Advances in Swarm Intelligence Optimization Algorithms and Applications

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Biological Optimisation and Management".

Deadline for manuscript submissions: closed (28 February 2025) | Viewed by 9672

Special Issue Editors


E-Mail Website
Guest Editor
Department of Applied Mathematics, Xi’an University of Technology, Xi’an, China
Interests: metaheuristic algorithms; computing intelligence; artificial intelligence; complex optimization systems; CAD/CAM; image processing and analysis; path planning; multilevel image segmentation; feature selection; Genghis Khan Shark Optimizer
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As industrialization continues to progress at an unprecedented pace, engineering applications are proliferating, accompanied by a myriad of intricate and diverse challenges. To navigate through these complex real-world problems, a plethora of optimization algorithms have been devised, with swarm intelligence optimization algorithms (SIOAs) occupying a prominent position. SIOAs, drawing inspiration from the collective behaviors exhibited by swarms of insects, animals, or other organisms, have demonstrated remarkable abilities in solving non-convex, nonlinearly constrained, and high-dimensional optimization tasks. Their inherent capability to swiftly converge towards optimal solutions while effectively escaping local optima has been well documented in numerous studies.

The Special Issue "Advances in Swarm Intelligence Optimization Algorithms and Applications" aims to consolidate and showcase the latest breakthroughs and achievements in this burgeoning field. It serves as a platform for interdisciplinary research, fostering collaboration among scholars from diverse backgrounds who are exploring the potential of SIOAs for engineering applications. We invite researchers to submit their original contributions that delve into the theoretical foundations, algorithmic innovations, and practical applications of SIOAs, with a focus on addressing specific challenges and advancing the state-of-the-art.

The scope of this Special Issue encompasses, but is not limited to, the following topics:

Novel SIOAs: The development of new swarm intelligence optimization algorithms, including those inspired by unique swarm behaviors or innovative mechanisms for enhancing exploration, exploitation, and convergence.

Hybridization and Integration: Studies exploring the integration of SIOAs with other optimization techniques, machine learning algorithms, or heuristic methods to create hybrid optimization frameworks that leverage the strengths of each approach.

Theoretical Analysis: In-depth analyses of the mathematical properties, convergence behavior, and complexity of SIOAs, providing insights into their performance and limitations.

Parameter Tuning and Adaptation: Research on adaptive parameter control strategies for SIOAs, aimed at enhancing their robustness, versatility, and performance across different problem domains.

High-Dimensional and Complex Problems: Applications of SIOAs to tackle high-dimensional, multimodal, dynamic, and noisy optimization problems, demonstrating their effectiveness in real-world contexts.

Benchmarking and Comparative Studies: Comparative evaluations of SIOAs using standard and novel benchmark functions, highlighting their strengths and weaknesses relative to other optimization techniques.

Engineering Applications: Case studies showcasing the successful application of SIOAs in solving engineering problems, such as design optimization, production scheduling, network routing, and control systems.

By publishing high-quality research on SIOAs and their applications, this Special Issue aims to promote the dissemination of knowledge, facilitate interdisciplinary collaborations, and inspire further advancements in this exciting field. We encourage researchers to submit their original work, addressing both theoretical and applied aspects of SIOAs, to contribute to this important endeavor.

Prof. Dr. Heming Jia
Prof. Dr. Gang Hu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • swarm intelligence optimization algorithms
  • particle swarm optimization algorithm
  • optimization algorithms
  • meta-heuristics
  • swarm intelligence
  • engineering applications
  • engineering design problems
  • real-world applications
  • constraint handling
  • benchmarks
  • novel approaches
  • complicated optimization problems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

38 pages, 9376 KiB  
Article
IA-DTPSO: A Multi-Strategy Integrated Particle Swarm Optimization for Predicting the Total Urban Water Resources in China
by Zheyu Zhu, Jiawei Wang and Kanhua Yu
Biomimetics 2025, 10(4), 233; https://doi.org/10.3390/biomimetics10040233 - 8 Apr 2025
Viewed by 232
Abstract
In order to overcome the drawbacks of low search efficiency and susceptibility to local optimal traps in PSO, this study proposes a multi-strategy particle swarm optimization (PSO) with information acquisition, referred to as IA-DTPSO. Firstly, Sobol sequence initialization on particles to achieve a [...] Read more.
In order to overcome the drawbacks of low search efficiency and susceptibility to local optimal traps in PSO, this study proposes a multi-strategy particle swarm optimization (PSO) with information acquisition, referred to as IA-DTPSO. Firstly, Sobol sequence initialization on particles to achieve a more uniform initial population distribution is performed. Secondly, an update scheme based on information acquisition is established, which adopts different information processing methods according to the evaluation status of particles at different stages to improve the accuracy of information shared between particles. Then, the Spearman’s correlation coefficient (SCC) is introduced to determine the dimensions that require reverse solution position updates, and the tangent flight strategy is used to improve the inherent single update method of PSO. Finally, a dimension learning strategy is introduced to strengthen individual particles’ activity, thereby ameliorating the entire particle population’s diversity. In order to conduct a comprehensive analysis of IA-DTPSO, its excellent exploration and exploitation (ENE) capability is firstly validated on CEC2022. Subsequently, the performance of IA-DTPSO and other algorithms on different dimensions of CEC2022 is validated, and the results show that IA-DTPSO wins 58.33% and 41.67% of the functions on 10 and 20 dimensions of CEC2022, respectively. Finally, IA-DTPSO is employed to optimize parameters of the time-dependent gray model (1,1,r,ξ,Csz) (TDGM (1,1,r,ξ,Csz)) and applied to simulate and predict total urban water resources (TUWRs) in China. By using four error evaluation indicators, this method is compared with other algorithms and existing models. The results show that the total MAPE (%) value obtained by simulation after IA-DTPSO optimization is 5.9439, which has the smallest error among all comparison methods and models, verifying the effectiveness of this method for predicting TUWRs in China. Full article
Show Figures

Figure 1

30 pages, 3427 KiB  
Article
An Enhanced Team-Oriented Swarm Optimization Algorithm (ETOSO) for Robust and Efficient High-Dimensional Search
by Adel BenAbdennour
Biomimetics 2025, 10(4), 222; https://doi.org/10.3390/biomimetics10040222 - 3 Apr 2025
Viewed by 279
Abstract
This paper introduces the Enhanced Team-Oriented Swarm Optimization (ETOSO) algorithm, a novel refinement of the Team-Oriented Swarm Optimization (TOSO) algorithm aimed at addressing the stagnation problem commonly encountered in nature-inspired optimization approaches. ETOSO enhances TOSO by integrating innovative strategies for exploration and exploitation, [...] Read more.
This paper introduces the Enhanced Team-Oriented Swarm Optimization (ETOSO) algorithm, a novel refinement of the Team-Oriented Swarm Optimization (TOSO) algorithm aimed at addressing the stagnation problem commonly encountered in nature-inspired optimization approaches. ETOSO enhances TOSO by integrating innovative strategies for exploration and exploitation, resulting in a simplified algorithm that demonstrates superior performance across a broad spectrum of benchmark functions, particularly in high-dimensional search spaces. A comprehensive comparative evaluation and statistical tests against 26 established nature-inspired optimization algorithms (NIOAs) across 15 benchmark functions and dimensions (D = 2, 5, 10, 30, 50, 100, 200) confirm ETOSO’s superiority relative to solution accuracy, convergence speed, computational complexity, and consistency. Full article
Show Figures

Figure 1

22 pages, 1180 KiB  
Article
FedDyH: A Multi-Policy with GA Optimization Framework for Dynamic Heterogeneous Federated Learning
by Xuhua Zhao, Yongming Zheng, Jiaxiang Wan, Yehong Li, Donglin Zhu, Zhenyu Xu and Huijuan Lu
Biomimetics 2025, 10(3), 185; https://doi.org/10.3390/biomimetics10030185 - 17 Mar 2025
Viewed by 379
Abstract
Federated learning (FL) is a distributed learning technique that ensures data privacy and has shown significant potential in cross-institutional image analysis. However, existing methods struggle with the inherent dynamic heterogeneity of real-world data, such as changes in cellular differentiation during disease progression or [...] Read more.
Federated learning (FL) is a distributed learning technique that ensures data privacy and has shown significant potential in cross-institutional image analysis. However, existing methods struggle with the inherent dynamic heterogeneity of real-world data, such as changes in cellular differentiation during disease progression or feature distribution shifts due to different imaging devices. This dynamic heterogeneity can cause catastrophic forgetting, leading to reduced performance in medical predictions across stages. Unlike previous federated learning studies that paid insufficient attention to dynamic heterogeneity, this paper proposes the FedDyH framework to address this challenge. Inspired by the adaptive regulation mechanisms of biological systems, this framework incorporates several core modules to tackle the issues arising from dynamic heterogeneity. First, the framework simulates intercellular information transfer through cross-client knowledge distillation, preserving local features while mitigating knowledge forgetting. Additionally, a dynamic regularization term is designed in which the strength can be adaptively adjusted based on real-world conditions. This mechanism resembles the role of regulatory T cells in the immune system, balancing global model convergence with local specificity adjustments to enhance the robustness of the global model while preventing interference from diverse client features. Finally, the framework introduces a genetic algorithm (GA) to simulate biological evolution, leveraging mechanisms such as gene selection, crossover, and mutation to optimize hyperparameter configurations. This enables the model to adaptively find the optimal hyperparameters in an ever-changing environment, thereby improving both adaptability and performance. Prior to this work, few studies have explored the use of optimization algorithms for hyperparameter tuning in federated learning. Experimental results demonstrate that the FedDyH framework improves accuracy compared to the SOTA baseline FedDecorr by 2.59%, 0.55%, and 5.79% on the MNIST, Fashion-MNIST, and CIFAR-10 benchmark datasets, respectively. This framework effectively addresses data heterogeneity issues in dynamic heterogeneous environments, providing an innovative solution for achieving more stable and accurate distributed federated learning. Full article
Show Figures

Figure 1

28 pages, 14926 KiB  
Article
Research on Ship Replenishment Path Planning Based on the Modified Whale Optimization Algorithm
by Qinghua Chen, Gang Yao, Lin Yang, Tangying Liu, Jin Sun and Shuxiang Cai
Biomimetics 2025, 10(3), 179; https://doi.org/10.3390/biomimetics10030179 - 13 Mar 2025
Viewed by 422
Abstract
Ship replenishment path planning has always been a critical concern for researchers in the field of security. This study proposes a modified whale optimization algorithm (MWOA) to address single-task ship replenishment path planning problems. To ensure high-quality initial solutions and maintain population diversity, [...] Read more.
Ship replenishment path planning has always been a critical concern for researchers in the field of security. This study proposes a modified whale optimization algorithm (MWOA) to address single-task ship replenishment path planning problems. To ensure high-quality initial solutions and maintain population diversity, a hybrid approach combining the nearest neighbor search with random search is employed for initial population generation. Additionally, crossover operations and destroy and repair operators are integrated to update the whale’s position, significantly enhancing the algorithm’s search efficiency and optimization performance. Furthermore, variable neighborhood search is utilized for local optimization to refine the solutions. The proposed MWOA has been tested against several algorithms, including the original whale optimization algorithm, genetic algorithm, ant colony optimization, hybrid particle swarm optimization, and simulated annealing, using traveling salesman problems as benchmarks. Results demonstrate that MWOA outperforms these algorithms in both solution quality and stability. Moreover, when applied to ship replenishment path planning problems of varying scales, MWOA consistently achieves superior performance compared to the other algorithms. The proposed algorithm demonstrates high adaptability in addressing diverse ship replenishment path planning problems, delivering efficient, high-quality, and reliable solutions. Full article
Show Figures

Graphical abstract

35 pages, 9062 KiB  
Article
A Multi-Strategy Parrot Optimization Algorithm and Its Application
by Yang Yang, Maosheng Fu, Xiancun Zhou, Chaochuan Jia and Peng Wei
Biomimetics 2025, 10(3), 153; https://doi.org/10.3390/biomimetics10030153 - 2 Mar 2025
Viewed by 553
Abstract
Intelligent optimization algorithms are crucial for solving complex engineering problems. The Parrot Optimization (PO) algorithm shows potential but has issues like local-optimum trapping and slow convergence. This study presents the Chaotic–Gaussian–Barycenter Parrot Optimization (CGBPO), a modified PO algorithm. CGBPO addresses these problems in [...] Read more.
Intelligent optimization algorithms are crucial for solving complex engineering problems. The Parrot Optimization (PO) algorithm shows potential but has issues like local-optimum trapping and slow convergence. This study presents the Chaotic–Gaussian–Barycenter Parrot Optimization (CGBPO), a modified PO algorithm. CGBPO addresses these problems in three ways: using chaotic logistic mapping for random initialization to boost population diversity, applying Gaussian mutation to updated individual positions to avoid premature local-optimum convergence, and integrating a barycenter opposition-based learning strategy during iterations to expand the search space. Evaluated on the CEC2017 and CEC2022 benchmark suites against seven other algorithms, CGBPO outperforms them in convergence speed, solution accuracy, and stability. When applied to two practical engineering problems, CGBPO demonstrates superior adaptability and robustness. In an indoor visible light positioning simulation, CGBPO’s estimated positions are closer to the actual ones compared to PO, with the best coverage and smallest average error. Full article
Show Figures

Figure 1

26 pages, 4719 KiB  
Article
An Efficient Multi-Objective White Shark Algorithm
by Wenyan Guo, Yufan Qiang, Fang Dai, Junfeng Wang and Shenglong Li
Biomimetics 2025, 10(2), 112; https://doi.org/10.3390/biomimetics10020112 - 13 Feb 2025
Cited by 1 | Viewed by 585
Abstract
To balance the diversity and stringency of Pareto solutions in multi-objective optimization, this paper introduces a multi-objective White Shark Optimization algorithm (MONSWSO) tailored for multi-objective optimization. MONSWSO integrates non-dominated sorting and crowding distance into the White Shark Optimization framework to select the optimal [...] Read more.
To balance the diversity and stringency of Pareto solutions in multi-objective optimization, this paper introduces a multi-objective White Shark Optimization algorithm (MONSWSO) tailored for multi-objective optimization. MONSWSO integrates non-dominated sorting and crowding distance into the White Shark Optimization framework to select the optimal solution within the population. The uniformity of the initial population is enhanced through a chaotic reverse initialization learning strategy. The adaptive updating of individual positions is facilitated by an elite-guided forgetting mechanism, which incorporates escape energy and eddy aggregation behavior inspired by marine organisms to improve exploration in key areas. To evaluate the effectiveness of MONSWSO, it is benchmarked against five state-of-the-art multi-objective algorithms using four metrics: inverse generation distance, spatial homogeneity, spatial distribution, and hypervolume on 27 typical problems, including 23 multi-objective functions and 4 multi-objective project examples. Furthermore, the practical application of MONSWSO is demonstrated through an example of optimizing the design of subway tunnel foundation pits. The comprehensive results reveal that MONSWSO outperforms the comparison algorithms, achieving impressive and satisfactory outcomes. Full article
Show Figures

Figure 1

32 pages, 4886 KiB  
Article
Q-Learning-Driven Butterfly Optimization Algorithm for Green Vehicle Routing Problem Considering Customer Preference
by Weiping Meng, Yang He and Yongquan Zhou
Biomimetics 2025, 10(1), 57; https://doi.org/10.3390/biomimetics10010057 - 15 Jan 2025
Cited by 1 | Viewed by 902
Abstract
This paper proposes a Q-learning-driven butterfly optimization algorithm (QLBOA) by integrating the Q-learning mechanism of reinforcement learning into the butterfly optimization algorithm (BOA). In order to improve the overall optimization ability of the algorithm, enhance the optimization accuracy, and prevent the algorithm from [...] Read more.
This paper proposes a Q-learning-driven butterfly optimization algorithm (QLBOA) by integrating the Q-learning mechanism of reinforcement learning into the butterfly optimization algorithm (BOA). In order to improve the overall optimization ability of the algorithm, enhance the optimization accuracy, and prevent the algorithm from falling into a local optimum, the Gaussian mutation mechanism with dynamic variance was introduced, and the migration mutation mechanism was also used to enhance the population diversity of the algorithm. Eighteen benchmark functions were used to compare the proposed method with five classical metaheuristic algorithms and three BOA variable optimization methods. The QLBOA was used to solve the green vehicle routing problem with time windows considering customer preferences. The influence of decision makers’ subjective preferences and weight factors on fuel consumption, carbon emissions, penalty cost, and total cost are analyzed. Compared with three classical optimization algorithms, the experimental results show that the proposed QLBOA has a generally superior performance. Full article
Show Figures

Figure 1

20 pages, 7258 KiB  
Article
MSBKA: A Multi-Strategy Improved Black-Winged Kite Algorithm for Feature Selection of Natural Disaster Tweets Classification
by Guangyu Mu, Jiaxue Li, Zhanhui Liu, Jiaxiu Dai, Jiayi Qu and Xiurong Li
Biomimetics 2025, 10(1), 41; https://doi.org/10.3390/biomimetics10010041 - 10 Jan 2025
Cited by 2 | Viewed by 963
Abstract
With the advancement of the Internet, social media platforms have gradually become powerful in spreading crisis-related content. Identifying informative tweets associated with natural disasters is beneficial for the rescue operation. When faced with massive text data, choosing the pivotal features, reducing the calculation [...] Read more.
With the advancement of the Internet, social media platforms have gradually become powerful in spreading crisis-related content. Identifying informative tweets associated with natural disasters is beneficial for the rescue operation. When faced with massive text data, choosing the pivotal features, reducing the calculation expense, and increasing the model classification performance is a significant challenge. Therefore, this study proposes a multi-strategy improved black-winged kite algorithm (MSBKA) for feature selection of natural disaster tweets classification based on the wrapper method’s principle. Firstly, BKA is improved by utilizing the enhanced Circle mapping, integrating the hierarchical reverse learning, and introducing the Nelder–Mead method. Then, MSBKA is combined with the excellent classifier SVM (RBF kernel function) to construct a hybrid model. Finally, the MSBKA-SVM model performs feature selection and tweet classification tasks. The empirical analysis of the data from four natural disasters shows that the proposed model has achieved an accuracy of 0.8822. Compared with GA, PSO, SSA, and BKA, the accuracy is increased by 4.34%, 2.13%, 2.94%, and 6.35%, respectively. This research proves that the MSBKA-SVM model can play a supporting role in reducing disaster risk. Full article
Show Figures

Figure 1

25 pages, 4843 KiB  
Article
Ameliorated Chameleon Algorithm-Based Shape Optimization of Disk Wang–Ball Curves
by Yan Liang, Rui Yang, Xianzhi Hu and Gang Hu
Biomimetics 2025, 10(1), 3; https://doi.org/10.3390/biomimetics10010003 - 24 Dec 2024
Viewed by 680
Abstract
The shape design and optimization of complex disk curves is a crucial and intractable technique in computer-aided design and manufacturing (CAD/CAM). Based on disk Wang–Ball (DWB) curves, this paper defines a novel combined disk Wang–Ball (CDWB) curve with constrained parameters and investigates the [...] Read more.
The shape design and optimization of complex disk curves is a crucial and intractable technique in computer-aided design and manufacturing (CAD/CAM). Based on disk Wang–Ball (DWB) curves, this paper defines a novel combined disk Wang–Ball (CDWB) curve with constrained parameters and investigates the shape optimization of CDWB curves by using the multi-strategy ameliorated chameleon swarm algorithm (MCSA). Firstly, in order to meet the various shape design requirements, the CDWB curves consisting of n DWB curves are defined, and the G1 and G2 geometric continuity conditions for the curves are derived. Secondly, the shape optimization of CDWB curves is considered as a minimization problem with curve energy as the objective, and an optimization model is developed under the constraints of the splicing conditions. Finally, the meta-heuristic algorithm MCSA is introduced to solve the established optimization model to obtain the minimum energy value, and its performance is verified by comparison with other algorithms. The results of representative numerical examples confirm the effectiveness and competitiveness of the MCSA for the CDWB curve shape optimization problems. Full article
Show Figures

Figure 1

13 pages, 1279 KiB  
Article
Predictive Modeling of Hospital Readmission of Schizophrenic Patients in a Spanish Region Combining Particle Swarm Optimization and Machine Learning Algorithms
by Susel Góngora Alonso, Isabel Herrera Montano, Isabel De la Torre Díez, Manuel Franco-Martín, Mohammed Amoon, Jesús-Angel Román-Gallego and María-Luisa Pérez-Delgado
Biomimetics 2024, 9(12), 752; https://doi.org/10.3390/biomimetics9120752 - 11 Dec 2024
Viewed by 899
Abstract
Readmissions are an indicator of hospital care quality; a high readmission rate is associated with adverse outcomes. This leads to an increase in healthcare costs and quality of life for patients. Developing predictive models for hospital readmissions provides opportunities to select treatments and [...] Read more.
Readmissions are an indicator of hospital care quality; a high readmission rate is associated with adverse outcomes. This leads to an increase in healthcare costs and quality of life for patients. Developing predictive models for hospital readmissions provides opportunities to select treatments and implement preventive measures. The aim of this study is to develop predictive models for the readmission risk of patients with schizophrenia, combining the particle swarm optimization (PSO) algorithm with machine learning classification algorithms. The database used in the study includes a total of 6089 readmission records of patients with schizophrenia. These records were collected from 11 public hospitals in Castilla and León, Spain, in the period 2005–2015. The results of the study show that the Random Forest algorithm combined with PSO achieved the best results across the evaluated performance metrics: AUC = 0.860, recall = 0.959, accuracy = 0.844, and F1-score = 0.907. The development of these new models contributes to -improving patient care. Additionally, they enable preventive measures to reduce costs in healthcare systems. Full article
Show Figures

Figure 1

42 pages, 13108 KiB  
Article
AMBWO: An Augmented Multi-Strategy Beluga Whale Optimization for Numerical Optimization Problems
by Guoping You, Zengtong Lu, Zhipeng Qiu and Hao Cheng
Biomimetics 2024, 9(12), 727; https://doi.org/10.3390/biomimetics9120727 - 28 Nov 2024
Viewed by 1093
Abstract
Beluga whale optimization (BWO) is a swarm-based metaheuristic algorithm inspired by the group behavior of beluga whales. BWO suffers from drawbacks such as an insufficient exploration capability and the tendency to fall into local optima. To address these shortcomings, this paper proposes augmented [...] Read more.
Beluga whale optimization (BWO) is a swarm-based metaheuristic algorithm inspired by the group behavior of beluga whales. BWO suffers from drawbacks such as an insufficient exploration capability and the tendency to fall into local optima. To address these shortcomings, this paper proposes augmented multi-strategy beluga optimization (AMBWO). The adaptive population learning strategy is proposed to improve the global exploration capability of BWO. The introduction of the roulette equilibrium selection strategy allows BWO to have more reference points to choose among during the exploitation phase, which enhances the flexibility of the algorithm. In addition, the adaptive avoidance strategy improves the algorithm’s ability to escape from local optima and enriches the population quality. In order to validate the performance of the proposed AMBWO, extensive evaluation comparisons with other state-of-the-art improved algorithms were conducted on the CEC2017 and CEC2022 test sets. Statistical tests, convergence analysis, and stability analysis show that the AMBWO exhibits a superior overall performance. Finally, the applicability and superiority of the AMBWO was further verified by several engineering optimization problems. Full article
Show Figures

Figure 1

20 pages, 13202 KiB  
Article
A Multi-Robot Task Allocation Method Based on the Synergy of the K-Means++ Algorithm and the Particle Swarm Algorithm
by Youdong Yuan, Ping Yang, Hanbing Jiang and Tiange Shi
Biomimetics 2024, 9(11), 694; https://doi.org/10.3390/biomimetics9110694 - 13 Nov 2024
Cited by 2 | Viewed by 1613
Abstract
Addressing challenges in the traditional K-means algorithm, such as the challenge of selecting initial clustering center points and the lack of a maximum limit on the number of clusters, and where the set of tasks in the clusters is not reasonably sorted after [...] Read more.
Addressing challenges in the traditional K-means algorithm, such as the challenge of selecting initial clustering center points and the lack of a maximum limit on the number of clusters, and where the set of tasks in the clusters is not reasonably sorted after the task assignment, which makes the cooperative operation of multiple robots inefficient, this paper puts forward a multi-robot task assignment method based on the synergy of the K-means++ algorithm and the particle swarm optimization (PSO) algorithm. According to the processing capability of the robots, the K-means++ algorithm that limits the maximum number of clusters is used to cluster the target points of the task. The clustering results are assigned to the multi-robot system using the PSO algorithm based on the distances between the robots and the centers of the clusters, which divides the multi-robot task assignment problem into a multiple traveling salesmen problem. Then, the PSO algorithm is used to optimize the ordering of the task sets in each cluster for the multiple traveling salesmen problem. An experimental verification platform is established by building a simulation and physical experiment platform utilizing the Robot Operating System (ROS). The findings indicate that the proposed algorithm outperforms both the clustering-based market auction algorithm and the non-clustering particle swarm algorithm, enhancing the efficiency of collaborative operations among multiple robots. Full article
Show Figures

Figure 1

Back to TopTop