Radiotherapy-Induced Lung Cancer Risk in Breast Cancer Patients: A Retrospective Comparison of Hypofractionated and Standard Fractionated 3D-CRT Treatments
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Treatment Setup
2.2. Risk Estimation
2.3. Script Implementation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGale, P.; Correa, C.; Cutter, D.; Duane, F.; Ewertz, M.; Gray, R.; Mannu, G.; Peto, R.; Whelan, T.; Darby, S.; et al. Effect of Radiotherapy after Mastectomy and Axillary Surgery on 10-Year Recurrence and 20-Year Breast Cancer Mortality: Meta-Analysis of Individual Patient Data for 8135 Women in 22 Randomised Trials. Lancet 2014, 383, 2127–2135. [Google Scholar] [CrossRef]
- Allemani, C.; Weir, H.K.; Carreira, H.; Harewood, R.; Spika, D.; Wang, X.-S.; Bannon, F.; Ahn, J.V.; Johnson, C.J.; Bonaventure, A.; et al. Global Surveillance of Cancer Survival 1995–2009: Analysis of Individual Data for 25 676 887 Patients from 279 Population-Based Registries in 67 Countries (CONCORD-2). Lancet 2015, 385, 977–1010. [Google Scholar] [CrossRef]
- Preston, D.L.; Ron, E.; Tokuoka, S.; Funamoto, S.; Nishi, N.; Soda, M.; Mabuchi, K.; Kodama, K. Solid Cancer Incidence in Atomic Bomb Survivors: 1958–1998. Radiat. Res. 2007, 168, 1–64. [Google Scholar] [CrossRef]
- Dasu, A.; Toma-Dasu, I. Models for the Risk of Secondary Cancers from Radiation Therapy. Phys. Medica 2017, 42, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U. Mechanistic Model of Radiation-induced Cancer after Fractionated Radiotherapy Using the Linear-quadratic Formula. Med. Phys. 2009, 36, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U.; Sumila, M.; Robotka, J. Site-Specific Dose-Response Relationships for Cancer Induction from the Combined Japanese A-Bomb and Hodgkin Cohorts for Doses Relevant to Radiotherapy. Theor. Biol. Med. Model. 2011, 8, 27. [Google Scholar] [CrossRef]
- Dores, G.M.; Metayer, C.; Curtis, R.E.; Lynch, C.F.; Clarke, E.A.; Glimelius, B.; Storm, H.; Pukkala, E.; van Leeuwen, F.E.; Holowaty, E.J.; et al. Second Malignant Neoplasms Among Long-Term Survivors of Hodgkin’s Disease: A Population-Based Evaluation Over 25 Years. J. Clin. Oncol. 2002, 20, 3484–3494. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U.; Stipper, A.; Besserer, J. Dose-Response Relationship for Lung Cancer Induction at Radiotherapy Dose. Z Med. Phys. 2010, 20, 206–214. [Google Scholar] [CrossRef]
- Schneider, U.; Sumila, M.; Robotka, J.; Gruber, G.; Mack, A.; Besserer, J. Dose-Response Relationship for Breast Cancer Induction at Radiotherapy Dose. Radiat. Oncol. 2011, 6, 67. [Google Scholar] [CrossRef]
- Travis, L.B. Lung Cancer Following Chemotherapy and Radiotherapy for Hodgkin’s Disease. CancerSpectrum Knowl. Environ. 2002, 94, 182–192. [Google Scholar] [CrossRef]
- Travis, L.B.; Hill, D.A.; Dores, G.M.; Gospodarowicz, M.; van Leeuwen, F.E.; Holowaty, E.; Glimelius, B.; Andersson, M.; Wiklund, T.; Lynch, C.F.; et al. Breast Cancer Following Radiotherapy and Chemotherapy Among Young Women with Hodgkin Disease. JAMA 2003, 290, 465. [Google Scholar] [CrossRef]
- Koulis, T.; Phan, T.; Olivotto, I. Hypofractionated Whole Breast Radiotherapy: Current Perspectives. Breast Cancer Targets Ther. 2015, 7, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.J.; Wuu, C.-S. Radiation-Induced Second Cancers: The Impact of 3D-CRT and IMRT. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Grantzau, T.; Thomsen, M.S.; Væth, M.; Overgaard, J. Risk of Second Primary Lung Cancer in Women after Radiotherapy for Breast Cancer. Radiother. Oncol. 2014, 111, 366–373. [Google Scholar] [CrossRef]
- Grantzau, T.; Overgaard, J. Risk of Second Non-Breast Cancer after Radiotherapy for Breast Cancer: A Systematic Review and Meta-Analysis of 762,468 Patients. Radiother. Oncol. 2015, 114, 56–65. [Google Scholar] [CrossRef]
- Grantzau, T.; Overgaard, J. Risk of Second Non-Breast Cancer among Patients Treated with and without Postoperative Radiotherapy for Primary Breast Cancer: A Systematic Review and Meta-Analysis of Population-Based Studies Including 522,739 Patients. Radiother. Oncol. 2016, 121, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Henson, K.E.; McGale, P.; Taylor, C.; Darby, S.C. Radiation-Related Mortality from Heart Disease and Lung Cancer More than 20 Years after Radiotherapy for Breast Cancer. Br. J. Cancer 2013, 108, 179–182. [Google Scholar] [CrossRef]
- Mazonakis, M.; Damilakis, J. Out-of-Field Organ Doses and Associated Risk of Cancer Development Following Radiation Therapy with Photons. Phys. Medica 2021, 90, 73–82. [Google Scholar] [CrossRef]
- Taylor, C.; Correa, C.; Duane, F.K.; Aznar, M.C.; Anderson, S.J.; Bergh, J.; Dodwell, D.; Ewertz, M.; Gray, R.; Jagsi, R.; et al. Estimating the Risks of Breast Cancer Radiotherapy: Evidence from Modern Radiation Doses to the Lungs and Heart and From Previous Randomized Trials. J. Clin. Oncol. 2017, 35, 1641–1649. [Google Scholar] [CrossRef]
- Gray, L.H. Cellular Radiation Biology Symposium Considering Radiation Effects in the Cell and Possible Implications for Cancer Therapy. Postgrad Med. J. 1966, 42, 795. [Google Scholar] [CrossRef]
- United Nations. Scientific Committee on the Effects of Atomic Radiation, Issuing Body. Sources and Effects of Ionizing Radiation: UNSCEAR 1996 Report to the General Assembly, with Scientific Annex; United Nations: New York, NY, USA, 1996. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation Sources and Effects of Ionizing Radiation. Unscear 2000 Report to the General Assembly, with Scientific Annexes; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Davis, R.H. Production and Killing of Second Cancer Precursor Cells in Radiation Therapy: In Regard to Hall and Wuu (Int J Radiat Oncol Biol Phys 2003;56:83–88). Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 916. [Google Scholar] [CrossRef]
- Daşu, A.; Toma-Daşu, I.; Olofsson, J.; Karlsson, M. The Use of Risk Estimation Models for the Induction of Secondary Cancers Following Radiotherapy. Acta Oncol. 2005, 44, 339–347. [Google Scholar] [CrossRef]
- Timlin, C.; Warren, D.R.; Rowland, B.; Madkhali, A.; Loken, J.; Partridge, M.; Jones, B.; Kruse, J.; Miller, R. 3D Calculation of Radiation-induced Second Cancer Risk Including Dose and Tissue Response Heterogeneities. Med. Phys. 2015, 42, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Sachs, R.K.; Brenner, D.J. Solid Tumor Risks after High Doses of Ionizing Radiation. Proc. Natl. Acad. Sci. USA 2005, 102, 13040–13045. [Google Scholar] [CrossRef]
- Shuryak, I.; Hahnfeldt, P.; Hlatky, L.; Sachs, R.K.; Brenner, D.J. A New View of Radiation-Induced Cancer: Integrating Short- and Long-Term Processes. Part I: Approach. Radiat. Environ. Biophys. 2009, 48, 263–274. [Google Scholar] [CrossRef]
- Shuryak, I.; Hahnfeldt, P.; Hlatky, L.; Sachs, R.K.; Brenner, D.J. A New View of Radiation-Induced Cancer: Integrating Short- and Long-Term Processes. Part II: Second Cancer Risk Estimation. Radiat. Environ. Biophys. 2009, 48, 275–286. [Google Scholar] [CrossRef]
- Venjakob, A.; Oertel, M.; Hering, D.A.; Moustakis, C.; Haverkamp, U.; Eich, H.T. Hybrid Volumetric Modulated Arc Therapy for Hypofractionated Radiotherapy of Breast Cancer: A Treatment Planning Study. Strahlenther. Onkol. 2021, 197, 296–307. [Google Scholar] [CrossRef]
- Fogliata, A.; Seppälä, J.; Reggiori, G.; Lobefalo, F.; Palumbo, V.; De Rose, F.; Franceschini, D.; Scorsetti, M.; Cozzi, L. Dosimetric Trade-Offs in Breast Treatment with VMAT Technique. Br. J. Radiol. 2017, 90, 20160701. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.M.; Chang, J.S.; Kim, S.Y.; Keum, K.C.; Suh, C.-O.; Kim, Y.B. Hypofractionated Radiotherapy Dose Scheme and Application of New Techniques Are Associated to a Lower Incidence of Radiation Pneumonitis in Breast Cancer Patients. Front. Oncol. 2020, 10, 124. [Google Scholar] [CrossRef]
- Ciabattoni, A.; Gregucci, F.; De Rose, F.; Falivene, S.; Fozza, A.; Daidone, A.; Morra, A.; Smaniotto, D.; Barbara, R.; Lozza, L.; et al. AIRO Breast Cancer Group Best Clinical Practice 2022 Update. Tumori J. 2022, 108 (Suppl. 2), 1–144. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.B.; Yorke, E.D.; Jackson, A.; Ten Haken, R.K.; Constine, L.S.; Eisbruch, A.; Bentzen, S.M.; Nam, J.; Deasy, J.O. Use of Normal Tissue Complication Probability Models in the Clinic. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U.; Zwahlen, D.; Ross, D.; Kaser-Hotz, B. Estimation of Radiation-Induced Cancer from Three-Dimensional Dose Distributions: Concept of Organ Equivalent Dose. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1510–1515. [Google Scholar] [CrossRef]
- Mazonakis, M.; Stratakis, J.; Lyraraki, E.; Damilakis, J. Risk of Contralateral Breast and Ipsilateral Lung Cancer Induction from Forward-Planned IMRT for Breast Carcinoma. Phys. Medica 2019, 60, 44–49. [Google Scholar] [CrossRef]
- ISTAT. Istituto Nazionale di Statistica “Health for All–Italia”. Available online: https://www.istat.it/it/archivio/14562 (accessed on 24 July 2025).
- BEIR. Health Risks from Exposure to Low Levels of Ionizing Radiation, BEIR-VII, Phase 2; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Varian Medical System Eclipse Scripting A. P. I. Reference Guide 2015. Available online: https://varianapis.github.io/VarianApiBook.pdf (accessed on 24 July 2025).
- Haviland, J.S.; Owen, J.R.; Dewar, J.A.; Agrawal, R.K.; Barrett, J.; Barrett-Lee, P.J.; Dobbs, H.J.; Hopwood, P.; Lawton, P.A.; Magee, B.J.; et al. The UK Standardisation of Breast Radiotherapy (START) Trials of Radiotherapy Hypofractionation for Treatment of Early Breast Cancer: 10-Year Follow-up Results of Two Randomised Controlled Trials. Lancet Oncol. 2013, 14, 1086–1094. [Google Scholar] [CrossRef]
- Paganetti, H.; Depauw, N.; Johnson, A.; Forman, R.B.; Lau, J.; Jimenez, R. The Risk for Developing a Secondary Cancer after Breast Radiation Therapy: Comparison of Photon and Proton Techniques. Radiother. Oncol. 2020, 149, 212–218. [Google Scholar] [CrossRef]
- Raptis, A.; Ödén, J.; Ardenfors, O.; Flejmer, A.M.; Toma-Dasu, I.; Dasu, A. Cancer Risk after Breast Proton Therapy Considering Physiological and Radiobiological Uncertainties. Phys. Medica 2020, 76, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Timlin, C.; Loken, J.; Kruse, J.; Miller, R.; Schneider, U. Comparing Second Cancer Risk for Multiple Radiotherapy Modalities in Survivors of Hodgkin Lymphoma. Br. J. Radiol. 2021, 94, 20200354. [Google Scholar] [CrossRef] [PubMed]
Treatment Type | V5 (%) | V20 (%) | OED (Gy) | EAR (1/10,000 PY) | LAR (1/10,000 P) | Treatment Type |
---|---|---|---|---|---|---|
3D-CRT SF | 24.7 (12.3–35.3) | 11.3 (2.1–19.2) | 2.9 (2.0–3.6) | 32 (23–42) | 274 (31–455) | 1.80 (1.26–1.86) |
3D-CRT HF | 22.0 (9.4–32.1) | 11.3 (1.9–17.9) | 2.5 (1.7–3.2) | 28 (20–37) | 241 (27–400) | 1.70 (1.23–1.76) |
Paper | Prescription Dose | Treatment Type | EAR (1/10,000 PY) | LAR (1/10,000 P) | agea (Y) |
---|---|---|---|---|---|
Mazonakis et al. [35] | 50 Gy at 2 Gy/fraction | IMRT | / | 359–494 | 75 |
Mazonakis et al. [35] | 42.56 Gy at 2.66 Gy/fraction | IMRT | / | 316–437 | 75 |
Paganetti et al. [40] | 50 Gy at 2 Gy/fraction or 50.4 Gy at 1.8 Gy/fraction | 3D-CRT | 46 (23–55) | 458 (275–654) | 70 |
Paganetti et al. [40] | 50 Gy at 2 Gy/fraction or 50.4 Gy at 1.8 Gy/fraction | VMAT | 61 (58–64) | 656 (410–770) | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Anna, A.; Stella, G.; Bonanno, E.; Borzì, G.R.; Cavalli, N.; Girlando, A.; Gueli, A.M.; Pace, M.; Zirone, L.; Marino, C. Radiotherapy-Induced Lung Cancer Risk in Breast Cancer Patients: A Retrospective Comparison of Hypofractionated and Standard Fractionated 3D-CRT Treatments. Appl. Sci. 2025, 15, 8436. https://doi.org/10.3390/app15158436
D’Anna A, Stella G, Bonanno E, Borzì GR, Cavalli N, Girlando A, Gueli AM, Pace M, Zirone L, Marino C. Radiotherapy-Induced Lung Cancer Risk in Breast Cancer Patients: A Retrospective Comparison of Hypofractionated and Standard Fractionated 3D-CRT Treatments. Applied Sciences. 2025; 15(15):8436. https://doi.org/10.3390/app15158436
Chicago/Turabian StyleD’Anna, Alessia, Giuseppe Stella, Elisa Bonanno, Giuseppina Rita Borzì, Nina Cavalli, Andrea Girlando, Anna Maria Gueli, Martina Pace, Lucia Zirone, and Carmelo Marino. 2025. "Radiotherapy-Induced Lung Cancer Risk in Breast Cancer Patients: A Retrospective Comparison of Hypofractionated and Standard Fractionated 3D-CRT Treatments" Applied Sciences 15, no. 15: 8436. https://doi.org/10.3390/app15158436
APA StyleD’Anna, A., Stella, G., Bonanno, E., Borzì, G. R., Cavalli, N., Girlando, A., Gueli, A. M., Pace, M., Zirone, L., & Marino, C. (2025). Radiotherapy-Induced Lung Cancer Risk in Breast Cancer Patients: A Retrospective Comparison of Hypofractionated and Standard Fractionated 3D-CRT Treatments. Applied Sciences, 15(15), 8436. https://doi.org/10.3390/app15158436