Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,187)

Search Parameters:
Keywords = Gl261 cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1921 KiB  
Article
A Bivalent mRNA Vaccine Efficiently Prevents Gammaherpesvirus Latent Infection
by Yannan Yin, Jinkai Zang, Huichun Shi, Zhuang Wang, Linlin Kuang, Shuxia Wang, Haikun Wang, Ning Li, Xiaozhen Liang and Zhong Huang
Vaccines 2025, 13(8), 830; https://doi.org/10.3390/vaccines13080830 - 4 Aug 2025
Viewed by 170
Abstract
Background: It is still challenging to develop effective vaccines against tumorigenic human gammaherpesviruses such as Epstein–Barr virus (EBV). A major obstacle is the lack of a small animal model that reproduces the natural infection course of human gammaherpesviruses to allow for proper [...] Read more.
Background: It is still challenging to develop effective vaccines against tumorigenic human gammaherpesviruses such as Epstein–Barr virus (EBV). A major obstacle is the lack of a small animal model that reproduces the natural infection course of human gammaherpesviruses to allow for proper assessment of vaccine efficacy. Murine gammaherpesvirus 68 (MHV68) is a natural pathogen of wild rodents and laboratory mice and therefore can be used as a surrogate for human gammaherpesviruses to evaluate vaccination strategies. Methods: In this study, two mRNA vaccine candidates were generated, one encoding a fusion protein of the MHV68 gH with the gL (gHgL-mRNA) and the other expressing the MHV68 gB protein (gB-mRNA). The immunogenicity and protective efficacy of the mRNA vaccine candidates were evaluated in a mouse model of MHV68 infection. Results: The gHgL-mRNA but not the gB-mRNA candidate vaccine was able to induce neutralizing antibodies in mice, whereas both vaccines could elicit antigen-specific T-cell responses. Following MHV68 intranasal inoculation, complete blocking of the establishment of viral latency was observed in some mice immunized with individual gHgL-mRNA or gB-mRNA vaccines. Notably, co-immunization with the two mRNA vaccines appeared to be more effective than individual vaccines, achieving sterile immunity in 50% of the vaccinated mice. Conclusions: This study demonstrates that immunization with mRNA platform-based subunit vaccines is indeed capable of preventing MHV68 latent infection, thus validating a safe and efficacious vaccination strategy that may be applicable to human gammaherpesviruses. Full article
(This article belongs to the Special Issue The Development of mRNA Vaccines)
Show Figures

Figure 1

26 pages, 2221 KiB  
Article
Effects of ε-Poly-L-Lysine/Chitosan Composite Coating on the Storage Quality, Reactive Oxygen Species Metabolism, and Membrane Lipid Metabolism of Tremella fuciformis
by Junzheng Sun, Yingying Wei, Longxiang Li, Mengjie Yang, Yusha Liu, Qiting Li, Shaoxiong Zhou, Chunmei Lai, Junchen Chen and Pufu Lai
Int. J. Mol. Sci. 2025, 26(15), 7497; https://doi.org/10.3390/ijms26157497 - 3 Aug 2025
Viewed by 125
Abstract
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated [...] Read more.
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated by surface spraying, with distilled water serving as the control. The effects of the coating on storage quality, physicochemical properties, reactive oxygen species (ROS) metabolism, and membrane lipid metabolism were evaluated during storage at (25 ± 1) °C. The results showed that the ε-PL/CTS composite coating significantly retarded quality deterioration, as evidenced by reduced weight loss, maintained whiteness and color, and higher retention of soluble sugars, soluble solids, and soluble proteins. The coating also effectively limited water migration and loss. Mechanistically, the coated T. fuciformis exhibited enhanced antioxidant capacity, characterized by increased superoxide anion (O2) resistance capacity, higher activities of antioxidant enzymes (SOD, CAT, APX), and elevated levels of non-enzymatic antioxidants (AsA, GSH). This led to a significant reduction in malondialdehyde (MDA) accumulation, alongside improved DPPH radical scavenging activity and reducing power. Furthermore, the ε-PL/CTS coating preserved cell membrane integrity by inhibiting the activities of lipid-degrading enzymes (lipase, LOX, PLD), maintaining higher levels of key phospholipids (phosphatidylinositol and phosphatidylcholine), delaying phosphatidic acid accumulation, and consequently reducing cell membrane permeability. In conclusion, the ε-PL/CTS composite coating effectively extends the shelf life and maintains the quality of postharvest T. fuciformis by modulating ROS metabolism and preserving membrane lipid homeostasis. This study provides a theoretical basis and a practical approach for the quality control of fresh T. fuciformis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 868 KiB  
Article
The Response of Cell Cultures to Nutrient- and Serum-Induced Changes in the Medium
by Marijana Leventić, Katarina Mišković Špoljarić, Karla Vojvodić, Nikolina Kovačević, Marko Obradović and Teuta Opačak-Bernardi
Sci 2025, 7(3), 105; https://doi.org/10.3390/sci7030105 - 2 Aug 2025
Viewed by 206
Abstract
Cell culture models are of central importance for the investigation of cellular metabolism, proliferation and stress responses. In this study, the effects of different concentrations of glucose (1 g/L vs. 4.5 g/L) and fetal bovine serum (FBS; 5%, 10%, 15%) on viability, mitochondrial [...] Read more.
Cell culture models are of central importance for the investigation of cellular metabolism, proliferation and stress responses. In this study, the effects of different concentrations of glucose (1 g/L vs. 4.5 g/L) and fetal bovine serum (FBS; 5%, 10%, 15%) on viability, mitochondrial function and autophagy are investigated in four human cell lines: MRC-5, HeLa, Caco-2 and SW-620. Cells were cultured in defined media for 72 h, and viability was assessed by LDH release, mitochondrial membrane potential using Rhodamine 123, ATP content by luminescence and autophagy activity by dual fluorescence staining. The results showed that HeLa and SW-620 cancer cells exhibited increased proliferation and mitochondrial activity under high glucose conditions, while low glucose media resulted in decreased ATP content and increased membrane permeability in HeLa cells. MRC-5 fibroblasts and Caco-2 cells showed greater resilience to nutrient stress, with minimal changes in LDH release and consistent proliferation. Autophagy was activated under all conditions, with a significant increase only in selected cell-medium combinations. These results highlight the importance of medium composition in influencing cellular bioenergetics and stress responses, which has implications for cancer research, metabolic disease modelling and the development of serum-free culture systems for regenerative medicine. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

14 pages, 990 KiB  
Article
Comparative Analysis of the Biomass Production and Nutritional Profiles of Two Wild-Type Strains of Yarrowia lipolytica
by David Torres-Añorve and Georgina Sandoval
Appl. Microbiol. 2025, 5(3), 77; https://doi.org/10.3390/applmicrobiol5030077 - 1 Aug 2025
Viewed by 128
Abstract
Sustainability represents a significant global challenge, requiring a balance between environmental impact and the use of natural resources. White biotechnology, which uses microorganisms and enzymes for environmentally friendly products and processes, offers promising solutions to support a growing population. Within this context, the [...] Read more.
Sustainability represents a significant global challenge, requiring a balance between environmental impact and the use of natural resources. White biotechnology, which uses microorganisms and enzymes for environmentally friendly products and processes, offers promising solutions to support a growing population. Within this context, the yeast Yarrowia lipolytica stands out, so we investigated the generation of biomass from two wild strains (ATCC 9773 and NRRL Y-50997) using different carbon sources. Additionally, protein content and amino acid profiles were assessed via standardized analytical methods to evaluate their potential as nutritional yeasts. Both strains demonstrated potential as nutritional yeasts, with biomass productivities of up to 35.5 g/L and 42 g/L, respectively. The protein content was high, with 58.8% for ATCC 9773 and 58.2% for NRRL Y-50997. Furthermore, the strains presented essential amino acid contents of 62.6% and 41.5%, with lysine being the most abundant amino acid. These findings underscore the versatility and productivity of Y. lipolytica, highlighting its potential for sustainable biotechnological applications such as single-cell protein production. Full article
Show Figures

Graphical abstract

15 pages, 4431 KiB  
Article
Application of Hybrid Platelet Technology for Platelet Count Improves Accuracy of PLT Measurement in Samples from Patients with Different Types of Anemia
by Małgorzata Wituska and Olga Ciepiela
J. Clin. Med. 2025, 14(15), 5401; https://doi.org/10.3390/jcm14155401 - 31 Jul 2025
Viewed by 174
Abstract
Background: Reliable platelet (PLT) measurement is crucial for the accurate diagnosis of thrombocytopenia. Several methods exist for automated PLT counting, including the impedance method (PLT-I), as well as optical and fluorescence methods (PLT-F). The impedance method is cost-effective but susceptible to interference from [...] Read more.
Background: Reliable platelet (PLT) measurement is crucial for the accurate diagnosis of thrombocytopenia. Several methods exist for automated PLT counting, including the impedance method (PLT-I), as well as optical and fluorescence methods (PLT-F). The impedance method is cost-effective but susceptible to interference from small red blood cells and schistocytes. In contrast, fluorescent assessment offers higher specificity but is more expensive, as it requires additional dyes and detectors. Hybrid platelet counting (PLT-H) combines impedance with measurements from the leukocyte differentiation channel and is available without additional cost. Aim: The aim of this study was to evaluate the accuracy of hybrid PLT counting in anemic samples. Methods: In this retrospective study, PLT counts from 583 unselected anemic samples were analyzed using two different analyzers: the Sysmex XN3500, equipped with fluorescent PLT-F technology, and the Mindray BC6200, which uses both impedance (PLT-I) and hybrid (PLT-H) technologies. Agreement between PLT-I and PLT-F, as well as between PLT-H and PLT-F, was assessed using Bland–Altman plots. Correlation between the methods was evaluated using the Pearson correlation coefficient. Results: The hybrid method demonstrated better accuracy in PLT counting compared to the impedance method. Correlation between PLT-H and PLT-F was excellent, ranging from 0.991 to 0.999. In thrombocytopenic samples (PLT < 50 G/L), the hybrid method also provided more reliable PLT counts than the impedance method, reducing the number of falsely elevated PLT results by nearly fivefold. Conclusions: Hybrid platelet counting yields more accurate results than the impedance method in anemic samples and shows excellent correlation with the fluorescence method. Full article
(This article belongs to the Special Issue Clinical Trends and Prospects in Laboratory Hematology)
Show Figures

Figure 1

13 pages, 1259 KiB  
Article
Exportin 1 (XPO1) Expression and Effectiveness of XPO1 Inhibitor Against Canine Lymphoma Cell Lines
by Hardany Primarizky, Satoshi Kambayashi, Kenji Baba, Kenji Tani and Masaru Okuda
Vet. Sci. 2025, 12(8), 700; https://doi.org/10.3390/vetsci12080700 - 26 Jul 2025
Viewed by 521
Abstract
Lymphoma is the most common neoplasm of lymphoid tissues in dogs. Exportin 1 (XPO1) is an important major nuclear receptor for exporting proteins and RNA species. The XPO1 upregulation can eliminate some tumor suppressor proteins (TSPs) function upon their nuclear–cytoplasmic export. The XPO1 [...] Read more.
Lymphoma is the most common neoplasm of lymphoid tissues in dogs. Exportin 1 (XPO1) is an important major nuclear receptor for exporting proteins and RNA species. The XPO1 upregulation can eliminate some tumor suppressor proteins (TSPs) function upon their nuclear–cytoplasmic export. The XPO1 inhibitor, KPT-335, blocks the translocation of TSPs and restores their function to induce cell cycle arrest, apoptosis, and cell proliferation. This in vitro study aimed to evaluate the XPO1 mRNA and protein expression in canine lymphoma cell lines and confirm the relevance with KPT-335. XPO1 mRNA and protein levels were quantified, and the effect of KPT-335 was assessed by a cell proliferation assay. The results indicated that XPO1 mRNA and protein were highly expressed in 17-71, CLBL-1, CLC, CLGL-90, and UL-1, and were moderately expressed in GL-1, Ema, and Nody-1. All canine lymphoma cell lines showed dose-dependent growth inhibition and decreased cell viability in response to KPT-335, with IC50 concentrations ranged from 89.8–418 nM. The expression levels of XPO1 mRNA and protein were related; however, no correlation was found between those expression levels and the efficacy of KPT-335. These findings suggest that XPO1 may represent a promising target for therapeutic intervention in canine lymphoma. Full article
(This article belongs to the Section Veterinary Internal Medicine)
Show Figures

Figure 1

27 pages, 4348 KiB  
Article
Valorization of Riceberry Broken Rice and Soybean Meal for Optimized Production of Multifunctional Exopolysaccharide by Bacillus tequilensis PS21 with Potent Bioactivities Using Response Surface Methodology
by Thipphiya Karirat, Worachot Saengha, Nantaporn Sutthi, Pheeraya Chottanom, Sirirat Deeseenthum, Nyuk Ling Ma and Vijitra Luang-In
Polymers 2025, 17(15), 2029; https://doi.org/10.3390/polym17152029 - 25 Jul 2025
Viewed by 350
Abstract
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL [...] Read more.
This study explores the valorization of agro-industrial by-products—riceberry broken rice (RBR) and soybean meal (SBM)—as cost-effective substrates for enhancing exopolysaccharide (EPS) production by Bacillus tequilensis PS21. Eight Bacillus strains were screened, and B. tequilensis PS21 demonstrated the highest EPS yield (2.54 g/100 mL DW). The EPS displayed a strong antioxidant capacity with 65.5% DPPH and 80.5% hydroxyl radical scavenging, and a FRAP value of 6.51 mg Fe2+/g DW. Antimicrobial testing showed inhibition zones up to 10.07 mm against Streptococcus agalactiae and 7.83 mm against Staphylococcus aureus. Optimization using central composite design (CCD) and the response surface methodology (RSM) revealed the best production at 5% (w/v) RBR, 3% (w/v) SBM, pH 6.66, and 39.51 °C, yielding 39.82 g/L EPS. This EPS is a moderate-molecular-weight (11,282 Da) homopolysaccharide with glucose monomers. X-ray diffraction (XRD) showed an amorphous pattern, favorable for solubility in biological applications. Thermogravimetric analysis (TGA) demonstrated thermal stability up to ~250 °C, supporting its suitability for high-temperature processing. EPS also exhibited anticancer activity with IC50 values of 226.60 µg/mL (MCF-7) and 224.30 µg/mL (HeLa) at 72 h, reduced colony formation, inhibited cell migration, and demonstrated anti-tyrosinase, anti-collagenase, and anti-elastase effects. This study demonstrates the successful valorization of agro-industrial by-products—RBR and SBM—for the high-yield production of multifunctional EPS with potent antioxidant, antimicrobial, and anticancer properties. The findings highlight the sustainable potential of these low-cost substrates in supporting the development of green and value-added bioproducts, with promising utilizations across the food, pharmaceutical, and cosmetic sectors. Full article
(This article belongs to the Topic Microbes and Their Products for Sustainable Human Life)
Show Figures

Figure 1

14 pages, 1410 KiB  
Article
Uptake, Distribution, and Activity of Pluronic F68 Adjuvant in Wheat and Its Endophytic Bacillus Isolate
by Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Astrid Jacobson, Joan E. McLean, Anne J. Anderson and David W. Britt
Agrochemicals 2025, 4(3), 12; https://doi.org/10.3390/agrochemicals4030012 - 23 Jul 2025
Viewed by 260
Abstract
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for [...] Read more.
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for direct biological activity in wheat. F68 binds to and inserts into lipid membranes, which may benefit crops under abiotic stress. F68’s interactions with Triticum aestivum (var Juniper) seedlings and a seed-borne Bacillus spp. endophyte are presented. At concentrations below 10 g/L, F68-primed wheat seeds exhibited unchanged emergence. Root-applied fluorescein-F68 (fF68) was internalized in root epidermal cells and concentrated in highly mobile endosomes. The potential benefit of F68 in droughted wheat was examined and contrasted with wheat treated with the osmolyte, glycine betaine (GB). Photosystem II activity of droughted plants dropped significantly below non-droughted controls, and no clear benefit of F68 (or GB) during drought or rehydration was observed. However, F68-treated wheat exhibited increased transpiration values (for watered plants only) and enhanced shoot dry mass (for watered and droughted plants), not observed for GB-treated or untreated plants. The release of seed-borne bacterial endophytes into the spermosphere of germinating seeds was not affected by F68 (for F68-primed seeds as well as F68 applied to roots), and the planktonic growth of a purified Bacillus spp. seed endophyte was not reduced by F68 applied below the critical micelle concentration. These studies demonstrated that F68 entered wheat root cells, concentrated in endosomes involved in transport, significantly promoted shoot growth, and showed no adverse effects to plant-associated bacteria. Full article
Show Figures

Figure 1

18 pages, 6054 KiB  
Article
Mitotic Activity, Cell Survival, and Neuronal Differentiation in the Hilus of the Dentate Gyrus Under Physiological and Hypothyroid Conditions in Adult Wistar Rats
by Karla Sánchez-Huerta, Ana Karen García-Juárez, Lía Diana Colmenero-Rodríguez, Yuliana García-Martínez and Jorge Pacheco-Rosado
Cells 2025, 14(14), 1112; https://doi.org/10.3390/cells14141112 - 19 Jul 2025
Viewed by 304
Abstract
The adult rodent hippocampus is capable of maintaining its capacity to generate new neurons in the subgranular zone (SGZ) of the dentate gyrus (DG). Interestingly, proliferative cells have also been described in the hilus. The involvement of the hilar neurogenesis process in hippocampal [...] Read more.
The adult rodent hippocampus is capable of maintaining its capacity to generate new neurons in the subgranular zone (SGZ) of the dentate gyrus (DG). Interestingly, proliferative cells have also been described in the hilus. The involvement of the hilar neurogenesis process in hippocampal physiology is unknown. Thyroid hormones (THs) are necessary for the survival of postmitotic progenitor cells, neuroblasts, and immature granule neurons in the SGZ. In contrast, evidence concerning the role of THs in the hilar neurogenesis process is limited. The present study characterized the mitotic activity, cell survival, and neuronal differentiation of hilar neurogenesis under physiological and hypothyroid conditions and compared them with those of the granular layer (GL) and the SGZ of the DG in adult Wistar rats. We found that, under physiological conditions, the hilus harbors fewer proliferative cells than the neurogenic zone (GL/SGZ) does, with a rate of cell survival of 18.9% and a rate of differentiation into granular neurons of 19%. Interestingly, hypothyroidism provokes decreased cell proliferation and an increased rate of cell survival without affecting neuronal differentiation. These effects induced by hypothyroidism in the hilus were different or inclusive, contrary to those observed in the neurogenic zone. Full article
Show Figures

Graphical abstract

18 pages, 3361 KiB  
Article
Mechanism Underlying Ganoderma lucidum Polysaccharide Biosynthesis Regulation by the β-1,3-Glucosyltransferase Gene gl20535
by Jingyun Liu, Mengmeng Xu, Mengye Shen, Junxun Li, Lei Chen, Zhenghua Gu, Guiyang Shi and Zhongyang Ding
J. Fungi 2025, 11(7), 532; https://doi.org/10.3390/jof11070532 - 17 Jul 2025
Viewed by 493
Abstract
Ganoderma lucidum polysaccharides (GLPs) are natural compounds with a broad spectrum of biological activities. β-1,3-glucosyltransferase (GL20535) plays an important role in polysaccharide synthesis by catalyzing the transfer of UDP-glucose to extend sugar chains, but its underlying mechanism remains unclear. In this study, [...] Read more.
Ganoderma lucidum polysaccharides (GLPs) are natural compounds with a broad spectrum of biological activities. β-1,3-glucosyltransferase (GL20535) plays an important role in polysaccharide synthesis by catalyzing the transfer of UDP-glucose to extend sugar chains, but its underlying mechanism remains unclear. In this study, the regulatory mechanism of GL20535 in polysaccharide synthesis was elucidated by overexpressing and silencing gl20535 in G. lucidum. Overexpression of gl20535 resulted in maximum increases of 18.08%, 79.04%, and 18.01% in intracellular polysaccharide (IPS), extracellular polysaccharide (EPS), and β-1,3-glucan contents, respectively. In contrast, silencing gl20535 resulted in maximum reductions of 16.97%, 30.20%, and 23.56% in IPS, EPS, and β-1,3-glucan contents, respectively. These phenomena in the overexpression strains were attributed to gl20535-mediated promotion of UDP-glucose synthesis in the sugar donor pathway and upregulation of the expression of glycoside hydrolase genes. The opposite trend was observed in the silenced strains. In mycelial growth studies, neither overexpression nor silencing of gl20535 affected biomass and cell wall thickness. Furthermore, the GL20535 isozyme gene gl24465 remained unaffected in gl20535-overexpressed strains but was upregulated in gl20535-silenced strains, suggesting a compensatory regulatory relationship. These findings reveal the regulatory role of GL20535 on gene expression in the GLPs synthesis pathway and deepen our understanding of GL20535 function in the polysaccharide network of edible and medicinal fungi. Full article
(This article belongs to the Special Issue Molecular Biology of Mushroom)
Show Figures

Figure 1

23 pages, 3262 KiB  
Article
An Exploratory Study on the Growth Dynamics of Alkalihalophilus marmarensis Using a Model-Based Approach
by Yağmur Atakav, Eldin Kurpejović, Dilek Kazan and Nihat Alpagu Sayar
Appl. Microbiol. 2025, 5(3), 69; https://doi.org/10.3390/applmicrobiol5030069 - 17 Jul 2025
Viewed by 206
Abstract
Alkalihalophilus marmarensis is an obligate alkaliphile with exceptional tolerance to high-pH environments, making it a promising candidate for industrial bioprocesses that require contamination-resistant and extremophilic production platforms. However, its practical deployment is hindered by limited biomass formation under extreme conditions, which constrains overall [...] Read more.
Alkalihalophilus marmarensis is an obligate alkaliphile with exceptional tolerance to high-pH environments, making it a promising candidate for industrial bioprocesses that require contamination-resistant and extremophilic production platforms. However, its practical deployment is hindered by limited biomass formation under extreme conditions, which constrains overall productivity. This study presents a model-driven investigation of how pH (8.8 and 10.5), culture duration (24 and 48 h), and nitrogen source composition (peptone and meat extract) affect cell dry mass, lactate, and protease synthesis. Using the response surface methodology and multi-objective optimization, we established predictive models (R2 up to 0.92) and uncovered key trade-offs in biomass and metabolite yields. Our findings reveal that peptone concentration critically shapes the metabolic output, with low levels inhibiting growth and high levels suppressing protease activity. Maximum cell dry mass (4.5 g/L), lactate (19.3 g/L), and protease activity (43.5 U/mL) were achieved under distinct conditions, highlighting the potential for targeted process tuning. While the model validation confirmed predictions for lactate, deviations in cell dry mass and protease outputs underscore the complexity of growth–product interdependencies under nutrient-limited regimes. This work delivers a foundational framework for developing fermentations with A. marmarensis and advancing its application in sustainable, high-pH industrial bioprocesses. The insights gained here can be further leveraged through synthetic biology and bioprocess engineering to fully exploit the metabolic potential of obligate alkaliphiles like A. marmarensis. Full article
Show Figures

Figure 1

16 pages, 2021 KiB  
Article
The Cytoplasmic Tail of Ovine Herpesvirus 2 Glycoprotein B Affects Cell Surface Expression and Is Required for Membrane Fusion
by Colleen M. Lynch, Maria K. Herndon, McKenna A. Hull, Daniela D. Moré, Katherine N. Baker, Cristina W. Cunha and Anthony V. Nicola
Viruses 2025, 17(7), 994; https://doi.org/10.3390/v17070994 - 16 Jul 2025
Viewed by 373
Abstract
Ovine herpesvirus 2 (OvHV-2) causes the fatal veterinary disease malignant catarrhal fever (MCF). Fusion is an essential step in the host cell entry of enveloped viruses and is an important target for vaccine development. OvHV-2 cannot be propagated in vitro, so a robust [...] Read more.
Ovine herpesvirus 2 (OvHV-2) causes the fatal veterinary disease malignant catarrhal fever (MCF). Fusion is an essential step in the host cell entry of enveloped viruses and is an important target for vaccine development. OvHV-2 cannot be propagated in vitro, so a robust virus-free cell–cell membrane fusion assay is necessary to elucidate its entry mechanism. OvHV-2 cell–cell fusion requires three conserved herpesviral envelope glycoproteins: gB, gH, and gL. OvHV-2 fusion activity is detectable but low. We hypothesize that enhancing the cell surface expression of gB, which is the core herpesviral fusogen, will increase cell–cell fusion. We generated C-terminal truncation mutants of gB and determined their cell surface expression, subcellular distribution, and fusion activity. Two mutants, including one that lacked the entire cytoplasmic tail domain, failed to function in the cell–cell fusion assay, despite wild-type levels of surface expression. This suggests that the OvHV-2 gB cytoplasmic tail is critical for fusion. A gB mutant truncated at amino acid 847 showed increased surface expression and fusion relative to the wild type. This suggests that the robust fusion activity of gB847 is the result of increased surface expression. gB847 may be used in place of wild-type gB in an improved, more robust OvHV-2 fusion assay. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 217 KiB  
Article
Dietary Fermented Rapeseed Meal During the Grower Period Affects Growth Performance, Intestinal Health, and Antioxidant Status in Sansui Ducks
by Yulong Feng, Meijuan Li, Yuxi Lu, Chengcheng Tian, Yu Zhao, Jianwei Li, Zhiguo Wen and Yongwen Zhu
Animals 2025, 15(14), 2078; https://doi.org/10.3390/ani15142078 - 14 Jul 2025
Viewed by 189
Abstract
The aim was to investigate effects of various proportions (0 to 20%) of fermented rapeseed meal (FRSM) on performance, intestinal health, and antioxidant status in Sansui ducks (Sansui Sheldrake ducks). A total of 350 male ducklings, 15 d old, were allocated into [...] Read more.
The aim was to investigate effects of various proportions (0 to 20%) of fermented rapeseed meal (FRSM) on performance, intestinal health, and antioxidant status in Sansui ducks (Sansui Sheldrake ducks). A total of 350 male ducklings, 15 d old, were allocated into five dietary treatments with seven replicate pens of 10 birds per pen. The starter diets had 0, 5, 10, 15, or 20% FRSM that contained 0, 1.08, 2.17, 3.25, or 4.34 µmol glucosinolates (GLS/g of complete feed, respectively, fed from d 15 to d 35. The average daily feed intake (ADFI) and feed conversion ratio (FCR) from d 15 to 35 increased linearly with the dietary FRSM inclusion, with the ducks fed 15 or 20% FRSM diets having higher (p < 0.05) ADFIs and FCRs than the ducks fed 0% FRSM. The dietary FRSM inclusion levels of up to 15% were accompanied by decreased catalase (CAT) and antioxidant capacity (AOC) activities in the livers and jejunum of the ducks at d 35. In addition, the 20% FRSM (4.34 µmol GLS/g diet) decreased the villus height, crypt depth, muscular thickness, and goblet cell counts in the jejunum and ileum. In conclusion, 15 or 20% dietary FRSM (3.25 or 4.34 µmol GLS/g diet) during the grower period in Sansui ducks decreased feed efficiency, disrupted hepatic antioxidant balance, and impaired intestinal morphology and structure. The FRSM inclusion of ≥15% (3.25 µmol glucosinolates/g) impaired feed efficiency and antioxidant activity, while the 20% FRSM (4.34 µmol glucosinolates/g) induced intestinal damage in the growing Sansui ducks. Full article
(This article belongs to the Special Issue Alternative Protein Sources for Animal Feeds)
20 pages, 2249 KiB  
Article
Cellulolytic Potential of Newly Isolated Alcohol-Tolerant Bacillus methylotrophicus
by Anna Choińska-Pulit, Justyna Sobolczyk-Bednarek and Wojciech Łaba
Materials 2025, 18(14), 3256; https://doi.org/10.3390/ma18143256 - 10 Jul 2025
Viewed by 279
Abstract
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as [...] Read more.
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as most beneficial. Plackett–Burman design was used for screening medium components, while Box–Behnken design was further applied to model the impact of the three most influential variables. The maximum approximated cellulase activity was 0.469 U/mL (1 U = 1 µmol of reducing sugars/1 min), at 48.6 g/L substrate, 5.3 g/L ammonium sulfate, pH 6.1. The partially purified cellulase was characterized, which demonstrated broad range of optimal pH (6.5–9.4), temperature (50–60 °C), and sensitivity to metals. Changes in lignin and pentosans content was demonstrated as a result of BSG hydrolysis with a cell-free cellulase preparation. The produced enzyme was used for hydrolysis of various chemically pretreated (NaOH and H2SO4) cellulosic substrates, where for reused alkali-pretreated BSG (after microbial enzyme production) the saccharification efficiency was at a level of 25%. The cellulolytic potential of the bacterial strain, along with its resistance to ethanol, present a beneficial combination, potentially applicable to aid saccharification of lignocellulosic by-products for biofuel production. Full article
(This article belongs to the Special Issue Biomass Materials Recycling: Utilization and Valorisation)
Show Figures

Figure 1

18 pages, 2822 KiB  
Article
A Substrate–Product Switch Mathematical Model for the Growth Kinetics of Ethanol Metabolism from Longan Solid Waste Using Candida tropicalis
by Juan Feng, Chatchadaporn Mahakuntha, Su Lwin Htike, Charin Techapun, Yuthana Phimolsiripol, Pornchai Rachtanapun, Julaluk Khemacheewakul, Siraphat Taesuwan, Kritsadaporn Porninta, Sumeth Sommanee, Rojarej Nunta and Noppol Leksawasdi
Agriculture 2025, 15(14), 1472; https://doi.org/10.3390/agriculture15141472 - 9 Jul 2025
Viewed by 292
Abstract
A substrate–product switch model was proposed to describe ethanol fermentation from longan solid waste using Candida tropicalis at an initial glucose and xylose ratio of 2 to 1. The model incorporated multiple rate equations for cell growth, sugar uptake, and ethanol production along [...] Read more.
A substrate–product switch model was proposed to describe ethanol fermentation from longan solid waste using Candida tropicalis at an initial glucose and xylose ratio of 2 to 1. The model incorporated multiple rate equations for cell growth, sugar uptake, and ethanol production along with ethanol consumption. It elucidated the following three-step mechanism: (I) sugar uptake, (II) sugar conversion, and (III) ethanol consumption concerning the effects of concentration factor (CF) and associated growth function. Optimal kinetic parameters were estimated and validated against experimental data. The identification of two critical xylose concentrations showed that ethanol consumption either preceded or coincided with xylose consumption cessation. The phenolics inhibitory effect of gallic acid, ellagic acid, pyrogallol, and catechol on cell growth and ethanol production was elucidated with relatively minimal effect. The highest ethanol concentration of 25.5 g/L was reached with corresponding ethanol mass yield and productivity of 0.30 g/g and 1.063 g/L/h, respectively. The proposed model and kinetics provide valuable insights for designing and optimizing ethanol fermentation, contributing to more sustainable and cost-effective ethanol production. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop