Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = GHz ultrasonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4139 KiB  
Article
Ultrasonication Influence on the Morphological Characteristics of Graphene Nanoplatelet Nanocomposites and Their Electrical and Electromagnetic Interference Shielding Behavior
by Ignacio Collado, Alberto Jiménez-Suárez, Antonio Vázquez-López, Gilberto del Rosario and Silvia G. Prolongo
Polymers 2024, 16(8), 1068; https://doi.org/10.3390/polym16081068 - 11 Apr 2024
Cited by 5 | Viewed by 2115
Abstract
Graphene nanoplatelets (GNPs)/epoxy composites have been fabricated via gravity molding. The electrical and thermal properties of the composites have been studied with variable GNP type (C300, C500, and C750, whose surface areas are ~300, 500, and 750 m2/g, respectively), GNP loading [...] Read more.
Graphene nanoplatelets (GNPs)/epoxy composites have been fabricated via gravity molding. The electrical and thermal properties of the composites have been studied with variable GNP type (C300, C500, and C750, whose surface areas are ~300, 500, and 750 m2/g, respectively), GNP loading (5, 10, 12, and 15 wt.%), and dispersion time via ultrasonication (0, 30, 60, and 120 min). By increasing the time of sonication of the GNP into the epoxy matrix, the electrical conductivity decreases, which is an effect of GNP fragmentation. The best results were observed with 10–12% loading and a higher surface area (C750), as they provide higher electrical conductivity, thereby preserving thermal conductivity. The influence of sonication over electrical conductivity was further analyzed via the study of the composite morphology by means of Raman spectroscopy and X-ray diffraction (XRD), providing information about the aspect ratio of GNPs. Moreover, electromagnetic shielding (EMI) has been studied up to 4 GHz. Composites with C750 and 120 min ultrasonication show the best performance in EMI shielding, influenced by their higher electrical conductivity. Full article
(This article belongs to the Special Issue Smart Polymers and Composites: Multifunctionality and Recyclability)
Show Figures

Graphical abstract

11 pages, 2991 KiB  
Article
High-Bandwidth Heterodyne Laser Interferometer for the Measurement of High-Intensity Focused Ultrasound Pressure
by Ke Wang, Guangzhen Xing, Ping Yang, Min Wang, Zheng Wang and Qi Tian
Micromachines 2023, 14(12), 2225; https://doi.org/10.3390/mi14122225 - 11 Dec 2023
Cited by 1 | Viewed by 1809
Abstract
As a high-end medical technology, high-intensity focused ultrasound (HIFU) is widely used in cancer treatment and ultrasonic lithotripsy technology. The acoustic output level and safety of ultrasound treatments are closely related to the accuracy of sound pressure measurements. Heterodyne laser interferometry is applied [...] Read more.
As a high-end medical technology, high-intensity focused ultrasound (HIFU) is widely used in cancer treatment and ultrasonic lithotripsy technology. The acoustic output level and safety of ultrasound treatments are closely related to the accuracy of sound pressure measurements. Heterodyne laser interferometry is applied to the measurement of ultrasonic pressure owing to its characteristics of non-contact, high precision, and traceability. However, the upper limit of sound pressure measurement is limited by the bandwidth of the interferometer. In this paper, a high-bandwidth heterodyne laser interferometer for the measurement of high-intensity focused ultrasound pressure is developed and tested. The optical carrier with a frequency shift of 358 MHz is realized by means of an acousto-optic modulator. The selected electrical devices ensure that the electrical bandwidth can reach 1.5 GHz. The laser source adopts an iodine frequency-stabilized semiconductor laser with high-frequency spectral purity, which can reduce the influence of spectral purity on the bandwidth to a negligible level. The interference light path is integrated and encapsulated to improve the stability in use. An HIFU sound pressure measurement experiment is carried out, and the upper limit of the sound pressure measurement is obviously improved. Full article
(This article belongs to the Special Issue Progress and Application of Ultra-Precision Laser Interferometry)
Show Figures

Figure 1

17 pages, 3600 KiB  
Article
Real Aperture Continuous Terahertz Imaging System and Spectral Refinement Method
by Kailiang Xue, Wenna Zhang, Zhaoba Wang, Yong Jin, Xin Guo and Youxing Chen
Photonics 2023, 10(9), 1020; https://doi.org/10.3390/photonics10091020 - 6 Sep 2023
Cited by 2 | Viewed by 1813
Abstract
In order to meet the increasing demand of non-destructive testing (NDT) in engineering practice, a continuous terahertz NDT platform based on linear scanning has been developed, with a center frequency of 154 GHz and a bandwidth of 56 GHz. This system combines frequency [...] Read more.
In order to meet the increasing demand of non-destructive testing (NDT) in engineering practice, a continuous terahertz NDT platform based on linear scanning has been developed, with a center frequency of 154 GHz and a bandwidth of 56 GHz. This system combines frequency modulation continuous wave (FMCW) radar technology with a continuous scanning structure, as well as a data acquisition platform to provide a non-contact detection method; this is highly efficient and compensates for the shortcomings of traditional methods such as microwave, X-ray, ultrasonic, and others in safety inspection and special detection. In addition, a signal processing method of spectral refinement and correction is proposed in this paper for accurate thickness measurement. The results show that the method has a high accuracy for ABS, PVC, and ceramic matrix composites. By extracting the characteristic parameters, the detection and imaging of prefabricated defects, such as debonding and bubbles in composite materials, have been successfully achieved. This helps to evaluate the internal state of the inspected object more intuitively and further meets the requirements of industrial NDT. Full article
Show Figures

Figure 1

16 pages, 2293 KiB  
Article
Uncertainty Estimation for the Brillouin Frequency Shift Measurement Using a Scanning Tandem Fabry–Pérot Interferometer
by Patrice Salzenstein and Thomas Y. Wu
Micromachines 2023, 14(7), 1429; https://doi.org/10.3390/mi14071429 - 15 Jul 2023
Cited by 15 | Viewed by 2938
Abstract
The expanded uncertainty of the measured Brillouin scattering shift frequencies is essential in assessing the measurements of parameters of various materials. We describe the general operation principles of a Brillouin light scattering (BLS) spectrometer with a high-power laser and a scanning tandem Fabry–Pérot [...] Read more.
The expanded uncertainty of the measured Brillouin scattering shift frequencies is essential in assessing the measurements of parameters of various materials. We describe the general operation principles of a Brillouin light scattering (BLS) spectrometer with a high-power laser and a scanning tandem Fabry–Pérot interferometer (TFPI) for material characterization. Various uncertainty components have been analyzed for the BLS spectrometer following the Guide to the Expression of Uncertainty in Measurement (GUM). The expanded relative uncertainty in the measured Brillouin frequency shift of 15.70 GHz for polymethyl methacrylate (PMMA) was estimated to be 0.26%. The calculated Brillouin frequency shift (based on material properties of PMMA) was determined to be 15.44 GHz with expanded relative uncertainty of 2.13%. It was shown that the measured and calculated Brillouin frequency shifts for PMMA agree within their expanded uncertainties. The TFPI-based BLS spectrometer can be used to measure the longitudinal modulus of materials with an expanded uncertainty of 1.9%, which is smaller than that of the ultrasonic velocity-based method (estimated to be 2.9%). Full article
(This article belongs to the Special Issue High-Power Lasers for Materials Processing, 2nd Edition)
Show Figures

Figure 1

9 pages, 1763 KiB  
Article
Picosecond Ultrasonics for Studying Elastic Modulus of Polycrystalline Chromium Nanofilms: Thickness Dependence and Stiffness Enhancement
by Xinhao Tu, Jun Li, Jinyu Yan, Shibin Wang, Linan Li, Chuanwei Li and Zhiyong Wang
Coatings 2023, 13(2), 438; https://doi.org/10.3390/coatings13020438 - 15 Feb 2023
Cited by 1 | Viewed by 1992
Abstract
Accurate measurement of elastic constants in thin films is still an important issue to understand the scale behavior of nanosized materials. In the present study, we introduced an advanced non-destructive method, picosecond ultrasonics (PU), for measuring the out-of-plane elastic modulus of thin chromium [...] Read more.
Accurate measurement of elastic constants in thin films is still an important issue to understand the scale behavior of nanosized materials. In the present study, we introduced an advanced non-destructive method, picosecond ultrasonics (PU), for measuring the out-of-plane elastic modulus of thin chromium (Cr) films. The femtosecond light pulse is focused on the Cr film to excite the longitudinal acoustic phonons (LAP), which propagate along the thickness direction and repeat reflections inside the Cr film. Then, the propagation/distribution of LAP is detected by the time-delayed probe light pulse through the photoelastic effect. Therefore, we can determine the out-of-plane modulus by measuring the periodic pulse echoes or the breathing mode vibrations within the Cr film. For most Cr films, the determined modulus is smaller than the corresponding bulk value and decreases with the decreasing thickness, while for some Cr films, it closes and may exceed the bulk value. This work describes the thickness-dependent elasticity of thin Cr films and provides evidence of the stiffness enhancement in Cr films on the Si substrate. In addition, since LAP with central frequency up to 310 GHz is excited in Cr films on the SiO2 substrate, we also demonstrate the potential of Cr films as high-frequency photoacoustic transducers. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

17 pages, 7254 KiB  
Article
Increased Electromagnetic Wave Absorption through Controlled Sonication Processing on BaFe11.2Mg0.4Al0.4O19 Nanoparticles
by Erlina Yustanti, Alfian Noviyanto, Laila Chusnul Chotimah, Muhamad Abdur Rais Saputra, Maulana Randa and Maykel Manawan
Coatings 2022, 12(9), 1367; https://doi.org/10.3390/coatings12091367 - 19 Sep 2022
Cited by 5 | Viewed by 2572
Abstract
Electromagnetic waves show rapid development in electronics, telecommunications, and the military. One of the efforts to overcome the effects of electromagnetic interference is by developing microwave-absorbing materials. Barium hexaferrite is the best candidate for development as an absorber material. Microwave absorption in barium [...] Read more.
Electromagnetic waves show rapid development in electronics, telecommunications, and the military. One of the efforts to overcome the effects of electromagnetic interference is by developing microwave-absorbing materials. Barium hexaferrite is the best candidate for development as an absorber material. Microwave absorption in barium hexaferrite can be increased through Mg-Al doping and reducing the particle size. This study aimed to analyze sonication parameters to reduce the particle size by combining destruction methods using mechanical alloying followed by high-power ultrasonic irradiation. Barium hexaferrite was synthesized through mechanical alloying by mixing stoichiometric BaCO3, Fe2O3, Al2O3, and MgO (Sigma-Aldrich p.a 99%) (Mg-Al 0.4%wt). The samples continued the sintering process at 1200 °C for 2 h to grow crystal embryos. The optimal parameters for ultrasonic destruction were using a transducer:reactor diameter ratio of 1:10, a particle density of 5 g/250 mL, and adding a non-ionic surfactant of 0.01% at an amplitude of 55% and a sonication time of 8 h. These methods resulted in the saturation magnetization of 18.50 emu/g and a coercivity of 0.08 Tesla. The reduction in the particle size of BHF doped with Mg-Al was successfully up to 21 nm, resulting in a reflection loss of up to −40.8697 dB at 11.896 GHz (x-band, 8–12 GHz). The BHF nanoparticles doped with Mg-Al effectively absorbed up to 99.99% electromagnetic waves. Full article
Show Figures

Figure 1

26 pages, 10806 KiB  
Article
Water Quality Monitoring and Management of Building Water Tank Using Industrial Internet of Things
by Rajesh Singh, Mohammed Baz, Anita Gehlot, Mamoon Rashid, Manpreet Khurana, Shaik Vaseem Akram, Sultan S. Alshamrani and Ahmed Saeed AlGhamdi
Sustainability 2021, 13(15), 8452; https://doi.org/10.3390/su13158452 - 28 Jul 2021
Cited by 29 | Viewed by 9983
Abstract
Water being one of the foremost needs for human survival, conservation, and management of the resource must be given ultimate significance. Water demand has increased tremendously all over the world from the past decade due to urbanization, climatic change, and ineffective management of [...] Read more.
Water being one of the foremost needs for human survival, conservation, and management of the resource must be given ultimate significance. Water demand has increased tremendously all over the world from the past decade due to urbanization, climatic change, and ineffective management of water. The advancement in sensor and wireless communication technology encourages implementing the IoT in a wide range. In this study, an IoT-based architecture is proposed and implemented for monitoring the level and quality of water in a domestic water tank with customized hardware based on 2.4 GHz radiofrequency (RF) communication. Moreover, the ESP 8266 Wi-Fi module-based upper tank monitoring of the proposed architecture encourages provide real-time information about the tank through internet protocol (IP). The customized hardware is designed and evaluated in the Proteus simulation environment. The calibration of the pH sensor and ultrasonic value is carried out for setting the actual value in the prototype for obtaining the error-free value. The customized hardware that is developed for monitoring the level and quality of water is implemented. The real-time visualization and monitoring of the water tank are realized with the cloud-enabled Virtuino app. Full article
(This article belongs to the Special Issue Industrial Internet of Things (IIoTs) and Industry 4.0)
Show Figures

Figure 1

25 pages, 10341 KiB  
Article
Superparamagnetic ZnFe2O4 Nanoparticles-Reduced Graphene Oxide-Polyurethane Resin Based Nanocomposites for Electromagnetic Interference Shielding Application
by Raghvendra Singh Yadav, Anju, Thaiskang Jamatia, Ivo Kuřitka, Jarmila Vilčáková, David Škoda, Pavel Urbánek, Michal Machovský, Milan Masař, Michal Urbánek, Lukas Kalina and Jaromir Havlica
Nanomaterials 2021, 11(5), 1112; https://doi.org/10.3390/nano11051112 - 25 Apr 2021
Cited by 30 | Viewed by 5226
Abstract
Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled [...] Read more.
Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled via sonochemical synthesis time. The average crystallite size increases from 3.0 nm to 4.0 nm with a rise of sonication time from 25 min to 100 min. The change of physical properties of ZnFe2O4 nanoparticles with the increase of sonication time was observed. The prepared ZnFe2O4 nanoparticles show superparamagnetic behavior. The prepared ZnFe2O4 nanoparticles (ZS25, ZS50, and ZS100) and reduced graphene oxide (RGO) were embedded in a polyurethane resin (PUR) matrix as a shield against electromagnetic pollution. The ultra-sonication method has been used for the preparation of nanocomposites. The total shielding effectiveness (SET) value for the prepared nanocomposites was studied at a thickness of 1 mm in the range of 8.2–12.4 GHz. The high attenuation constant (α) value of the prepared ZS100-RGO-PUR nanocomposite as compared with other samples recommended high absorption of electromagnetic waves. The existence of electric-magnetic nanofillers in the resin matrix delivered the inclusive acts of magnetic loss, dielectric loss, appropriate attenuation constant, and effective impedance matching. The synergistic effect of ZnFe2O4 and RGO in the PUR matrix led to high interfacial polarization and, consequently, significant absorption of the electromagnetic waves. The outcomes and methods also assure an inventive and competent approach to develop lightweight and flexible polyurethane resin matrix-based nanocomposites, consisting of superparamagnetic zinc ferrite nanoparticles and reduced graphene oxide as a shield against electromagnetic pollution. Full article
Show Figures

Figure 1

24 pages, 10241 KiB  
Article
Compact Elliptical UWB Antenna for Underwater Wireless Communications
by Adam R. H. Alhawari, Sama F. Majeed, Tale Saeidi, Sajid Mumtaz, Hisham Alghamdi, Ayman Taher Hindi, Abdulkarem H. M. Almawgani, Muhammad Ali Imran and Qammer H. Abbasi
Micromachines 2021, 12(4), 411; https://doi.org/10.3390/mi12040411 - 7 Apr 2021
Cited by 20 | Viewed by 4025
Abstract
The increasing needs of free licensed frequency bands like Industrial, Scientific, and Medical (ISM), Wireless Local Area Network (WLAN), and 5G for underwater communications required more bandwidth (BW) with higher data transferring rate. Microwaves produce a higher transferring rate of data, and their [...] Read more.
The increasing needs of free licensed frequency bands like Industrial, Scientific, and Medical (ISM), Wireless Local Area Network (WLAN), and 5G for underwater communications required more bandwidth (BW) with higher data transferring rate. Microwaves produce a higher transferring rate of data, and their associated devices are smaller in comparison with sonar and ultrasonic. Thus, transceivers should have broad BW to cover more of a frequency band, especially from ultra-wideband (UWB) systems, which show potential outcomes. However, previous designs of similar work for underwater communications were very complicated, uneasy to fabricate, and large. Therefore, to overcome these shortcomings, a novel compact elliptical UWB antenna is designed to resonate from 1.3 to 7.2 GHz. It is invented from a polytetrafluoroethylene (PTFE) layer with a dielectric constant of 2.55 mm and a thickness of 0.8 mm. The proposed antenna shows higher gain and radiation efficiency and stability throughout the working band when compared to recent similarly reported designs, even at a smaller size. The characteristics of the functioning antenna are investigated through fluid mediums of fresh-water, seawater, distilled water, and Debye model water. Later, its channel capacity, bit rate error, and data rate are evaluated. The results demonstrated that the antenna offers compact, easier fabrication with better UWB characteristics for underwater 5G communications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 5350 KiB  
Article
Brachialis Pulse Wave Measurements with Ultra-Wide Band and Continuous Wave Radar, Photoplethysmography and Ultrasonic Doppler Sensors
by Horst Hellbrück, Gunther Ardelt, Philipp Wegerich and Hartmut Gehring
Sensors 2021, 21(1), 165; https://doi.org/10.3390/s21010165 - 29 Dec 2020
Cited by 6 | Viewed by 3923
Abstract
The measurement and analysis of the arterial pulse wave provides information about the state of vascular health. When measuring blood pressure according to Riva-Rocci, the systolic and diastolic blood pressure is measured non-invasively with an inflatable pressure cuff on the upper arm. Today’s [...] Read more.
The measurement and analysis of the arterial pulse wave provides information about the state of vascular health. When measuring blood pressure according to Riva-Rocci, the systolic and diastolic blood pressure is measured non-invasively with an inflatable pressure cuff on the upper arm. Today’s blood pressure monitors analyze the pulse wave in reference to the rising or falling cuff pressure. With the help of additional pulse wave analysis, one can determine the pulse rate and the heart rate variability. In this paper, we investigated the concept, the construction, and the limitations of ultrawideband (UWB) radar and continuous wave (CW) radar, which provide continuous and non-invasive pulse wave measurements. We integrated the sensors into a complete measurement system. We measured the pulse wave of the cuff pressure, the radar sensor (both UWB and CW), the optical sensor, and ultrasonic Doppler as a reference. We discussed the results and the sensor characteristics. The main conclusion was that the resolution of the pulse radar was too low, even with a maximum bandwidth of 10 GHz, to measure pulse waves reliably. The continuous wave radar provides promising results for a phantom if adjusted properly with phase shifts and frequency. In the future, we intend to develop a CW radar solution with frequency adaption. Full article
(This article belongs to the Special Issue Ultra Wideband (UWB) Systems in Biomedical Sensing)
Show Figures

Figure 1

3 pages, 429 KiB  
Extended Abstract
Looking Inside Micro- and Nano-Mechanical Pillar Resonators: A Picosecond Ultrasonics Approach
by Paul Stritt, Juliane Doster, Thomas Dekorsy, Vitalyi Gusev, Eva Weig and Mike Hettich
Proceedings 2020, 56(1), 31; https://doi.org/10.3390/proceedings2020056031 - 28 Dec 2020
Viewed by 1699
Abstract
Pillar-shaped Gallium arsenide (GaAs) micromechanical resonators are fabricated, and the feasibility to measure the inside of the pillars in the axial direction with laser-induced GHz ultrasound based on picosecond ultrasonics is tested. Measurements on the pillars with head sizes in the µm range [...] Read more.
Pillar-shaped Gallium arsenide (GaAs) micromechanical resonators are fabricated, and the feasibility to measure the inside of the pillars in the axial direction with laser-induced GHz ultrasound based on picosecond ultrasonics is tested. Measurements on the pillars with head sizes in the µm range show excellent agreement with theoretical predictions. Full article
Show Figures

Figure 1

29 pages, 13410 KiB  
Article
Low Cost and Compact FMCW 24 GHz Radar Applications for Snowpack and Ice Thickness Measurements
by Patrick Pomerleau, Alain Royer, Alexandre Langlois, Patrick Cliche, Bruno Courtemanche, Jean-Benoît Madore, Ghislain Picard and Éric Lefebvre
Sensors 2020, 20(14), 3909; https://doi.org/10.3390/s20143909 - 14 Jul 2020
Cited by 27 | Viewed by 8794
Abstract
Monitoring the evolution of snow on the ground and lake ice—two of the most important components of the changing northern environment—is essential. In this paper, we describe a lightweight, compact and autonomous 24 GHz frequency-modulated continuous-wave (FMCW) radar system for freshwater ice thickness [...] Read more.
Monitoring the evolution of snow on the ground and lake ice—two of the most important components of the changing northern environment—is essential. In this paper, we describe a lightweight, compact and autonomous 24 GHz frequency-modulated continuous-wave (FMCW) radar system for freshwater ice thickness and snow mass (snow water equivalent, SWE) measurements. Although FMCW radars have a long-established history, the novelty of this research lies in that we take advantage the availability of a new generation of low cost and low power requirement units that facilitates the monitoring of snow and ice at remote locations. Test performance (accuracy and limitations) is presented for five different applications, all using an automatic operating mode with improved signal processing: (1) In situ lake ice thickness measurements giving 2 cm accuracy up to ≈1 m ice thickness and a radar resolution of 4 cm; (2) remotely piloted aircraft-based lake ice thickness from low-altitude flight at 5 m; (3) in situ dry SWE measurements based on known snow depth, giving 13% accuracy (RMSE 20%) over boreal forest, subarctic taiga and Arctic tundra, with a measurement capability of up to 3 m in snowpack thickness; (4) continuous monitoring of surface snow density under particular Antarctic conditions; (5) continuous SWE monitoring through the winter with a synchronized and collocated snow depth sensor (ultrasonic or LiDAR sensor), giving 13.5% bias and 25 mm root mean square difference (RMSD) (10%) for dry snow. The need for detection processing for wet snow, which strongly absorbs radar signals, is discussed. An appendix provides 24 GHz simulated effective refractive index and penetration depth as a function of a wide range of density, temperature and wetness for ice and snow. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

11 pages, 2855 KiB  
Article
Burial Depth Effect of Crack on the Lcr Wave Acoustoelastic Coefficient for Stress Measurement of Laser Cladding Coating
by Bin Liu, Zhihao Zeng, Jiayang Gu, Shujin Chen, Peng He and Jinxiang Fang
Materials 2020, 13(12), 2823; https://doi.org/10.3390/ma13122823 - 23 Jun 2020
Cited by 4 | Viewed by 2348
Abstract
In this paper, the influence of burial depth of crack on stress measurement of laser cladding coating with the critical refracted longitudinal wave (Lcr wave) was discussed based on the Lcr wave acoustoelastic effect. The regular rectangular slots with different [...] Read more.
In this paper, the influence of burial depth of crack on stress measurement of laser cladding coating with the critical refracted longitudinal wave (Lcr wave) was discussed based on the Lcr wave acoustoelastic effect. The regular rectangular slots with different depths that were used to simulate the burial crack in coating was based on the equivalent theory. The experimental system including an ultrasonic wave generator, digital oscilloscope (2.5 GHz sampling rate), and two Lcr wave transducers (2.5 MHz center frequency) was used to collect the Lcr wave under different tensile loads, and the Lcr wave was denoised by using wavelet analysis technology, then the fracture morphology was observed using SEM. The results show that after the denoising by wavelet analysis technology, the signal-to-noise ratio of Lcr wave becomes bigger and the mean square deviation of Lcr wave becomes smaller. When the tensile load is within the turning point load, the difference in time of flight between Lcr wave increases linearly as the tensile load increases, and the deviation of the experimental results becomes obvious as the tensile load increases. When the tensile load is the same, as the burial depth of the slot increases, the nominal Lcr wave acoustoelastic coefficient decreases and tends to be stable gradually. At last, the experimental results are discussed based on the Lcr wave acoustoelastic effect and deformation theory, and it is analyzed that the uneven deformation caused by the interface in coating, anisotropic microstructure, and the burial crack is considered as the main reason. Full article
Show Figures

Figure 1

10 pages, 663 KiB  
Article
Optical Trapping, Sizing, and Probing Acoustic Modes of a Small Virus
by Jeffrey Burkhartsmeyer, Yanhong Wang, Kam Sing Wong and Reuven Gordon
Appl. Sci. 2020, 10(1), 394; https://doi.org/10.3390/app10010394 - 4 Jan 2020
Cited by 29 | Viewed by 6109
Abstract
Prior opto-mechanical techniques to measure vibrational frequencies of viruses work on large ensembles of particles, whereas, in this work, individually trapped viral particles were studied. Double nanohole (DNH) apertures in a gold film were used to achieve optical trapping of one of the [...] Read more.
Prior opto-mechanical techniques to measure vibrational frequencies of viruses work on large ensembles of particles, whereas, in this work, individually trapped viral particles were studied. Double nanohole (DNH) apertures in a gold film were used to achieve optical trapping of one of the smallest virus particles yet reported, PhiX174, which has a diameter of 25 nm. When a laser was focused onto these DNH apertures, it created high local fields due to plasmonic enhancement, which allowed stable trapping of small particles for prolonged periods at low powers. Two techniques were performed to characterize the virus particles. The particles were sized via an established autocorrelation analysis technique, and the acoustic modes were probed using the extraordinary acoustic Raman (EAR) method. The size of the trapped particle was determined to be 25 ± 3.8 nm, which is in good agreement with the established diameter of PhiX174. A peak in the EAR signal was observed at 32 GHz, which fits well with the predicted value from elastic theory. Full article
(This article belongs to the Special Issue Optical Trapping)
Show Figures

Figure 1

14 pages, 3588 KiB  
Article
Dark Antibacterial Activity of Rose Bengal
by Faina Nakonechny, Margarita Barel, Arad David, Simor Koretz, Boris Litvak, Elena Ragozin, Ariel Etinger, Oz Livne, Yosef Pinhasi, Gary Gellerman and Marina Nisnevitch
Int. J. Mol. Sci. 2019, 20(13), 3196; https://doi.org/10.3390/ijms20133196 - 29 Jun 2019
Cited by 32 | Viewed by 5572
Abstract
The global spread of bacterial resistance to antibiotics promotes a search for alternative approaches to eradication of pathogenic bacteria. One alternative is using photosensitizers for inhibition of Gram-positive and Gram-negative bacteria under illumination. Due to low penetration of visible light into tissues, applications [...] Read more.
The global spread of bacterial resistance to antibiotics promotes a search for alternative approaches to eradication of pathogenic bacteria. One alternative is using photosensitizers for inhibition of Gram-positive and Gram-negative bacteria under illumination. Due to low penetration of visible light into tissues, applications of photosensitizers are currently limited to treatment of superficial local infections. Excitation of photosensitizers in the dark can be applied to overcome this problem. In the present work, dark antibacterial activity of the photosensitizer Rose Bengal alone and in combination with antibiotics was studied. The minimum inhibitory concentrations (MIC) value of Rose Bengal against S. aureus dropped in the presence of sub-MIC concentrations of ciprofloxacin, levofloxacin, methicillin, and gentamicin. Free Rose Bengal at sub-MIC concentrations can be excited in the dark by ultrasound at 38 kHz. Rose Bengal immobilized onto silicon showed good antibacterial activity in the dark under ultrasonic activation, probably because of Rose Bengal leaching from the polymer during the treatment. Exposure of bacteria to Rose Bengal in the dark under irradiation by electromagnetic radio frequency waves in the 9 to 12 GHz range caused a decrease in the bacterial concentration, presumably due to resonant absorption of electromagnetic energy, its transformation into heat and subsequent excitation of Rose Bengal. Full article
(This article belongs to the Special Issue Insights into Photodynamic Therapy)
Show Figures

Figure 1

Back to TopTop