wang, Yadan Du and Xiaotao Hu
Agronomy 2025, 15(8), 1852; https://doi.org/10.3390/agronomy15081852 - 31 Jul 2025
Abstract
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects [...] Read more.
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects of irrigation amounts on agricultural yield and the mechanisms under deep storage irrigation. A three-year field experiment (2020–2023) was conducted in the Guanzhong Plain, according to five soil wetting layer depths (RF: 0 cm; W1: control, 120 cm; W2: 140 cm; W3: 160 cm; W4: 180 cm) with soil saturation water content as the irrigation upper limit. Results exhibited that, compared to W1, the W2, W3, and W4 treatments led to the increased plant height, leaf area index, and dry matter accumulation. Meanwhile, the W2, W3, and W4 treatments improved kernel weight increment achieving maximum grain-filling rate (Wmax), maximum grain-filling rate (Gmax), and average grain-filling rate (Gave), thereby enhancing the effective spikes (ES) and grain number per spike (GS), and thus increased wheat grain yield (GY). In relative to W1, the W2, W3, and W4 treatments increased the ES, GS, and GY by 11.89–19.81%, 8.61–14.36%, and 8.17–13.62% across the three years. Notably, no significant difference was observed in GS and GY between W3 and W4 treatments, but W4 treatment displayed significant decreases in ES by 3.04%, 3.06%, and 2.98% in the respective years. The application of a structural equation modeling (SEM) revealed that deep storage irrigation improved ES and GS by positively regulating Wmax, Gmax, and Gave, thus significantly increasing GY. Overall, this study identified the optimal threshold (W3 treatment) to maximize wheat yields by optimizing both the vegetative growth and grain-filling dynamics. This study provides essential support for the feasibility assessment of deep storage irrigation before flood seasons, which is vital for the balance and coordination of food security and water security. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

24 pages, 7353 KiB  
Article
Characterization and Application of Synergistically Degraded Chitosan in Aquafeeds to Promote Immunity, Antioxidative Status, and Disease Resistance in Nile Tilapia (Oreochromis niloticus)
by Thitirat Rattanawongwiboon, Natthapong Paankhao, Wararut Buncharoen, Nantipa Pansawat, Benchawan Kumwan, Pakapon Meachasompop, Phunsin Kantha, Tanavan Pansiri, Theeranan Tangthong, Sakchai Laksee, Suwinai Paankhao, Kittipong Promsee, Mongkhon Jaroenkittaweewong, Pattra Lertsarawut, Prapansak Srisapoome, Kasinee Hemvichian and Anurak Uchuwittayakul
Polymers 2025, 17(15), 2101; https://doi.org/10.3390/polym17152101 - 31 Jul 2025
Abstract
This study investigated the immunonutritional potential of high-molecular-weight (Mw~85 kDa), non-degraded chitosan (NCS) and gamma-radiation-degraded, low-molecular-weight chitosan (RCS) incorporated into aquafeeds for Nile tilapia (Oreochromis niloticus). RCS was produced by γ-irradiation (10 kGy) in the presence of 0.25% (w/ [...] Read more.
This study investigated the immunonutritional potential of high-molecular-weight (Mw~85 kDa), non-degraded chitosan (NCS) and gamma-radiation-degraded, low-molecular-weight chitosan (RCS) incorporated into aquafeeds for Nile tilapia (Oreochromis niloticus). RCS was produced by γ-irradiation (10 kGy) in the presence of 0.25% (w/v) H2O2, yielding low-viscosity, colloidally stable nanoparticles with Mw ranging from 10 to 13 kDa. Five diets were formulated: a control, NCS at 0.50%, and RCS at 0.025%, 0.050%, and 0.075%. No adverse effects on growth were observed, confirming safety. Immune gene expression (e.g., ifng1, nfκb, tnf), antioxidant markers (e.g., reduced MDA, increased GSH and GR), and nonspecific humoral responses (lysozyme, IgM, and bactericidal activity) were significantly enhanced in the NCS-0.50, RCS-0.050, and RCS-0.075 groups. Notably, these benefits were achieved with RCS at 10-fold lower concentrations than NCS. Following challenge with Edwardsiella tarda, fish fed RCS-0.050 and RCS-0.075 diets exhibited the highest survival rates and relative percent survival, highlighting robust activation of innate and adaptive immunity alongside redox defense. These results support the use of low-Mw RCS as a biologically potent, cost-effective alternative to traditional high-Mw chitosan in functional aquafeeds. RCS-0.050 and RCS-0.075 show strong potential as immunonutritional agents to enhance fish health and disease resistance in aquaculture. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Figure 1

12 pages, 402 KiB  
Article
SBRT in the Very Elderly: A Viable Option for Pulmonary Oligometastases?
by Samuel M. Vorbach, Meinhard Nevinny-Stickel, Ute Ganswindt and Thomas Seppi
Cancers 2025, 17(15), 2512; https://doi.org/10.3390/cancers17152512 - 30 Jul 2025
Viewed by 60
Abstract
Background/Objectives: The global population of individuals aged ≥ 80 years is rapidly growing, leading to an increasing incidence of cancer diagnoses in this age group. While stereotactic body radiotherapy (SBRT) has proven effective in treating pulmonary oligometastases, patients over 80 remain underrepresented in [...] Read more.
Background/Objectives: The global population of individuals aged ≥ 80 years is rapidly growing, leading to an increasing incidence of cancer diagnoses in this age group. While stereotactic body radiotherapy (SBRT) has proven effective in treating pulmonary oligometastases, patients over 80 remain underrepresented in clinical analyses. This study aimed to evaluate clinical outcomes and toxicity of SBRT for pulmonary oligometastases in octogenarians. Methods: This retrospective, single-centre analysis included 34 patients aged ≥ 80 years treated with SBRT for histologically confirmed pulmonary oligometastases between 2010 and 2024. Results: A total of 46 pulmonary metastases were treated with curative intent using fractionation schemes of 3 × 15 Gy, 6 × 8 Gy, or 10 × 6 Gy. Median biologically effective dose (BED10) was 112.5 Gy. Follow-up included regular CT imaging and toxicity assessment according to CTCAE. With a median follow-up of 22.6 months, 1-, 2-, and 3-year local control (LC) rates were 95.2%, 95.2%, and 90.2%, respectively. Median overall survival (OS) was 46.6 months, with 1-, 2-, and 3-year OS rates of 78.4%, 71.4%, and 59.5%. Progression-free survival (PFS) at 1, 2, and 3 years was 63.4%, 51.6%, and 47.3%, respectively. No grade ≥ 3 toxicities were observed. Grade 2 pneumonitis and dermatitis occurred in 2.9% each and were well managed. Asymptomatic rib fractures were detected in 5.9% of patients. No significant predictors for LC, PFS, or OS were identified in univariate analysis. Conclusions: SBRT for pulmonary oligometastases in patients ≥ 80 years is feasible, safe, and effective. High local control, favourable cancer-specific survival, and minimal toxicity support its use as a curative-intent treatment in this growing patient population. These findings contribute important site- and age-specific evidence and support the inclusion of very elderly patients in future prospective SBRT trials. Full article
(This article belongs to the Special Issue Treatment Outcomes in Older Adults with Cancer)
Show Figures

Figure 1

19 pages, 1021 KiB  
Article
Causal Inference Approaches Reveal Associations Between LDL Oxidation, NO Metabolism, Telomere Length and DNA Integrity Within the MARK-AGE Study
by Andrei Valeanu, Denisa Margina, María Moreno-Villanueva, María Blasco, Ewa Sikora, Grazyna Mosieniak, Miriam Capri, Nicolle Breusing, Jürgen Bernhardt, Christiane Schön, Olivier Toussaint, Florence Debacq-Chainiaux, Beatrix Grubeck-Loebenstein, Birgit Weinberger, Simone Fiegl, Efstathios S. Gonos, Antti Hervonen, Eline P. Slagboom, Anton de Craen, Martijn E. T. Dollé, Eugène H. J. M. Jansen, Eugenio Mocchegiani, Robertina Giacconi, Francesco Piacenza, Marco Malavolta, Daniela Weber, Wolfgang Stuetz, Tilman Grune, Claudio Franceschi, Alexander Bürkle and Daniela Gradinaruadd Show full author list remove Hide full author list
Antioxidants 2025, 14(8), 933; https://doi.org/10.3390/antiox14080933 - 30 Jul 2025
Viewed by 52
Abstract
Genomic instability markers are important hallmarks of aging, as previously evidenced within the European study of biomarkers of human aging, MARK-AGE; however, establishing the specific metabolic determinants of vascular aging is challenging. The objective of the present study was to evaluate the impact [...] Read more.
Genomic instability markers are important hallmarks of aging, as previously evidenced within the European study of biomarkers of human aging, MARK-AGE; however, establishing the specific metabolic determinants of vascular aging is challenging. The objective of the present study was to evaluate the impact of the susceptibility to oxidation of serum LDL particles (LDLox) and the plasma metabolization products of nitric oxide (NOx) on relevant genomic instability markers. The analysis was performed on a MARK-AGE cohort of 1326 subjects (635 men and 691 women, 35–75 years old) randomly recruited from the general population. The Inverse Probability of Treatment Weighting causal inference algorithm was implemented in order to assess the potential causal relationship between the LDLox and NOx octile-based thresholds and three genomic instability markers measured in mononuclear leukocytes: the percentage of telomeres shorter than 3 kb, the initial DNA integrity, and the DNA damage after irradiation with 3.8 Gy. The results showed statistically significant telomere shortening for LDLox, while NOx yielded a significant impact on DNA integrity. Overall, the effect on the genomic instability markers was higher than for the confirmed vascular aging determinants, such as low HDL cholesterol levels, indicating a meaningful impact even for small changes in LDLox and NOx values. Full article
(This article belongs to the Special Issue Exploring Biomarkers of Oxidative Stress in Health and Disease)
Show Figures

Figure 1

13 pages, 1242 KiB  
Article
Radiotherapy-Induced Lung Cancer Risk in Breast Cancer Patients: A Retrospective Comparison of Hypofractionated and Standard Fractionated 3D-CRT Treatments
by Alessia D’Anna, Giuseppe Stella, Elisa Bonanno, Giuseppina Rita Borzì, Nina Cavalli, Andrea Girlando, Anna Maria Gueli, Martina Pace, Lucia Zirone and Carmelo Marino
Appl. Sci. 2025, 15(15), 8436; https://doi.org/10.3390/app15158436 - 29 Jul 2025
Viewed by 167
Abstract
Breast-conserving surgery followed by external beam Radiotherapy (RT) is a standard approach for early-stage Breast Cancer (BC). This retrospective study aims to determine the risk of RT-induced lung cancer for both standard and hypofractionated treatments. Fifty-eight Sicilian women treated at Humanitas Istituto Clinico [...] Read more.
Breast-conserving surgery followed by external beam Radiotherapy (RT) is a standard approach for early-stage Breast Cancer (BC). This retrospective study aims to determine the risk of RT-induced lung cancer for both standard and hypofractionated treatments. Fifty-eight Sicilian women treated at Humanitas Istituto Clinico Catanese (Misterbianco, Italy) between 2015 and 2021 with standard fractionated 3D-CRT (50 Gy in 2 Gy/fraction) were included. All treatment plans were designed using a hypofractionated schedule (42.56 Gy in 2.66 Gy/fraction). An Eclipse™ plug-in script was developed using the Eclipse Scripting Application Programming Interface (ESAPI) to extract patient and treatment data from the Treatment Planning System and compute Organ At Risk (OAR) volume, Organ Equivalent Dose (OED), Excess Absolute Risk (EAR), and Lifetime Attributable Risk (LAR) using the Schneider Mechanistic Model and reference data from regional populations, A-bomb survivors, and patients with Hodgkin’s Disease (HD). The OED distributions exhibited a statistically significant shift toward higher values in standard fractionated plans (p < 0.01, one-tailed paired Student’s t-test), leading to increased EAR and LAR. These results indicate that hypofractionated treatment may lower the risk of radiation-induced lung cancer. The feasibility of a priori risk estimation was evaluated by integrating the script into the TPS, allowing rapid comparison of SF and HF plans during planning. Full article
Show Figures

Figure 1

15 pages, 4409 KiB  
Article
Performance of Dual-Layer Flat-Panel Detectors
by Dong Sik Kim and Dayeon Lee
Diagnostics 2025, 15(15), 1889; https://doi.org/10.3390/diagnostics15151889 - 28 Jul 2025
Viewed by 186
Abstract
Background/Objectives: In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also [...] Read more.
Background/Objectives: In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also enable more efficient use of incident photons, resulting in x-ray images with improved noise power spectrum (NPS) and detection quantum efficiency (DQE) performances as single-energy applications. Purpose: Although the development of DFD systems for material decomposition applications is actively underway, there is a lack of research on whether single-energy applications of DFD can achieve better performance than the single-layer case. In this paper, we experimentally observe the DFD performance in terms of the modulation transfer function (MTF), NPS, and DQE with discussions. Methods: Using prototypes of DFD, we experimentally measure the MTF, NPS, and DQE of the convex combination of the images acquired from the upper and lower detector layers of DFD. To optimize DFD performance, a two-step image registration is performed, where subpixel registration based on the maximum amplitude response to the transform based on the Fourier shift theorem and an affine transformation using cubic interpolation are adopted. The DFD performance is analyzed and discussed through extensive experiments for various scintillator thicknesses, x-ray beam conditions, and incident doses. Results: Under the RQA 9 beam conditions of 2.7 μGy dose, the DFD with the upper and lower scintillator thicknesses of 0.5 mm could achieve a zero-frequency DQE of 75%, compared to 56% when using a single-layer detector. This implies that the DFD using 75 % of the incident dose of a single-layer detector can provide the same signal-to-noise ratio as a single-layer detector. Conclusions: In single-energy radiography imaging, DFD can provide better NPS and DQE performances than the case of the single-layer detector, especially at relatively high x-ray energies, which enables low-dose imaging. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

19 pages, 4654 KiB  
Article
Optimizing Nitrogen Fertilizer Rate and Investigating Mechanism Driving Grain Yield Increase for Rice in the Middle Reaches of the Yangtze River
by Tianxiang Xu, Hailin Zhang, Jie Gong, Ling Wang, Yongsheng Wang, Weiwen Qiu, Muxing Liu, Shenglong Li, Yuanhang Fei, Qi Li, Xin Ni, Jun Yi and Chuanqin Huang
Plants 2025, 14(15), 2326; https://doi.org/10.3390/plants14152326 - 27 Jul 2025
Viewed by 307
Abstract
Investigating the factors influencing rice grain yield (GY) is critical for optimizing nitrogen (N) management and enhancing resource use efficiency in rice cultivation. However, few studies have comprehensively investigated the factors affecting rice GY, considering an entire influence chain encompassing rice N uptake, [...] Read more.
Investigating the factors influencing rice grain yield (GY) is critical for optimizing nitrogen (N) management and enhancing resource use efficiency in rice cultivation. However, few studies have comprehensively investigated the factors affecting rice GY, considering an entire influence chain encompassing rice N uptake, growth indicators, and GY components. In this study, field experiment with six different N fertilizer rates (0, 60, 120, 180, 225, and 300 kg N ha−1, i.e., N0, N60, N120, N180, N225, and N300) was conducted in the Jianghan Plain in the Middle Reaches of the Yangtze River, China, to comprehensively elucidate the factors influencing rice GY from aspects of rice N uptake, growth indicators, and GY components and determine the optimal N fertilizer rate. The results showed that rice GY and N uptake initially increased and then either stabilized or declined with higher N fertilizer rate, while apparent N loss escalated with increased N fertilizer rate. The application of N fertilizer significantly promoted the increase in straw N uptake, which was significantly positively correlated with growth indicators (p < 0.05). Among all GY components, panicle number per hill was the most significant positive factor influencing rice GY, and it was significantly positively correlated with all rice growth indicators (p < 0.05). In addition, N180 was the optimal N fertilizer rate, ensuring more than 95% of maximum GY and reducing N loss by 74% and 39% compared to N300, respectively. Meanwhile, the average N balance for N180 remained below 60 kg N ha−1. In conclusion, optimizing the N fertilizer application in paddy fields can effectively maintain stable rice GY and minimize environmental pollution. Full article
(This article belongs to the Special Issue Water and Nitrogen Management in the Soil–Crop System (3rd Edition))
Show Figures

Figure 1

19 pages, 1940 KiB  
Article
Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
by Alec Magaisa, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo and Casper N. Kamutando
Agronomy 2025, 15(8), 1815; https://doi.org/10.3390/agronomy15081815 - 26 Jul 2025
Viewed by 225
Abstract
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two [...] Read more.
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two low-altitude (i.e., <600 masl) locations with a long-term history of averagely very high temperatures in the beginning of the summer season, under two management (i.e., CDHS and well-watered (WW)) regimes. At each location, the genotypes were laid out in the field using a randomized complete block design (RCBD) replicated two times. Root trait data, namely root diameter (RD), number of roots (NR), number of root tips (NRT), total root length (TRL), root depth (RDP), root width (RW), width–depth ratio (WDR), root network area (RNA), root solidity (RS), lower root area (LRA), root perimeter (RP), root volume (RV), surface area (SA), root holes (RH) and root angle (RA) were gathered using the RhizoVision Explorer software during the pre- and post-flowering stage of growth. RSA traits differentially showed significant (p < 0.05) correlations with grain yield (GY) at pre- and post-flowering growth stages and under CDHS and WW conditions also revealing genotypic variation estimates exceeding 50% for all the traits. Regression models varied between pre-flowering (p = 0.013, R2 = 47.15%, R2 Predicted = 29.32%) and post-flowering (p = 0.000, R2 = 85.64%, R2 Predicted = 73.30%) growth stages, indicating post-flowering as the optimal stage to relate root traits to yield performance. RD contributed most to the regression model at post-flowering, explaining 51.79% of the 85.64% total variation. The Smith–Hazel index identified ICSV111IN and ASAREACA12-3-1 as superior pre-release lines, suitable for commercialization as new varieties. The study demonstrated that root traits (in particular, RD, RW, and RP) are linked to crop performance under CDHS conditions and should be incorporated in breeding programs. This approach may accelerate genetic gains not only in sorghum breeding programs, but for other crops, while offering a nature-based breeding strategy for stress adaptation in crops. Full article
Show Figures

Figure 1

Back to TopTop