Comparison Between Broadband and Personal Exposimeter Measurements for EMF Exposure Map Development Using Evolutionary Programming
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurement Equipment and Procedure
2.2. Statistical and Graphical Tools
2.3. Evolutionary Programming
3. Results
3.1. Numerical Results
3.2. Statistical and Graphical Results
3.3. Genetic Algorithm Adjustment
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bosch-Capblanch, X.; Esu, E.; Dongus, S.; Oringanje, C.M.; Jalilian, H.; Eyers, J.; Oftedal, G.; Meremikwu, M.; Röösli, M. The effects of radiofrequency electromagnetic fields exposure on human self-reported symptoms: A systematic review of human experimental studies. Environ. Int. 2024, 187, 108612. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Vazquez, R.; Escobar, I.; Vandenbosch, G.A.E.; Vargas, F.; Caceres-Monllor, D.A.; Arribas, E. Measurement studies of personal exposure to radiofrequency electromagnetic fields: A systematic review. Envrion. Res. 2023, 218, 114979. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Montero, R.; Alén-Cordero, C.; López-Espí, P.L.; Rigelsford, J.M.; Aguilera-Benavente, F.; Alpuente-Hermosilla, J. Long term variations measurement of electromagnetic field exposures in Alcalá de Henares (Spain). Sci. Total Environ. 2017, 598, 657–668. [Google Scholar] [CrossRef]
- Sagar, S.; Struchen, B.; Finta, V.; Eeftens, M.; Röösli, M. Use of portable exposimeters to monitor radiofrequency electromagnetic field exposure in the everyday environment. Environ. Res. 2016, 150, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Frei, P.; Mohler, E.; Bürgi, A.; Fröhlich, J.; Neubauer, G.; Braun-Fahrländer, C.; Röösli, M.; QUALIFEX Team. Classification of personal exposure to radio frequency electromagnetic fields (RF-EMF) for epidemiological research: Evaluation of different exposure assessment methods. Environ. Int. 2010, 36, 714–720. [Google Scholar] [CrossRef]
- Chikha, W.B.; Zhang, Y.; Liu, J.; Wang, S.; Sandeep, S.; Guxens, M.; Veludo, A.F.; Röösli, M.; Joseph, W.; Wiart, J. Assessment of Radio Frequency Electromagnetic Field Exposure Induced by Base Stations in Several Micro-Environments in France. IEEE Access 2024, 12, 21610–21620. [Google Scholar] [CrossRef]
- Sagar, S.; Dongus, S.; Schoeni, A.; Roser, K.; Eeftens, M.; Struchen, B.; Foerster, M.; Meier, N.; Adem, S.; Röösli, M. Radiofrequency electromagnetic field exposure in everyday microenvironments in Europe: A systematic literature review. J. Expo. Sci. Envrion. Epidemiol. 2018, 28, 147–160. [Google Scholar] [CrossRef]
- IEEE Std C95.3-2002; Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz-300 GHz; IEEE Std C95.3-2002 (Revision of IEEE Std C95.3-1991). IEEE: Piscataway, NJ, USA, 2002; p. 126. [CrossRef]
- Ramirez-Vazquez, R.; Gonzalez-Rubio, J.; Arribas, E.; Najera, A. Personal RF-EMF exposure from mobile phone base stations during temporary events. Environ. Res. 2019, 175, 266–273. [Google Scholar] [CrossRef]
- López-Espí, P.L.; Sánchez-Montero, R.; Guillén-Pina, J.; Castro-Sanz, R.; Chocano-del-Cerro, R.; Martínez-Rojas, J.A. Smartphone-Based Methodology Applied to Electromagnetic Field Exposure Assessment. Sensors 2024, 24, 3561. [Google Scholar] [CrossRef]
- Sandoval-Diez, N.; Belácková, L.; Veludo, A.F.; Jalilian, H.; Guida, F.; Deltour, I.; Thielens, A.; Zahner, M.; Fröhlich, J.; Huss, A.; et al. Determining the relationship between mobile phone network signal strength and radiofrequency electromagnetic field exposure: Protocol and pilot study to derive conversion functions. Open Res. Eur. 2024, 4, 206. [Google Scholar] [CrossRef]
- Paniagua-Sánchez, J.M.; García-Cobos, F.J.; Rufo-Pérez, M.; Jiménez-Barco, A. Large-area mobile measurement of outdoor exposure to radio frequencies. Sci. Total Environ. 2023, 877, 162852. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. Available online: https://www.icnirp.org/cms/upload/publications/ICNIRPrfgdl2020.pdf (accessed on 25 June 2025). [CrossRef]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- López-Espí, P.L.; Sánchez-Montero, R.; Guillén-Pina, J.; Chocano-del-Cerro, R.; Rojas, J.A.M. Optimal design of electromagnetic field exposure maps in large areas. Environ. Impact Assess. Rev. 2024, 106, 107525. [Google Scholar] [CrossRef]
- Statgraphics Technologies Inc. Statgraphics Centurion 19. Available online: https://www.statgraphics.com/download19 (accessed on 27 September 2024).
- IBM Corporation. IBM SPSS Statistics v. 24. 2017. Available online: https://www.ibm.com/es-es/products/spss-statistics (accessed on 27 September 2024).
- Bivand, R.S.; Pebesma, E.; Gómez-Rubio, V. Applied Spatial Data Analysis with R; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Hiemstra, P. Automap: Automatic Interpolation Package. 2023. Available online: https://CRAN.R-project.org/package=automap (accessed on 18 August 2024).
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. 2023. Available online: https://CRAN.R-project.org/package=raster (accessed on 30 September 2024).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439. [Google Scholar] [CrossRef]
- Pebesma, E. Gstat: Spatial and Spatio-Temporal Geostatistical Modelling, Prediction, and Simulation. 2023. Available online: https://CRAN.R-project.org/package=gstat (accessed on 30 September 2024).
- Scrucca, L. GA: A Package for Genetic Algorithms in R. J. Stat. Softw. 2013, 53, 1–37. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J.A. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems. Sci. World J. 2014, 2014, 1–15. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Ensemble strategies for population-based optimization algorithms–A survey. Swarm Evol. Comput. 2019, 44, 695–711. [Google Scholar] [CrossRef]
- Rufo-Pérez, M.; Antolín-Salazar, A.; Paniagua-Sánchez, J.M.; Jiménez-Barco, A.; Rodríguez-Hernández, F.J. Spatial and Temporal Mapping of RF Exposure in an Urban Core Using Exposimeter and GIS. Sensors 2025, 25, 1301. [Google Scholar] [CrossRef]
- Jawad, O.; Lautru, D.; Benlarbi-Delai, A.; Dricot, J.-M.; Doncker, P. Study of Human Exposure Using Kriging Method. Prog. Electromagn. Res. B 2014, 61, 241–252. [Google Scholar] [CrossRef]
- Guillén-Pina, J.; Pérez-Aracil, J.; Chocano-del-Cerro, R.; Sánchez-Montero, R.; López-Espí, P.L.; Salcedo-Sanz, S. Efficient design of electromagnetic field exposure maps with multi-method evolutionary ensembles. Environ. Res. 2025, 278, 121636. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning. In Addison Wesley Series in Artificial Intelligence; Addison-Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Schwefel, H.-P. Numerical Optimization of Computer Models; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1981. [Google Scholar]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar] [CrossRef]
- Bolte, J.F.B.; van der Zande, G.; Kamer, J. Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields. Bioelectromagnetics 2011, 32, 652–663. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. 2023. Available online: https://www.R-project.org/ (accessed on 18 August 2024).
- Bolte, J.F.B. Lessons Learnt on Biases and Uncertainties in Personal Exposure Measurement Surveys of Radiofrequency Electromagnetic Fields with Exposimeters; Elsevier Ltd.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
Spot # | LOS (Y/N) | Latitude | Longitude | BBM | PEM | PEM-1 | PEM-2 |
---|---|---|---|---|---|---|---|
UTM Coord. | UTM Coord. | (V/m) | (V/m) | (V/m) | (V/m) | ||
1 | Y | 39.994206 | −2.983249 | 0.74 | 0.47 | 0.74 | 0.35 |
2 | Y | 39.993172 | −2.98831 | 1.31 | 0.63 | 1.01 | 0.49 |
3 | N | 39.998579 | −2.991105 | 0.79 | 0.54 | 0.87 | 0.75 |
4 | N | 39.999779 | −2.997955 | 0.47 | 0.25 | 0.41 | 0.12 |
5 | N | 40.00277 | −3.000925 | 0.5 | 0.36 | 0.57 | 0.49 |
6 | Y | 40.003162 | −3.004844 | 0.72 | 0.36 | 0.58 | 0.13 |
7 | Y | 40.005329 | −3.002251 | 0.48 | 0.24 | 0.39 | 0.4 |
8 | Y | 40.001367 | −3.011736 | 0.75 | 0.33 | 0.52 | 0.16 |
9 | N | 40.002663 | −3.011736 | 0.13 | 0.09 | 0.14 | 0.23 |
10 | N | 40.007875 | −3.019171 | 0.13 | 0.11 | 0.18 | 0.14 |
11 | N | 40.004472 | −3.019993 | 0.18 | 0.1 | 0.16 | 0.17 |
12 | Y | 40.010333 | −3.024253 | 0.26 | 0.13 | 0.21 | 0.09 |
13 | Y | 40.007211 | −3.013344 | 0.73 | 0.56 | 0.89 | 1.5 |
14 | N | 40.004878 | −3.014495 | 0.8 | 0.36 | 0.57 | 0.26 |
15 | N | 40.010379 | −3.019779 | 0.19 | 0.17 | 0.27 | 0.11 |
16 | Y | 40.004534 | −3.009684 | 0.34 | 0.2 | 0.32 | 0.33 |
17 | Y | 40.014083 | −3.020273 | 0.27 | 0.14 | 0.22 | 0.23 |
18 | Y | 40.016776 | −3.021755 | 0.28 | 0.17 | 0.27 | 0.21 |
19 | N | 40.016401 | −3.019377 | 0.16 | 0.19 | 0.3 | 0.18 |
20 | N | 40.017585 | −3.013982 | 0.13 | 0.12 | 0.19 | 0.27 |
21 | N | 40.014692 | −3.015529 | 0.23 | 0.26 | 0.42 | 0.77 |
22 | N | 40.012854 | −3.01603 | 0.09 | 0.07 | 0.11 | 0.54 |
23 | N | 40.010694 | −3.015893 | 0.08 | 0.08 | 0.13 | 0.6 |
24 | N | 40.01006 | −3.013209 | 0.07 | 0.11 | 0.17 | 0.5 |
25 | Y | 40.013106 | −3.012031 | 0.48 | 0.25 | 0.39 | 1.04 |
26 | Y | 40.015715 | −3.009268 | 1.21 | 0.91 | 1.45 | 0.22 |
27 | Y | 40.013187 | −3.006717 | 0.41 | 0.33 | 0.52 | 0.23 |
28 | Y | 40.015789 | −3.001042 | 0.34 | 0.18 | 0.29 | 0.56 |
29 | N | 40.011602 | −3.000477 | 0.16 | 0.15 | 0.24 | 0.92 |
30 | N | 40.008259 | −3.001715 | 0.33 | 0.2 | 0.32 | 0.29 |
31 | Y | 40.007813 | −3.00571 | 0.92 | 0.6 | 0.97 | 0.54 |
32 | N | 40.010627 | −3.007441 | 0.21 | 0.17 | 0.27 | 0.28 |
33 | Y | 40.008511 | −3.009652 | 1.12 | 0.87 | 1.39 | 0.41 |
34 | Y | 40.014136 | −3.003077 | 0.69 | 0.34 | 0.55 | 1 |
35 | N | 39.998498 | −3.00723 | 0.16 | 0.13 | 0.21 | 0.14 |
36 | Y | 39.995791 | −2.991585 | 0.52 | 0.31 | 0.49 | 0.18 |
37 | N | 40.006814 | −3.021794 | 0.14 | 0.1 | 0.17 | 0.37 |
38 | N | 40.010553 | −3.003512 | 0.14 | 0.13 | 0.21 | 1.43 |
Mean | 0.44 | 0.28 | 0.44 | 0.44 | |||
Median | 0.34 | 0.2 | 0.31 | 0.31 | |||
Standard Deviation | 0.34 | 0.21 | 0.33 | 0.35 |
Band | Description of Frequency Bands | Frequency (MHz) | E (V/m) |
---|---|---|---|
FM | Radio broadcast transmitter | 88–108 | 0.157 |
TV3 | Television broadcast transmitter | 174–223 | 0.020 |
TETRA | Mobile communication for closed groups | 380–390 | 0.023 |
TV4&5 | Television broadcast transmitter | 470–830 | 0.036 |
GSM + UMTS 900 (UL) | Transmission from handset to base station | 880–915 | 0.009 |
GSM + UMTS 900 (DL) | Transmission from base station to handset | 925–960 | 0.163 |
GSM 1800 (UL) | Transmission from handset to base station | 1710–1785 | 0.010 |
GSM 1800 (DL) | Transmission from base station to handset | 1805–1880 | 0.036 |
DECT | Digital enhanced cordless telecommunications | 1880–1900 | 0.050 |
UMTS 2100 (UL) | Transmission from handset to base station | 1920–1980 | 0.005 |
UMTS 2100 (DL) | Transmission from base station to handset | 2110–2170 | 0.079 |
Wi-Fi 2G | Wireless local area network | 2400–2500 | 0.021 |
WiMAX | Worldwide interoperability for microwave access | 3400–3800 | 0.020 |
Wi-Fi 5G | Wireless local area network | 5150–5850 | 0.049 |
Iteration # | k1 | k2 |
---|---|---|
1 | 1.7011 | 1.3241 |
2 | 1.4805 | 1.2490 |
3 | 1.5799 | 1.3338 |
4 | 1.4853 | 1.2619 |
5 | 1.6643 | 1.4062 |
PEM | PEM-1 | PEM-2 | PEM-G (Range) | |
---|---|---|---|---|
k1 | 1 | 1.557 | 1.650 | 1.7011–1.4853 |
k2 | 1 | 1.557 | 1.380 | 1.4062–1.2490 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nájera, A.; Sánchez-Montero, R.; González-Rubio, J.; Guillén-Pina, J.; Chocano-del-Cerro, R.; López-Espí, P.-L. Comparison Between Broadband and Personal Exposimeter Measurements for EMF Exposure Map Development Using Evolutionary Programming. Appl. Sci. 2025, 15, 7471. https://doi.org/10.3390/app15137471
Nájera A, Sánchez-Montero R, González-Rubio J, Guillén-Pina J, Chocano-del-Cerro R, López-Espí P-L. Comparison Between Broadband and Personal Exposimeter Measurements for EMF Exposure Map Development Using Evolutionary Programming. Applied Sciences. 2025; 15(13):7471. https://doi.org/10.3390/app15137471
Chicago/Turabian StyleNájera, Alberto, Rocío Sánchez-Montero, Jesús González-Rubio, Jorge Guillén-Pina, Ricardo Chocano-del-Cerro, and Pablo-Luis López-Espí. 2025. "Comparison Between Broadband and Personal Exposimeter Measurements for EMF Exposure Map Development Using Evolutionary Programming" Applied Sciences 15, no. 13: 7471. https://doi.org/10.3390/app15137471
APA StyleNájera, A., Sánchez-Montero, R., González-Rubio, J., Guillén-Pina, J., Chocano-del-Cerro, R., & López-Espí, P.-L. (2025). Comparison Between Broadband and Personal Exposimeter Measurements for EMF Exposure Map Development Using Evolutionary Programming. Applied Sciences, 15(13), 7471. https://doi.org/10.3390/app15137471