Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = GHz probes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2928 KiB  
Article
Comparison Between Broadband and Personal Exposimeter Measurements for EMF Exposure Map Development Using Evolutionary Programming
by Alberto Nájera, Rocío Sánchez-Montero, Jesús González-Rubio, Jorge Guillén-Pina, Ricardo Chocano-del-Cerro and Pablo-Luis López-Espí
Appl. Sci. 2025, 15(13), 7471; https://doi.org/10.3390/app15137471 - 3 Jul 2025
Viewed by 385
Abstract
In this study, we provide a comparison of radiofrequency electromagnetic field exposure level maps as determined using two approaches: a broadband meter (NARDA EMR-300) equipped with an isotropic probe in the range of 100 kHz to 3 GHz, and a Personal Exposimeter (Satimo [...] Read more.
In this study, we provide a comparison of radiofrequency electromagnetic field exposure level maps as determined using two approaches: a broadband meter (NARDA EMR-300) equipped with an isotropic probe in the range of 100 kHz to 3 GHz, and a Personal Exposimeter (Satimo EME Spy 140) in the range of 88 MHz to 5.8 GHz. The aim of this research was to determine the necessary adjustments to the measurements made with personal exposimeters to obtain RF-EMF exposure maps equivalent to those made with broadband meters. We evaluated different possibilities to obtain the best equivalence of measurements between both devices. For this purpose, the datasets obtained in both cases were analyzed, as well as the possible correction factors. First, the possibility of establishing a single or double correction factor depending on the existence (or lack thereof) of a line of sight with respect to the base stations was analyzed by minimizing the average value of the error between the values of the broadband meter and the corrected values of the personal exposure meter. Due to the differences observed in the exposure maps, a second procedure was carried out, in which a genetic algorithm was used to determine the ratio between the measurements from both methods (the broadband meter and personal exposure meter), depending on the existence (or lack thereof) of a line of sight, and we compared the exposure maps generated using kriging interpolation. Full article
Show Figures

Figure 1

24 pages, 8519 KiB  
Article
Probing Equatorial Ionospheric TEC at Sub-GHz Frequencies with Wide-Band (B4) uGMRT Interferometric Data
by Dipanjan Banerjee, Abhik Ghosh, Sushanta K. Mondal and Parimal Ghosh
Universe 2025, 11(7), 210; https://doi.org/10.3390/universe11070210 - 26 Jun 2025
Viewed by 360
Abstract
Phase stability at low radio frequencies is severely impacted by ionospheric propagation delays. Radio interferometers such as the giant metrewave radio telescope (GMRT) are capable of detecting changes in the ionosphere’s total electron content (TEC) over larger spatial scales and with greater sensitivity [...] Read more.
Phase stability at low radio frequencies is severely impacted by ionospheric propagation delays. Radio interferometers such as the giant metrewave radio telescope (GMRT) are capable of detecting changes in the ionosphere’s total electron content (TEC) over larger spatial scales and with greater sensitivity compared to conventional tools like the global navigation satellite system (GNSS). Thanks to its unique design, featuring both a dense central array and long outer arms, and its strategic location, the GMRT is particularly well-suited for studying the sensitive ionospheric region located between the northern peak of the equatorial ionization anomaly (EIA) and the magnetic equator. In this study, we observe the bright flux calibrator 3C48 for ten hours to characterize and study the low-latitude ionosphere with the upgraded GMRT (uGMRT). We outline the methods used for wideband data reduction and processing to accurately measure differential TEC (δTEC) between antenna pairs, achieving a precision of< mTECU (1 mTECU = 103 TECU) for central square antennas and approximately mTECU for arm antennas. The measured δTEC values are used to estimate the TEC gradient across GMRT arm antennas. We measure the ionospheric phase structure function and find a power-law slope of β=1.72±0.07, indicating deviations from pure Kolmogorov turbulence. The inferred diffractive scale, the spatial separation over which the phase variance reaches 1rad2, is ∼6.66 km. The small diffractive scale implies high phase variability across the field of view and reduced temporal coherence, which poses challenges for calibration and imaging. Full article
(This article belongs to the Section Planetary Sciences)
Show Figures

Figure 1

27 pages, 3152 KiB  
Article
Validation of a Low-Cost Open-Ended Coaxial Probe Setup for Broadband Permittivity Measurements up to 6 GHz
by Julia Arias-Rodríguez, Raúl Moreno-Merín, Andrea Martínez-Lozano, Germán Torregrosa-Penalva and Ernesto Ávila-Navarro
Sensors 2025, 25(13), 3935; https://doi.org/10.3390/s25133935 - 24 Jun 2025
Viewed by 494
Abstract
This work presents the validation of a low-cost measurement system based on an open-ended coaxial SMA (SubMiniature version A) probe for the characterization of complex permittivity in the microwave frequency range. The system combines a custom-fabricated probe, a vector network analyzer, and a [...] Read more.
This work presents the validation of a low-cost measurement system based on an open-ended coaxial SMA (SubMiniature version A) probe for the characterization of complex permittivity in the microwave frequency range. The system combines a custom-fabricated probe, a vector network analyzer, and a dedicated software application that implements three analytical models: capacitive, radiation, and virtual transmission line models. A comprehensive experimental campaign was carried out involving pure polar liquids, saline solutions, and biological tissues, with the measurements compared against those obtained using a high-precision commercial probe. The results confirm that the proposed system is capable of delivering accurate and reproducible permittivity values up to at least 6 GHz. Among the implemented models, the radiation model demonstrated the best overall performance, particularly in biological samples. Additionally, reproducibility tests with three independently assembled SMA probes showed normalized deviations below 3%, confirming the robustness of the design. These results demonstrate that the proposed system constitutes a viable alternative for cost-sensitive applications requiring portable or scalable microwave dielectric characterization. Full article
(This article belongs to the Special Issue Advanced Microwave Sensors and Their Applications in Measurement)
Show Figures

Figure 1

18 pages, 3361 KiB  
Article
Broadband Low-Cost Normal Magnetic Field Probe for PCB Near-Field Measurement
by Ruichen Luo, Zheng He and Lixiao Wang
Sensors 2025, 25(13), 3874; https://doi.org/10.3390/s25133874 - 21 Jun 2025
Viewed by 620
Abstract
This paper presents a broadband near-field probe designed for measuring the normal magnetic field (Hz) in radio frequency (RF) circuits operating within a frequency range of 2–8 GHz. The proposed probe uses a cost-effective 4-layer printed circuit board (PCB) structure [...] Read more.
This paper presents a broadband near-field probe designed for measuring the normal magnetic field (Hz) in radio frequency (RF) circuits operating within a frequency range of 2–8 GHz. The proposed probe uses a cost-effective 4-layer printed circuit board (PCB) structure made with an FR-4 substrate. The probe primarily consists of an Hz detection unit, a broadband microstrip balun, and a coaxial-like output. The broadband balun facilitates the conversion from differential to single-ended signals, thereby enhancing the probe’s common-mode rejection capability. This design ensures that the probe achieves both cost efficiency and high broadband measurement performance. Additionally, this work investigates the feasibility of employing microstrip lines as calibration standards for the Hz probe. The probe’s structural parameters and magnetic field response were initially determined through simulations, and the calibration factor was subsequently verified by calibration experiments. In practical measurements, the field distributions above a microstrip line and a low-noise amplifier (LNA) were captured. The measured field distribution of the microstrip line was compared with simulation results to verify the probe’s performance. Meanwhile, the measured field distribution of the LNA was utilized to identify the radiating components within the amplifier. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 4955 KiB  
Article
Design of a High-Gain X-Band Electromagnetic Band Gap Microstrip Patch Antenna for CubeSat Applications
by Linh Phuong Ta, Daisuke Nakayama and Miyuki Hirose
Electronics 2025, 14(11), 2216; https://doi.org/10.3390/electronics14112216 - 29 May 2025
Viewed by 557
Abstract
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The [...] Read more.
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The X-band is preferred for CubeSat missions in high-speed communication, long distance or deep space because it allows communication at higher data rates, and the antenna is smaller than those used for lower frequency bands. In our study, the EBG elements are analyzed, modified and optimized so that the antenna can fit a 10 cm × 10 cm surface area of a standard 3U CubeSat structure while providing a significant high gain and circular polarization (CP). A noticeable point of this research is that the simplicity of the antenna and the EBG structure are being maintained by just using a simple single-probe feed to achieve a total antenna efficiency exceeding 90%, and the measured gain of around 11.7 dBi at the desired frequency of 8.483 GHz. Furthermore, the measured axial ratio (AR) is around 1.4 dB at 8.483 GHz, which satisfied the lower-than-3 dB requirement for CP antennas in general. The simulation, analysis and measured results are discussed in detail. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Graphical abstract

13 pages, 3752 KiB  
Article
Design of a Compact Dual-Band and Dual-Mode Wearable Antenna for WBAN Applications
by Wei Zhang, Wenran Li, Xiaoyu Feng, Chen Zhao, Yan Li and Xiaoyi Liao
Sensors 2025, 25(11), 3361; https://doi.org/10.3390/s25113361 - 27 May 2025
Viewed by 609
Abstract
This paper presents a novel design of a compact dual-band dual-mode wearable antenna. The antenna is fed through a single coaxial feed probe, which excites TM01 and TM11 modes at 2.45 GHz and 5.8 GHz, respectively. These modes exhibit distinct radiation [...] Read more.
This paper presents a novel design of a compact dual-band dual-mode wearable antenna. The antenna is fed through a single coaxial feed probe, which excites TM01 and TM11 modes at 2.45 GHz and 5.8 GHz, respectively. These modes exhibit distinct radiation characteristics. The omnidirectional TM01 mode at 2.45 GHz is suitable for on-body communication, while the directional TM11 mode at 5.8 GHz is more appropriate for off-body communication. The antenna prototype was fabricated and measured. The measured performance is consistent with the simulations. Additionally, further simulations and measurements were conducted to verify the interactions between the proposed antenna and the human body. The results demonstrate that the proposed antenna exhibits significant potential as a candidate for wireless body area network (WBAN) communications. Full article
Show Figures

Figure 1

22 pages, 9081 KiB  
Article
Development of a Dielectric Heating System for Selective Thermal Targeting of Liver Fluke Regions in Cirrhinus microlepis
by Supatinee Kornsing, Sirigiet Phunklang, Chanchai Thongsopa, Piyaporn Krachodnok, Nuchanart Santalunai and Samran Santalunai
Appl. Sci. 2025, 15(10), 5466; https://doi.org/10.3390/app15105466 - 13 May 2025
Viewed by 571
Abstract
Liver fluke infections, especially those induced by Opisthorchis viverrini, pose considerable health and economic difficulties in aquaculture, particularly in Southeast Asia. Traditional approaches for parasite elimination, including chemical treatments and freezing, exhibit constraints regarding efficacy, environmental sustainability, and practicality. This research investigates [...] Read more.
Liver fluke infections, especially those induced by Opisthorchis viverrini, pose considerable health and economic difficulties in aquaculture, particularly in Southeast Asia. Traditional approaches for parasite elimination, including chemical treatments and freezing, exhibit constraints regarding efficacy, environmental sustainability, and practicality. This research investigates an improved dielectric heating system utilizing a 2.45 GHz horn antenna for the selective thermal targeting of parasite-associated regions in Cirrhinus microlepis (small-scale mud carp). The dielectric characteristics of fish tissues, encompassing scales, skin, and muscle, were analyzed utilizing an open-ended coaxial probe technique. Simulation and experimental evaluations were performed to improve energy absorption, heating uniformity, and a particular absorption rate to enable precise thermal localization while preserving the integrity of fish tissue. The findings demonstrate that dielectric heating can specifically elevate the temperature of fish scales, where parasites predominantly inhabit, to levels beyond 70 degrees Celsius, while reducing thermal impact on the underlying muscle tissue. The application of a salt coating on fish scales markedly increased their dielectric loss, exceeding that of muscle tissue, thus enhancing selective heating efficiency and supporting targeted thermal treatment. The ideal distance from the antenna to the sample was established as ranging from 6 to 9 cm, ensuring a balance between energy efficiency and homogeneous heating. This work illustrates the efficacy of dielectric heating as a novel and non-chemical approach for thermal management of parasite-prone tissues in aquaculture, providing a sustainable and viable substitute for traditional treatments. Full article
Show Figures

Figure 1

16 pages, 6306 KiB  
Article
Design and Realization of a High-Q Grounded Tunable Active Inductor for 5G NR (FR1) Transceiver Front-End Applications
by Sehmi Saad, Aymen Ben Hammadi and Fayrouz Haddad
Sensors 2025, 25(10), 3070; https://doi.org/10.3390/s25103070 - 13 May 2025
Viewed by 485
Abstract
This paper presents a wide-tuning-range, low-power tunable active inductor (AI) designed and fabricated using 130 nm CMOS technology with six metal layers. To achieve high performance with a relatively small silicon area and low power consumption, the AI structure is carefully designed and [...] Read more.
This paper presents a wide-tuning-range, low-power tunable active inductor (AI) designed and fabricated using 130 nm CMOS technology with six metal layers. To achieve high performance with a relatively small silicon area and low power consumption, the AI structure is carefully designed and optimized using a cascode stage, a feedback resistor, and multi-gate finger transistors. In the proposed circuit topology, inductance tuning is realized by adjusting both the bias current and the feedback resistor. The performance of the circuit is evaluated in terms of tuning range, quality factor, power consumption, and chip area. The functionality of the fabricated device is experimentally validated, and the fundamental characteristics of the active inductor are measured over a wide frequency range using a Cascade GSG probe, with results compared to simulations. Experimental measurements show that, under a 1 V supply, the AI achieves a self-resonant frequency (SRF) of 3.961 GHz and a quality factor (Q) exceeding 1586 at 2.383 GHz. The inductance is tunable between 6.7 nH and 84.4 nH, with a total power consumption of approximately 2 mW. The total active area, including pads, is 345 × 400 µm2. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

16 pages, 7212 KiB  
Article
Integrating Complex Permittivity Measurements with Histological Analysis for Advanced Tissue Characterization
by Sandra Lopez-Prades, Mónica Torrecilla-Vall-llossera, Mercedes Rus, Miriam Cuatrecasas and Joan M. O’Callaghan
Sensors 2025, 25(8), 2626; https://doi.org/10.3390/s25082626 - 21 Apr 2025
Viewed by 460
Abstract
We developed a measurement setup and protocol reliably relating complex permittivity measurements with tissue characterization and specific histological features. We measured 148 fresh human tissue samples across 14 tissue types at 51 frequencies ranging from 200 MHz to 20 GHz, using an open-ended [...] Read more.
We developed a measurement setup and protocol reliably relating complex permittivity measurements with tissue characterization and specific histological features. We measured 148 fresh human tissue samples across 14 tissue types at 51 frequencies ranging from 200 MHz to 20 GHz, using an open-ended coaxial slim probe. Tissue samples were collected using a punch biopsy, ensuring that the sampled area encompassed the region where complex permittivity measurements were performed. This approach minimized experimental uncertainty related to potential position-dependent variations in permittivity. Once measured, the samples were then formalin-fixed and paraffin-embedded (FFPE) to obtain histological slides for microscopic analysis of tissue features. We observed that complex permittivity values are strongly associated with key histological features, including fat content, necrosis, and fibrosis. Most tissue samples exhibiting these features could be differentiated from nominal values for that tissue type, even accounting for statistical variability and instrumental uncertainties. These findings demonstrate the potential of incorporating fast in situ complex permittivity for fresh tissue characterization in pathology workflows. Furthermore, our work lays the groundwork for enhancing databases where complex permittivity values are measured under histological control, enabling precise correlations between permittivity values, tissue characterization, and histological features. Full article
Show Figures

Figure 1

12 pages, 9526 KiB  
Article
Design of Omnidirectional Antennas Using TM22 and Quasi-TM11 Modes with Characteristic Mode Analysis
by Wei Hu, Tao Tang, Liangfu Peng, Maged A. Aldhaeebi, Thamer S. Almoneef and Dongming Tang
Electronics 2025, 14(7), 1480; https://doi.org/10.3390/electronics14071480 - 7 Apr 2025
Cited by 1 | Viewed by 637
Abstract
This study presents the design of two high-gain omnidirectional antennas with minimal pattern ripple. Antenna I is based on a conventional microstrip patch structure, while Antenna II integrates a modified design with four metal probes. Characteristic mode theory (CMT) was applied to analyze [...] Read more.
This study presents the design of two high-gain omnidirectional antennas with minimal pattern ripple. Antenna I is based on a conventional microstrip patch structure, while Antenna II integrates a modified design with four metal probes. Characteristic mode theory (CMT) was applied to analyze the far-field radiation patterns of both antennas, with a focus on the distinct radiation modes. The analysis revealed that Antenna I operates in the TM22 mode and Antenna II in the quasi-TM11 mode, both exhibiting omnidirectional radiation characteristics. A comparative investigation of four different feeding techniques was conducted to ensure equal amplitude and phase excitation at each port, resulting in a low pattern ripple for both designs. A 1:4 power divider was implemented to validate the designs, and the performance of Antennas I and II was experimentally assessed. The measurement results showed that the −10 dB operating bandwidths of Antennas I and II spanned 2.42–2.50 GHz and 2.34–2.57 GHz, respectively, with corresponding peak gains of 8.0 dBi and 4.55 dBi at a frequency of 2.45 GHz. Full article
Show Figures

Figure 1

12 pages, 3003 KiB  
Article
Construction of CPW Pogo Pin Probes for RFIC Measurements
by K. M. Lee, J. S. Kim, S. Ahn, E. Park, J. Myeong and M. Kim
Sensors 2025, 25(6), 1677; https://doi.org/10.3390/s25061677 - 8 Mar 2025
Viewed by 1357
Abstract
A new radio frequency (RF) probe using pogo pin tips for integrated chip (IC) measurement up to 50 GHz is proposed. It offers high durability due to the pogo pins and meets three key design criteria for general IC measurement: (1) a 45° [...] Read more.
A new radio frequency (RF) probe using pogo pin tips for integrated chip (IC) measurement up to 50 GHz is proposed. It offers high durability due to the pogo pins and meets three key design criteria for general IC measurement: (1) a 45° tilted shape with a 70 μm tip protrusion for easy microscope inspection, (2) linear pogo pin alignment for commercial chip pad contact, and (3) a 250 μm pitch compatible with standard IC pad pitches. This design is distinct from traditional pogo pin probe cards which place pogo pins in vertical form, in a diagonal arrangement, and at wide intervals. The probe exhibits a low insertion loss of 1.6 dB at 45 GHz. A printed circuit board (PCB)-based calibration standard for the calibration of the designed probe is constructed, which is adjusted to inductance and capacitance values using a simulation to form the Vector Network Analyzer (VNA) calibration set. The measurements of a commercial amplifier IC using this probe show a nearly identical performance to commercial RF probes, confirming its accuracy and reliability. Full article
(This article belongs to the Special Issue Intelligent Circuits and Sensing Technologies: Second Edition)
Show Figures

Figure 1

18 pages, 5075 KiB  
Article
Permittivity Characterization of Conductive and Corrosive LiBr Water Solutions, Method Validation up to 9 GHz Using a Low-Cost SMA Probe
by Anne-Laure Perrier, Gregory Houzet, Jonathan Outin, Edouard Rochefeuille, Benoit Stutz and Thierry Lacrevaz
Sensors 2025, 25(3), 789; https://doi.org/10.3390/s25030789 - 28 Jan 2025
Viewed by 868
Abstract
In this article, we present a method for extracting the complex permittivity of high-conductivity solutions up to 9 GHz. Microwave measurements were performed using a low-cost SMA connector, employed as an open-circuit coaxial probe, which was subsequently brought into contact with the liquids [...] Read more.
In this article, we present a method for extracting the complex permittivity of high-conductivity solutions up to 9 GHz. Microwave measurements were performed using a low-cost SMA connector, employed as an open-circuit coaxial probe, which was subsequently brought into contact with the liquids under characterization. Compared to state-of-the-art techniques, this method offers the advantage of good accuracy while remaining simple to implement with a low-cost sensor. The affordability of the sensor is crucial because the sensor must operate in a corrosive environment. The use of existing but expensive commercial solutions is prohibitive. Therefore, sensor replacement must be straightforward and inexpensive in case of damage. Two permittivity extraction methods were studied, both relying on a straightforward experimental approach and knowledge of the complex permittivity of reference liquids (deionized water, ethanol, methanol). The technique was initially validated on saline solutions (NaCl) known from the literature before being applied to aqueous lithium bromide (LiBr water) solutions. Eight LiBr water solutions, known to be highly corrosive, were measured for LiBr mass concentrations ranging from 1% to 54% and for conductivities up to 14 S/m. The high conductivity of these solutions brings challenges to extract the real part of the permittivity, which is underestimated by both methods. In contrast, the imaginary part exhibits consistent results with variations strongly correlated to the concentration. Notably, an inversion of the direction of variation was observed for mass concentration in LiBr exceeding 35% aligning with the conductivity curve. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

12 pages, 5898 KiB  
Article
Circularly Polarized Asymmetric Single-Point Probe-Fed Hybrid Dielectric Resonator Antenna for Wireless Applications
by NareshKumar Darimireddy
Telecom 2025, 6(1), 8; https://doi.org/10.3390/telecom6010008 - 16 Jan 2025
Viewed by 1020
Abstract
This paper presents a hybrid dielectric resonator antenna (HDRA) for circularly polarized (CP) radiation at 5 GHz, designed for WLAN applications. The antenna features a single probe feed that excites a combination of a circular ring patch and a cylindrical dielectric resonator (DR) [...] Read more.
This paper presents a hybrid dielectric resonator antenna (HDRA) for circularly polarized (CP) radiation at 5 GHz, designed for WLAN applications. The antenna features a single probe feed that excites a combination of a circular ring patch and a cylindrical dielectric resonator (DR) element, achieving stable gain across a wide bandwidth. The parametric analysis and vector E-field distribution of the proposed antenna presents the optimization, and it is evidence of CP radiation, respectively. The hybrid DRA has a reflection loss (RL) bandwidth of 485 MHz, from 4740 to 5225 MHz, and an axial ratio (AR) bandwidth of 150 MHz, ranging from 4950 to 5100 MHz. It achieves a peak gain of 7.03 dBic at 5 GHz, making it suitable for missile tracking, data link communications, and IEEE 802.11n WLAN systems. Measurements of a prototype in an anechoic chamber show a close match with simulation results. Full article
Show Figures

Figure 1

17 pages, 1520 KiB  
Article
Fully Canonical Triple-Mode Filter with Source-Load Coupling for 5G Systems
by Cristóbal López-Montes and José R. Montejo-Garai
Sensors 2025, 25(1), 90; https://doi.org/10.3390/s25010090 - 27 Dec 2024
Viewed by 1050
Abstract
This work presents the design of a novel fully canonical triple-mode filter with source–load coupling for 5G applications, exploiting its very compact size for the FR1 band. The design is carried out using circular waveguide technology to attain power handling and low insertion [...] Read more.
This work presents the design of a novel fully canonical triple-mode filter with source–load coupling for 5G applications, exploiting its very compact size for the FR1 band. The design is carried out using circular waveguide technology to attain power handling and low insertion losses. The fully canonical topology allows for increasing the selectivity of the filter since the number of finite transmission zeros is equal to the order of the filter. Given that this topology needs a source–load coupling level that is not possible to achieve with the classical iris ports, coaxial probes are used as input–output ports. A systematic procedure is developed to obtain the initial geometry before the full-wave optimization. The proof of concept is verified by a manufactured prototype at 3.7 GHz with 1.1% relative bandwidth for high coverage of 5G base stations. The results show an excellent agreement between the simulation and the measurement, validating the triple-mode filter and its underlying design process. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

12 pages, 5292 KiB  
Article
A Wide Passband Frequency-Selective Surface with a Sharp Roll-Off Band Using the Filtering Antenna-Filtering Antenna Method
by Yanfei Ren, Zhenghu Xi, Qinqin Liu, Jiayi Gong, Zhiwei Sun and Boyu Sima
Materials 2024, 17(24), 6131; https://doi.org/10.3390/ma17246131 - 15 Dec 2024
Cited by 1 | Viewed by 990
Abstract
Frequency-selective surfaces (FSSs) have attracted great attention owing to their unique feature to manipulate transmission performance over the frequency domain. In this work, a filtering antenna-filtering antenna (FA-FA) FSS with a wide passband and double-side sharp roll-off characteristics is presented by inter-using the [...] Read more.
Frequency-selective surfaces (FSSs) have attracted great attention owing to their unique feature to manipulate transmission performance over the frequency domain. In this work, a filtering antenna-filtering antenna (FA-FA) FSS with a wide passband and double-side sharp roll-off characteristics is presented by inter-using the filtering antenna and receiving–transmitting metasurface methods. First, a dual-polarized filtering antenna element was designed by employing a parasitic band-stop structure with an L-probe feed. Then, the FA-FA-based FSS unit was constructed by placing two such filtering antennas back to back, with their feedings connected through metallic vias. Finally, the FSS with a wide passband and high selectivity was realized by arraying the FA-FA units periodically. The full-wave simulation results demonstrated that the designed FA-FA-based FSS had a wide passband from 13.06 GHz to 14.46 GHz with a flat in-band frequency response. The lower and upper roll-off bandwidths were sharp, reaching 1% and 1.2% of the center frequency. The proposed FA-FA-based FSS was fabricated and measured, achieving the coincident performance according to the theoretical prediction. The wideband band-pass FSS obtained a sharp double-side roll-off feature, which can be applied in various studies such as an antenna array, metasurface, communication, etc. Full article
Show Figures

Figure 1

Back to TopTop