Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = Gaussian local search

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9948 KiB  
Article
A Linear Feature-Based Method for Signal Photon Extraction and Bathymetric Retrieval Using ICESat-2 Data
by Zhenwei Shi, Jianzhong Li, Ze Yang, Hui Long, Hongwei Cui, Shibin Zhao, Xiaokai Li and Qiang Li
Remote Sens. 2025, 17(16), 2792; https://doi.org/10.3390/rs17162792 - 12 Aug 2025
Viewed by 199
Abstract
The ATL03 data from the photon-counting LiDAR onboard the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) holds substantial potential for shallow-water bathymetry due to its high sensitivity and broad spatial coverage. However, distinguishing signal photons from noise in low-photon-density and complex terrain environments [...] Read more.
The ATL03 data from the photon-counting LiDAR onboard the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) holds substantial potential for shallow-water bathymetry due to its high sensitivity and broad spatial coverage. However, distinguishing signal photons from noise in low-photon-density and complex terrain environments remains a significant challenge. This study proposes an adaptive photon extraction algorithm based on linear feature analysis, incorporating resolution adjustment, segmented Gaussian fitting, and linear feature-based signal identification. To address the reduction in signal photon density with increasing water depth, the method employs a depth-dependent adaptive neighborhood search radius, which dynamically expands into deeper regions to ensure reliable local feature computation. Experiments using eight ICESat-2 datasets demonstrated that the proposed method achieves average precision and recall values of 0.977 and 0.958, respectively, with an F1 score of 0.967 and an overall accuracy of 0.972. The extracted bathymetric depths demonstrated strong agreement with the reference Continuously Updated Digital Elevation Model (CUDEM), achieving a coefficient of determination of 0.988 and a root mean square error of 0.829 m. Compared to conventional methods, the proposed approach significantly improves signal photon extraction accuracy, adaptability, and parameter stability, particularly in sparse photon and complex terrain scenarios. In comparison with the DBSCAN algorithm, the proposed method achieves a 30.0% increase in precision, 17.3% improvement in recall, 24.3% increase in F1 score, and 22.2% improvement in overall accuracy. These findings confirm the effectiveness and robustness of the proposed algorithm for ICESat-2 shallow-water bathymetry applications. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

18 pages, 16074 KiB  
Article
DGMN-MISABO: A Physics-Informed Degradation and Optimization Framework for Realistic Synthetic Droplet Image Generation in Inkjet Printing
by Jiacheng Cai, Jiankui Chen, Wei Tang, Jinliang Wu, Jingcheng Ruan and Zhouping Yin
Machines 2025, 13(8), 657; https://doi.org/10.3390/machines13080657 - 27 Jul 2025
Viewed by 218
Abstract
The Online Droplet Inspection system plays a vital role in closed-loop control for OLED inkjet printing. However, generating realistic synthetic droplet images for reliable restoration and precise measurement of droplet parameters remains challenging due to the complex, multi-factor degradation inherent to microscale droplet [...] Read more.
The Online Droplet Inspection system plays a vital role in closed-loop control for OLED inkjet printing. However, generating realistic synthetic droplet images for reliable restoration and precise measurement of droplet parameters remains challenging due to the complex, multi-factor degradation inherent to microscale droplet imaging. To address this, we propose a physics-informed degradation model, Diffraction–Gaussian–Motion–Noise (DGMN), that integrates Fraunhofer diffraction, defocus blur, motion blur, and adaptive noise to replicate real-world degradation in droplet images. To optimize the multi-parameter configuration of DGMN, we introduce the MISABO (Multi-strategy Improved Subtraction-Average-Based Optimizer), which incorporates Sobol sequence initialization for search diversity, lens opposition-based learning (LensOBL) for enhanced accuracy, and dimension learning-based hunting (DLH) for balanced global–local optimization. Benchmark function evaluations demonstrate that MISABO achieves superior convergence speed and accuracy. When applied to generate synthetic droplet images based on real droplet images captured from a self-developed OLED inkjet printer, the proposed MISABO-optimized DGMN framework significantly improves realism, enhancing synthesis quality by 37.7% over traditional manually configured models. This work lays a solid foundation for generating high-quality synthetic data to support droplet image restoration and downstream inkjet printing processes. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

23 pages, 2233 KiB  
Article
A Novel Back Propagation Neural Network Based on the Harris Hawks Optimization Algorithm for the Remaining Useful Life Prediction of Lithium-Ion Batteries
by Yuyang Zhou, Zijian Shao, Huanhuan Li, Jing Chen, Haohan Sun, Yaping Wang, Nan Wang, Lei Pei, Zhen Wang, Houzhong Zhang and Chaochun Yuan
Energies 2025, 18(14), 3842; https://doi.org/10.3390/en18143842 - 19 Jul 2025
Viewed by 318
Abstract
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL [...] Read more.
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL prediction method which employs a back propagation (BP) neural network based on the Harris Hawks optimization (HHO) algorithm is proposed. This method optimizes the BP parameters using the improved HHO algorithm. At first, the circle chaotic mapping method is utilized to solve the problem of the initial value. Considering the problem of local convergence, Gaussian mutation is introduced to improve the search ability of the algorithm. Subsequently, two key health factors are selected as input features for the model, including the constant-current charging isovoltage rise time and constant-current discharging isovoltage drop time. The model is validated using aging data from commercial lithium iron phosphate (LiFePO4) batteries. Finally, the model is thoroughly verified under an aging test. Experimental validation using training sets comprising 50%, 60%, and 70% of the cycle data demonstrates superior predictive performance, with mean absolute error (MAE) values below 0.012, root mean square error (RMSE) values below 0.017 and mean absolute percentage error (MAPE) within 0.95%. The results indicate that the model significantly improves prediction accuracy, robustness and searchability. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Graphical abstract

24 pages, 20337 KiB  
Article
MEAC: A Multi-Scale Edge-Aware Convolution Module for Robust Infrared Small-Target Detection
by Jinlong Hu, Tian Zhang and Ming Zhao
Sensors 2025, 25(14), 4442; https://doi.org/10.3390/s25144442 - 16 Jul 2025
Viewed by 440
Abstract
Infrared small-target detection remains a critical challenge in military reconnaissance, environmental monitoring, forest-fire prevention, and search-and-rescue operations, owing to the targets’ extremely small size, sparse texture, low signal-to-noise ratio, and complex background interference. Traditional convolutional neural networks (CNNs) struggle to detect such weak, [...] Read more.
Infrared small-target detection remains a critical challenge in military reconnaissance, environmental monitoring, forest-fire prevention, and search-and-rescue operations, owing to the targets’ extremely small size, sparse texture, low signal-to-noise ratio, and complex background interference. Traditional convolutional neural networks (CNNs) struggle to detect such weak, low-contrast objects due to their limited receptive fields and insufficient feature extraction capabilities. To overcome these limitations, we propose a Multi-Scale Edge-Aware Convolution (MEAC) module that enhances feature representation for small infrared targets without increasing parameter count or computational cost. Specifically, MEAC fuses (1) original local features, (2) multi-scale context captured via dilated convolutions, and (3) high-contrast edge cues derived from differential Gaussian filters. After fusing these branches, channel and spatial attention mechanisms are applied to adaptively emphasize critical regions, further improving feature discrimination. The MEAC module is fully compatible with standard convolutional layers and can be seamlessly embedded into various network architectures. Extensive experiments on three public infrared small-target datasets (SIRSTD-UAVB, IRSTDv1, and IRSTD-1K) demonstrate that networks augmented with MEAC significantly outperform baseline models using standard convolutions. When compared to eleven mainstream convolution modules (ACmix, AKConv, DRConv, DSConv, LSKConv, MixConv, PConv, ODConv, GConv, and Involution), our method consistently achieves the highest detection accuracy and robustness. Experiments conducted across multiple versions, including YOLOv10, YOLOv11, and YOLOv12, as well as various network levels, demonstrate that the MEAC module achieves stable improvements in performance metrics while slightly increasing computational and parameter complexity. These results validate the MEAC module’s significant advantages in enhancing the detection of small and weak objects and suppressing interference from complex backgrounds. These results validate MEAC’s effectiveness in enhancing weak small-target detection and suppressing complex background noise, highlighting its strong generalization ability and practical application potential. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

25 pages, 4903 KiB  
Article
Intelligent Joint Space Path Planning: Enhancing Motion Feasibility with Goal-Driven and Potential Field Strategies
by Yuzhou Li, Yefeng Yang, Kang Liu and Chih-Yung Wen
Sensors 2025, 25(14), 4370; https://doi.org/10.3390/s25144370 - 12 Jul 2025
Viewed by 335
Abstract
Traditional path-planning algorithms for robotic manipulators typically focus on end-effector planning, often neglecting complete collision avoidance for the entire manipulator. Additionally, many existing approaches suffer from high time complexity and are easily trapped in local extremes. To address these challenges, this paper proposes [...] Read more.
Traditional path-planning algorithms for robotic manipulators typically focus on end-effector planning, often neglecting complete collision avoidance for the entire manipulator. Additionally, many existing approaches suffer from high time complexity and are easily trapped in local extremes. To address these challenges, this paper proposes a goal-biased bidirectional artificial potential field-based rapidly-exploring random tree* (GBAPF-RRT*) algorithm, which enhances both target guidance and obstacle avoidance capabilities of the manipulator. Firstly, we utilize a Gaussian distribution to add heuristic guidance into the exploration of the robotic manipulator, thereby accelerating the search speed of the RRT*. Then, we combine the modified repulsion function to prevent the random tree from trapping in a local extreme. Finally, sufficient numerical simulations and physical experiments are conducted in the joint space to verify the effectiveness and superiority of the proposed algorithm. Comparative results indicate that our proposed method achieves a faster search speed and a shorter path in complex planning scenarios. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

31 pages, 8397 KiB  
Article
Research on APF-Dijkstra Path Planning Fusion Algorithm Based on Steering Model and Volume Constraints
by Xizheng Wang, Gang Li and Zijian Bian
Algorithms 2025, 18(7), 403; https://doi.org/10.3390/a18070403 - 1 Jul 2025
Viewed by 396
Abstract
For the local oscillation phenomenon of the APF algorithm in the face of static U-shaped obstacles, the path cusp phenomenon caused by the vehicle corner and path curvature constraints is not taken into account, as well as the low path safety caused by [...] Read more.
For the local oscillation phenomenon of the APF algorithm in the face of static U-shaped obstacles, the path cusp phenomenon caused by the vehicle corner and path curvature constraints is not taken into account, as well as the low path safety caused by ignoring the vehicle volume constraints. Therefore, an APF-Dijkstra path planning fusion algorithm based on steering model and volume constraints is proposed to improve it. First, perform an expansion treatment on the obstacles in the map, optimize the search direction of the Dijkstra algorithm and its planned global path, ensuring that the distance between the path and the expanded grid is no less than 1 m, and use the path points as temporary target points for the APF algorithm. Secondly, a Gaussian function is introduced to optimize the potential energy function of the APF algorithm, and the U-shaped obstacle is ellipticized, and a virtual target point is used to provide the gravitational force. Again, the three-point arc method based on the steering model is used to determine the location of the predicted points and to smooth the paths in real time while constraining the steering angle. Finally, a 4.5 m × 2.5 m vehicle rectangle is used instead of the traditional mass points to make the algorithm volumetrically constrained. Meanwhile, a model for detecting vehicle collisions is established to cover the rectangle boundary with 14 envelope circles, and the combined force of the computed mass points is transformed into the combined force of the computed envelope circles to further improve path safety. The algorithm is validated by simulation experiments, and the results show that the fusion algorithm can avoid static U-shaped obstacles and dynamic obstacles well; the curvature change rate of the obstacle avoidance path is 0.248, 0.162, and 0.169, and the curvature standard deviation is 0.16, which verifies the smoothness of the fusion algorithm. Meanwhile, the distances between the obstacles and the center of the rear axle of the vehicle are all higher than 1.60 m, which verifies the safety of the fusion algorithm. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

64 pages, 4356 KiB  
Article
Auto-Tuning Memory-Based Adaptive Local Search Gaining–Sharing Knowledge-Based Algorithm for Solving Optimization Problems
by Nawaf Mijbel Alfadli, Eman Mostafa Oun and Ali Wagdy Mohamed
Algorithms 2025, 18(7), 398; https://doi.org/10.3390/a18070398 - 28 Jun 2025
Viewed by 365
Abstract
The Gaining–Sharing Knowledge-based (GSK) algorithm is a human-inspired metaheuristic that models how people learn and disseminate knowledge across their lifetime. It has shown promising results across a range of engineering optimization problems. However, one of its major limitations lies in the use of [...] Read more.
The Gaining–Sharing Knowledge-based (GSK) algorithm is a human-inspired metaheuristic that models how people learn and disseminate knowledge across their lifetime. It has shown promising results across a range of engineering optimization problems. However, one of its major limitations lies in the use of fixed parameters to guide the search process, which often causes the algorithm to get stuck in local optima. To address this challenge, we propose an Auto-Tuning Memory-based Adaptive Local Search (ATMALS) empowered GSK, that is, ATMALS-GSK. This enhanced version of GSK introduces two key improvements: adaptive local search and memory-driven automatic tuning of parameters. Rather than relying on fixed values, ATMALS-GSK continuously adjusts its parameters during the optimization process. This is achieved through a Gaussian distribution mechanism that iteratively updates the likelihood of selecting different parameter values based on their historical impact on the fitness function. This selection process is guided by a weighted moving average that tracks each parameter’s contribution to fitness improvement over time. To further reduce the risk of premature convergence, an adaptive local search strategy is embedded, facilitating the algorithm’s escape from local traps and guiding it toward more optimal regions within the search domain. To validate the effectiveness of the ATMALS-GSK algorithm, it is evaluated on the CEC 2011 and CEC 2017 benchmarks. The results indicate that the ATMALS-GSK algorithm outperforms the original GSK, its variants, and other metaheuristics by delivering greater robustness, quicker convergence, and superior solution quality. Full article
Show Figures

Figure 1

22 pages, 2775 KiB  
Article
Short-Term Photovoltaic Power Forecasting Using a Bi-LSTM Neural Network Optimized by Hybrid Algorithms
by Jibo Wang, Zihao Zhang, Wenhao Xu, Yijin Li and Geng Niu
Sustainability 2025, 17(12), 5277; https://doi.org/10.3390/su17125277 - 7 Jun 2025
Cited by 1 | Viewed by 681
Abstract
Photovoltaic (PV) power generation is characterized by high fluctuation and intermittency. The accurate forecasting of PV power is crucial for optimizing grid operation and scheduling. Thus, a novel short-term PV power-forecasting method based on genetic algorithm-adaptive multi-objective differential evolution (GA-AMODE)-optimized bidirectional long short-term [...] Read more.
Photovoltaic (PV) power generation is characterized by high fluctuation and intermittency. The accurate forecasting of PV power is crucial for optimizing grid operation and scheduling. Thus, a novel short-term PV power-forecasting method based on genetic algorithm-adaptive multi-objective differential evolution (GA-AMODE)-optimized bidirectional long short-term memory (BiLSTM) is proposed. Firstly, a data preprocessing method, including principal component analysis, a sliding window mechanism, and Gaussian noise injection, is designed to achieve dimension reduction and data robustness. Then, a GA-AMODE-BiLSTM model for PV power forecasting is proposed. GA and AMODE algorithms are integrated to balance global and local searching processes during the optimization of the BiLSTM network’s hyperparameters. Bi-LSTM is more suitable for complex time series tasks involving long-term dependencies and asymmetric relationships. The forecasting method is evaluated by typical indexes and is statistically tested. Comparative experiments using the same dataset across various models have been performed. The results show that the proposed GA-AMODE-BiLSTM model significantly outperforms other models in forecasting accuracy. Additionally, its superior stability and generalization is demonstrated, making the proposed method an effective tool for optimizing the management of renewable energy generation and enhancing the sustainability of energy systems. Full article
(This article belongs to the Topic Solar Forecasting and Smart Photovoltaic Systems)
Show Figures

Figure 1

17 pages, 3584 KiB  
Article
Task Allocation and Path Planning Method for Unmanned Underwater Vehicles
by Feng Liu, Wei Xu, Zhiwen Feng, Changdong Yu, Xiao Liang, Qun Su and Jian Gao
Drones 2025, 9(6), 411; https://doi.org/10.3390/drones9060411 - 6 Jun 2025
Viewed by 527
Abstract
Cooperative operations of Unmanned Underwater Vehicles (UUVs) have extensive applications in fields such as marine exploration, ecological observation, and subsea security. Path planning, as a key technology for UUV autonomous navigation, is crucial for enhancing the adaptability and mission execution efficiency of UUVs [...] Read more.
Cooperative operations of Unmanned Underwater Vehicles (UUVs) have extensive applications in fields such as marine exploration, ecological observation, and subsea security. Path planning, as a key technology for UUV autonomous navigation, is crucial for enhancing the adaptability and mission execution efficiency of UUVs in complicated marine environments. However, existing methods still have significant room for improvement in handling obstacles, multi-task coordination, and other complex problems. In order to overcome these issues, we put forward a task allocation and path planning method for UUVs. First, we introduce a task allocation mechanism based on an Improved Grey Wolf Algorithm (IGWA). This mechanism comprehensively considers factors such as target value, distance, and UUV capability constraints to achieve efficient and reasonable task allocation among UUVs. To enhance the search efficiency and accuracy of task allocation, a Circle chaotic mapping strategy is incorporated into the traditional GWA to improve population diversity. Additionally, a differential evolution mechanism is integrated to enhance local search capabilities, effectively mitigating premature convergence issues. Second, an improved RRT* algorithm termed GR-RRT* is employed for UUV path planning. By designing a guidance strategy, the sampling probability near target points follows a two-dimensional Gaussian distribution, ensuring obstacle avoidance safety while reducing redundant sampling and improving planning efficiency. Experimental results demonstrate that the proposed task allocation mechanism and improved path planning algorithm exhibit significant advantages in task completion rate and path optimization efficiency. Full article
(This article belongs to the Special Issue Advances in Intelligent Coordination Control for Autonomous UUVs)
Show Figures

Figure 1

18 pages, 4607 KiB  
Article
Circle Detection with Adaptive Parameterization: A Bottom-Up Approach
by Lin Han, Yan Zhuang, Ke Chen, Yuhua Xie, Guoliang Liao, Guangfu Yin and Jiangli Lin
Sensors 2025, 25(8), 2552; https://doi.org/10.3390/s25082552 - 17 Apr 2025
Viewed by 529
Abstract
Circle detection remains a critical yet challenging task in computer vision, particularly under complex imaging conditions where existing measurement methods face persistent challenges in parameter configuration and noise resilience. This paper presents a novel circle detection algorithm based on two perceptually grounded parameters: [...] Read more.
Circle detection remains a critical yet challenging task in computer vision, particularly under complex imaging conditions where existing measurement methods face persistent challenges in parameter configuration and noise resilience. This paper presents a novel circle detection algorithm based on two perceptually grounded parameters: the perceptual length difference resolution λ, derived from human cognitive models, and the minimum distinguishable distance threshold K, determined through empirical observations. The algorithm implements a local stochastic sampling strategy integrated with a bottom-up circular search mechanism, with all critical parameters in the algorithm derived adaptively based on λ and K, eliminating the need for repetitive hyperparameter search processes. Experiments demonstrate that our methodology achieves an exceptional Fscore of 85.5% on the public circle detection dataset, surpassing state-of-the-art approaches by approximately 7.3%. Notably, the framework maintains robust detection capability (Fscore = 85%) under extreme noise conditions (50% Gaussian noise contamination), maintaining superior performance relative to comparative methods. The adaptive parameterization strategy provides insights for developing vision systems that bridge computational efficiency with human perceptual robustness. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

26 pages, 3726 KiB  
Article
Deep Reinforcement Learning for UAV Target Search and Continuous Tracking in Complex Environments with Gaussian Process Regression and Prior Policy Embedding
by Zhihui Feng, Xitai Na, Shiji Hai, Qingbin Sun and Jinshuo Shi
Electronics 2025, 14(7), 1330; https://doi.org/10.3390/electronics14071330 - 27 Mar 2025
Viewed by 1162
Abstract
In recent years, unmanned aerial vehicles (UAVs) have shown substantial application value in continuous target tracking tasks in complex environments. Due to the target’s movement behavior and the complexities of the surrounding environment, the UAV is prone to losing track of the target. [...] Read more.
In recent years, unmanned aerial vehicles (UAVs) have shown substantial application value in continuous target tracking tasks in complex environments. Due to the target’s movement behavior and the complexities of the surrounding environment, the UAV is prone to losing track of the target. To tackle this issue, this paper presents a reinforcement learning (RL) approach that combines UAV target search and tracking. During the target search phase, spatial information entropy is employed to guide the UAV in avoiding redundant searches, thus enhancing information acquisition efficiency. In the event of target loss, Gaussian process regression (GPR) is employed to predict the target trajectory, thereby reducing the time needed for target re-localization. In addition, to address sample efficiency limitations in conventional RL, a Kolmogorov–Arnold networks-based deep deterministic policy gradient (KbDDPG) algorithm with prior policy embedding is proposed for controller training.Simulation results demonstrate that the proposed method outperforms traditional methods in target search and tracking tasks within complex environments. It improves the UAV’s ability to re-locate the target after loss. The proposed KbDDPG efficiently leverages prior policy, leading to accelerated convergence and enhanced performance. Full article
(This article belongs to the Special Issue Control and Navigation of Robotics and Unmanned Aerial Vehicles)
Show Figures

Figure 1

35 pages, 9062 KiB  
Article
A Multi-Strategy Parrot Optimization Algorithm and Its Application
by Yang Yang, Maosheng Fu, Xiancun Zhou, Chaochuan Jia and Peng Wei
Biomimetics 2025, 10(3), 153; https://doi.org/10.3390/biomimetics10030153 - 2 Mar 2025
Viewed by 943
Abstract
Intelligent optimization algorithms are crucial for solving complex engineering problems. The Parrot Optimization (PO) algorithm shows potential but has issues like local-optimum trapping and slow convergence. This study presents the Chaotic–Gaussian–Barycenter Parrot Optimization (CGBPO), a modified PO algorithm. CGBPO addresses these problems in [...] Read more.
Intelligent optimization algorithms are crucial for solving complex engineering problems. The Parrot Optimization (PO) algorithm shows potential but has issues like local-optimum trapping and slow convergence. This study presents the Chaotic–Gaussian–Barycenter Parrot Optimization (CGBPO), a modified PO algorithm. CGBPO addresses these problems in three ways: using chaotic logistic mapping for random initialization to boost population diversity, applying Gaussian mutation to updated individual positions to avoid premature local-optimum convergence, and integrating a barycenter opposition-based learning strategy during iterations to expand the search space. Evaluated on the CEC2017 and CEC2022 benchmark suites against seven other algorithms, CGBPO outperforms them in convergence speed, solution accuracy, and stability. When applied to two practical engineering problems, CGBPO demonstrates superior adaptability and robustness. In an indoor visible light positioning simulation, CGBPO’s estimated positions are closer to the actual ones compared to PO, with the best coverage and smallest average error. Full article
Show Figures

Figure 1

22 pages, 3691 KiB  
Article
G-TS-HRNN: Gaussian Takagi–Sugeno Hopfield Recurrent Neural Network
by Omar Bahou, Mohammed Roudani and Karim El Moutaouakil
Information 2025, 16(2), 141; https://doi.org/10.3390/info16020141 - 14 Feb 2025
Viewed by 726
Abstract
The Hopfield Recurrent Neural Network (HRNN) is a single-point descent metaheuristic that uses a single potential solution to explore the search space of optimization problems, whose constraints and objective function are aggregated into a typical energy function. The initial point is usually randomly [...] Read more.
The Hopfield Recurrent Neural Network (HRNN) is a single-point descent metaheuristic that uses a single potential solution to explore the search space of optimization problems, whose constraints and objective function are aggregated into a typical energy function. The initial point is usually randomly initialized, then moved by applying operators, characterizing the discrete dynamics of the HRNN, which modify its position or direction. Like all single-point metaheuristics, HRNN has certain drawbacks, such as being more likely to get stuck in local optima or miss global optima due to the use of a single point to explore the search space. Moreover, it is more sensitive to the initial point and operator, which can influence the quality and diversity of solutions. Moreover, it can have difficulty with dynamic or noisy environments, as it can lose track of the optimal region or be misled by random fluctuations. To overcome these shortcomings, this paper introduces a population-based fuzzy version of the HRNN, namely Gaussian Takagi–Sugeno Hopfield Recurrent Neural Network (G-TS-HRNN). For each neuron, the G-TS-HRNN associates an input fuzzy variable of d values, described by an appropriate Gaussian membership function that covers the universe of discourse. To build an instance of G-TS-HRNN(s) of size s, we generate s n-uplets of fuzzy values that present the premise of the Takagi–Sugeno system. The consequents are the differential equations governing the dynamics of the HRNN obtained by replacing each premise fuzzy value with the mean of different Gaussians. The steady points of all the rule premises are aggregated using the fuzzy center of gravity equation, considering the level of activity of each rule. G-TS-HRNN is used to solve the random optimization method based on the support vector model. Compared with HRNN, G-TS-HRNN performs better on well-known data sets. Full article
Show Figures

Figure 1

30 pages, 595 KiB  
Article
Dual-Performance Multi-Subpopulation Adaptive Restart Differential Evolutionary Algorithm
by Yong Shen, Yunlu Xie and Qingyi Chen
Symmetry 2025, 17(2), 223; https://doi.org/10.3390/sym17020223 - 3 Feb 2025
Viewed by 958
Abstract
To cope with common local optimum traps and balance exploration and development in complex multi-peak optimisation problems, this paper puts forth a Dual-Performance Multi-subpopulation Adaptive Restart Differential Evolutionary Algorithm (DPR-MGDE) as a potential solution. The algorithm employs a novel approach by utilising the [...] Read more.
To cope with common local optimum traps and balance exploration and development in complex multi-peak optimisation problems, this paper puts forth a Dual-Performance Multi-subpopulation Adaptive Restart Differential Evolutionary Algorithm (DPR-MGDE) as a potential solution. The algorithm employs a novel approach by utilising the fitness and historical update frequency as dual-performance metrics to categorise the population into three distinct sub-populations: PM (the promising individual set), MM (the medium individual set) and UM (the un-promising individual set). The multi-subpopulation division mechanism enables the algorithm to achieve a balance between global exploration, local exploitation and diversity maintenance, thereby enhancing its overall optimisation capability. Furthermore, the DPR-MGDE incorporates an adaptive cross-variation strategy, which enables the dynamic adjustment of the variation factor and crossover probability in accordance with the performance of the individuals. This enhances the flexibility of the algorithm, allowing for the prioritisation of local exploitation among the more excellent individuals and the exploration of new search space among the less excellent individuals. Furthermore, the algorithm employs a collision-based Gaussian wandering restart strategy, wherein the collision frequency serves as the criterion for triggering a restart. Upon detecting population stagnation, the updated population is subjected to optimal solution-guided Gaussian wandering, effectively preventing the descent into local optima. Through experiments on the CEC2017 benchmark functions, we verified that DPR-MGDE has higher solution accuracy compared to newer differential evolution algorithms, and proved its significant advantages in complex optimisation tasks with the Wilcoxon test. In addition to this, we also conducted experiments on real engineering problems to demonstrate the effectiveness and superiority of DPR-MGDE in dealing with real engineering problems. Full article
(This article belongs to the Special Issue Symmetry in Intelligent Algorithms)
Show Figures

Figure 1

24 pages, 3995 KiB  
Article
Research on Multi-Strategy Fusion of the Chimpanzee Optimization Algorithm and Its Application in Path Planning
by Xing He and Chenxv Guo
Appl. Sci. 2025, 15(2), 608; https://doi.org/10.3390/app15020608 - 10 Jan 2025
Cited by 1 | Viewed by 889
Abstract
In this paper, a multi-strategy enhanced chimpanzee optimization algorithm (MSEChOA) acting on path planning for delivery vehicles is proposed to achieve the goal of shortening global path lengths for the delivery unmanned vehicles and obtaining safer paths. In the initialization phase, the algorithm [...] Read more.
In this paper, a multi-strategy enhanced chimpanzee optimization algorithm (MSEChOA) acting on path planning for delivery vehicles is proposed to achieve the goal of shortening global path lengths for the delivery unmanned vehicles and obtaining safer paths. In the initialization phase, the algorithm introduces a hybrid good point set and chaos initialization strategy, combining the advantages of both to enhance the randomness and homogeneity of the initial population. After that, it incorporates a benchmark weight strategy and Gaussian-modulated cosine factor to adaptively adjust algorithm parameters, thus balancing the global and local search capabilities and improving the search efficiency. In the end, the algorithm incorporates a global search enhancer (GEE) to further enhance the global search capability in the later phases, thereby avoiding local optima. Experiments on several benchmark test functions show that MSEChOA outperforms traditional ChOA and other optimization algorithms in optimization accuracy and convergence speed. In simulation experiments, MSEChOA shows stronger path planning ability and good computational efficiency in both simple and complex environments, proving its feasibility and superiority in the field of path planning. Full article
Show Figures

Figure 1

Back to TopTop