Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (430)

Search Parameters:
Keywords = Firmicutes/Bacteroidetes ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3202 KiB  
Article
Gut Microbiota Composition in Rats Consuming Sucralose or Rebaudioside A at Recommended Doses Under Two Dietary Interventions
by Meztli Ramos-García, Alma Delia Genis-Mendoza, Carlos García-Vázquez, José Jaime Martínez-Magaña, Viridiana Olvera-Hernández, Mirian Carolina Martínez-López, Juan Cuauhtémoc Díaz-Zagoya, Carina Shianya Alvarez-Villagomez, Isela Esther Juárez-Rojop, Humberto Nicolini and Jorge Luis Ble-Castillo
Metabolites 2025, 15(8), 529; https://doi.org/10.3390/metabo15080529 - 4 Aug 2025
Abstract
Background: Artificial non-nutritive sweeteners (NNSs), such as sucralose, have been associated with gut microbiota (GM) alterations. However, the impact of rebaudioside A (reb A), a natural NNS, on GM has received limited scrutiny. Objective: The objective of this study was to examine [...] Read more.
Background: Artificial non-nutritive sweeteners (NNSs), such as sucralose, have been associated with gut microbiota (GM) alterations. However, the impact of rebaudioside A (reb A), a natural NNS, on GM has received limited scrutiny. Objective: The objective of this study was to examine the response of GM composition to sucralose and reb A in rats under two dietary conditions. Methods: Male Wistar rats (150–200 g) fed with a normal diet (ND) or a high-fat diet (HFD) were randomly assigned to receive sucralose (SCL), reb A (REB), glucose (GLU, control), or sucrose (SUC). The NNS interventions were administered in water at doses equivalent to the acceptable daily intake (ADI). After eight weeks, the GM composition in fecal samples was analyzed through 16S ribosomal RNA gene sequencing. Results: The NNSs did not modify the diversity, structure, phylum-level composition, or Firmicutes/Bacteroidetes (F/B) ratio of the GM in rats under ND or HFD. However, REB with HFD decreased Bacilli and increased Faecalibacterium abundance at the class level. SCL and REB in rats receiving ND reduced the genera Romboutsia and Lactobacillus. Conclusions: Our study suggests that when sucralose or reb A is consumed at recommended doses, there is no alteration in the diversity or the composition of the GM at the phylum level. The clinical relevance of these findings lies in the potential modifications of the GM at specific taxonomic levels by the consumption of these NNSs. Further research involving humans and including a broader range of microbial analyses is warranted. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 3184 KiB  
Article
Polyphenol-Rich Extract of Chrysanthemum × morifolium (Ramat) Hemsl. (Hangbaiju) Prevents Obesity and Lipid Accumulation Through Restoring Intestinal Microecological Balance
by Xinyu Feng, Jing Huang, Lin Xiang, Fuyuan Zhang, Xinxin Wang, Anran Yan, Yani Pan, Ping Chen, Bizeng Mao and Qiang Chu
Plants 2025, 14(15), 2393; https://doi.org/10.3390/plants14152393 - 2 Aug 2025
Viewed by 224
Abstract
Chrysanthemum × morifolium (Ramat) Hemsl. (Hangbaiju), which has been widely consumed as a herbal tea for over 3000 years, is renowned for its biosafety and diverse bioactivities. This study investigates the impact of polyphenol-rich Hangbaiju extracts (HE) on high-fat diet-induced obesity in mice. [...] Read more.
Chrysanthemum × morifolium (Ramat) Hemsl. (Hangbaiju), which has been widely consumed as a herbal tea for over 3000 years, is renowned for its biosafety and diverse bioactivities. This study investigates the impact of polyphenol-rich Hangbaiju extracts (HE) on high-fat diet-induced obesity in mice. HE contains phenolic acids and flavonoids with anti-obesity properties, such as apigenin, luteolin-7-glucoside, apigenin-7-O-glucoside, kaempferol 3-(6″-acetylglucoside), etc. To establish the obesity model, mice were randomly assigned into four groups (n = 8 per group) and administered with either HE or water for 42 days under high-fat or low-fat dietary conditions. Administration of low (LH) and high (HH) doses of HE both significantly suppressed body weight growth (by 16.28% and 16.24%, respectively) and adipose tissue enlargement in obese mice. HE significantly improved the serum lipid profiles, mainly manifested as decreased levels of triglycerides (28.19% in LH and 19.59% in HH) and increased levels of high-density lipoprotein cholesterol (44.34% in LH and 54.88% in HH), and further attenuated liver lipid deposition. Furthermore, HE significantly decreased the Firmicutes/Bacteroidetes ratio 0.23-fold (LH) and 0.12-fold (HH), indicating an improvement in the microecological balance of the gut. HE administration also elevated the relative abundance of beneficial bacteria (e.g., Allobaculum, norank_f__Muribaculaceae), while suppressing harmful pathogenic proliferation (e.g., Dubosiella, Romboutsia). In conclusion, HE ameliorates obesity and hyperlipidemia through modulating lipid metabolism and restoring the balance of intestinal microecology, thus being promising for obesity therapy. Full article
(This article belongs to the Special Issue Functional Components and Bioactivity of Edible Plants)
Show Figures

Graphical abstract

28 pages, 1184 KiB  
Review
Immune Modulation by Microbiota and Its Possible Impact on Polyomavirus Infection
by Giorgia Cianci, Gloria Maini, Matteo Ferraresi, Giulia Pezzi, Daria Bortolotti, Sabrina Rizzo, Silvia Beltrami and Giovanna Schiuma
Pathogens 2025, 14(8), 747; https://doi.org/10.3390/pathogens14080747 - 30 Jul 2025
Viewed by 381
Abstract
Polyomaviruses are a family of small DNA viruses capable of establishing persistent infections, and they can pose significant pathogenic risks in immunocompromised hosts. While traditionally studied in the context of viral reactivation and immune suppression, recent evidence has highlighted the gut microbiota as [...] Read more.
Polyomaviruses are a family of small DNA viruses capable of establishing persistent infections, and they can pose significant pathogenic risks in immunocompromised hosts. While traditionally studied in the context of viral reactivation and immune suppression, recent evidence has highlighted the gut microbiota as a critical regulator of host immunity and viral pathogenesis. This review examines the complex interactions between polyomaviruses, the immune system, and intestinal microbiota, emphasizing the role of short-chain fatty acids (SCFAs) in modulating antiviral responses. We explore how dysbiosis may facilitate viral replication, reactivation, and immune escape and also consider how polyomavirus infection can, in turn, alter microbial composition. Particular attention is given to the Firmicutes/Bacteroidetes ratio as a potential biomarker of infection risk and immune status. Therapeutic strategies targeting the microbiota, including prebiotics, probiotics, and fecal microbiota transplantation (FMT), are discussed as innovative adjuncts to immune-based therapies. Understanding these tri-directional interactions may offer new avenues for mitigating disease severity and improving patient outcomes during viral reactivation. Full article
Show Figures

Figure 1

14 pages, 2691 KiB  
Article
Probiotic Lacticaseibacillus paracasei E10 Ameliorates Dextran Sulfate Sodium-Induced Colitis by Enhancing the Intestinal Barrier and Modulating Microbiota
by Yuanyuan Dai, Ziming Lin, Xiaoyue Zhang, Yiting Wang, Yingyue Sheng, Ruonan Gao, Yan Geng, Yuzheng Xue and Yilin Ren
Foods 2025, 14(14), 2526; https://doi.org/10.3390/foods14142526 - 18 Jul 2025
Viewed by 308
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder associated with gut microbiota dysbiosis and impaired intestinal barrier function. Probiotic interventions have shown potential in alleviating intestinal inflammation and restoring microbial balance. This study explores the protective effects of Lacticaseibacillus paracasei (L. [...] Read more.
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder associated with gut microbiota dysbiosis and impaired intestinal barrier function. Probiotic interventions have shown potential in alleviating intestinal inflammation and restoring microbial balance. This study explores the protective effects of Lacticaseibacillus paracasei (L. paracasei) E10 in mice. L. paracasei E10 demonstrated strong gastrointestinal transit tolerance, high mucosal adhesion, and probiotic properties such as hydrophobicity and aggregation ability (p < 0.05). The oral administration of L. paracasei E10 significantly alleviated colitis symptoms by reducing the disease activity index, preserving colonic architecture, increasing goblet cell density, and upregulating tight junction proteins, thereby enhancing intestinal barrier integrity. 16S rRNA sequencing revealed that L. paracasei E10 supplementation enriched microbial diversity, increased the abundance of Muribaculaceae, and modulated the Firmicutes/Bacteroidetes ratio, contributing to gut homeostasis. These findings indicate that L. paracasei E10 is a potential candidate for IBD management. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

19 pages, 3162 KiB  
Article
Diversity and Functional Differences in Soil Bacterial Communities in Wind–Water Erosion Crisscross Region Driven by Microbial Agents
by Tao Kong, Tong Liu, Zhihui Gan, Xin Jin and Lin Xiao
Agronomy 2025, 15(7), 1734; https://doi.org/10.3390/agronomy15071734 - 18 Jul 2025
Cited by 1 | Viewed by 492
Abstract
Soil erosion-prone areas require effective microbial treatments to improve soil bacterial communities and functional traits. Understanding the driving effects of different microbial interventions on soil ecology is essential for restoration efforts. Single and combined microbial treatments were applied to soil. Bacterial community structure [...] Read more.
Soil erosion-prone areas require effective microbial treatments to improve soil bacterial communities and functional traits. Understanding the driving effects of different microbial interventions on soil ecology is essential for restoration efforts. Single and combined microbial treatments were applied to soil. Bacterial community structure was analyzed via 16S IRNA high-throughput sequencing, and functional groups were predicted using FAPROTAX. Soil microbial carbon, nitrogen, metabolic entropy, and enzymatic activity were assessed. Microbial Carbon and Metabolic Activity: The Arbuscular mycorrhizal fungi (AMF) and Bacillus mucilaginosus (BM) (AMF.BM) treatment exhibited the highest microbial carbon content and the lowest metabolic entropy. The microbial carbon-to-nitrogen ratio ranged from 1.27 to 3.69 across all treatments. Bacterial Community Composition: The dominant bacterial phyla included Firmicutes, Proteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria. Diversity and Richness: The AMF and Trichoderma harzianum (TH) (AMF.TH) treatment significantly reduced diversity, richness, and phylogenetic diversity indices, while the AMF.BM treatment showed a significantly higher richness index (p < 0.05). Relative Abundance of Firmicutes: Compared to the control, the AMF, TH.BM, and TH treatments decreased the relative abundance of Firmicutes, whereas the AMF.TH treatment increased their relative abundance. Environmental Correlations: Redundancy and correlation analyses revealed significant correlations between soil organic matter, magnesium content, and sucrase activity and several major bacterial genera. Functional Prediction: The AMF.BM treatment enhanced the relative abundance and evenness of bacterial ecological functions, primarily driving nitrification, aerobic ammonia oxidation, and ureolysis. Microbial treatments differentially influence soil bacterial communities and functions. The AMF.BM combination shows the greatest potential for ecological restoration in erosion-prone soils. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

25 pages, 4595 KiB  
Article
Probiotic Potentials and Protective Effects of Ligilactobacillus animalis LA-1 Against High-Fat Diet-Induced Obesity in Mice
by Qingya Wang, Yuyin Huang, Kun Meng, Haiou Zhang, Yunsheng Han, Rui Zhang, Xiling Han, Guohua Liu, Hongying Cai and Peilong Yang
Nutrients 2025, 17(14), 2346; https://doi.org/10.3390/nu17142346 - 17 Jul 2025
Viewed by 534
Abstract
Background/Objectives: Obesity is increasingly recognized as a global health concern due to its association with metabolic disorders and gut microbiota dysbiosis. While probiotics offer promise in regulating gut microbiota and improving host metabolism, strain-specific effects remain underexplored, particularly for canine-derived probiotics. This [...] Read more.
Background/Objectives: Obesity is increasingly recognized as a global health concern due to its association with metabolic disorders and gut microbiota dysbiosis. While probiotics offer promise in regulating gut microbiota and improving host metabolism, strain-specific effects remain underexplored, particularly for canine-derived probiotics. This study aimed to isolate and characterize a novel probiotic strain, Ligilactobacillus animalis LA-1, and evaluate its anti-obesity effects and underlying mechanisms using a high-fat diet (HFD)-induced obese mouse model. Methods: LA-1 was isolated from the feces of a healthy dog and assessed for probiotic potential in vitro, including gastrointestinal tolerance, bile salt hydrolase activity, cholesterol-lowering capacity, and fatty acid absorption. Male C57BL/6J mice were fed either a standard chow diet or an HFD for 16 weeks, with HFD mice receiving oral LA-1 supplementation (2 × 109 CFU/day). Multi-omics analyses, including 16S rRNA gene sequencing, short-chain fatty acid (SCFA) quantification, and untargeted liver metabolomics, were employed to investigate the effects of LA-1 on gut microbiota composition, metabolic pathways, and obesity-related phenotypes. Results: LA-1 supplementation significantly alleviated HFD-induced weight gain, hepatic lipid accumulation, and adipose tissue hypertrophy, without affecting food intake. It improved serum lipid profiles, reduced liver injury markers, and partially restored gut microbiota composition, decreasing the Firmicutes/Bacteroidetes ratio and enriching SCFA-producing genera. Total SCFA levels, particularly acetate, propionate, and butyrate, increased following LA-1 treatment. Liver metabolomics revealed that LA-1 modulated pathways involved in lipid and amino acid metabolism, resulting in decreased levels of acetyl-CoA, triglycerides, and bile acids. Conclusions: L. animalis LA-1 exerts anti-obesity effects via gut microbiota modulation, enhanced SCFA production, and hepatic metabolic reprogramming. These findings highlight its potential as a targeted probiotic intervention for obesity and metabolic disorders. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

22 pages, 12756 KiB  
Article
The Antidiabetic Mechanisms of Cinnamon Extract: Insights from Network Pharmacology, Gut Microbiota, and Metabolites
by Rong Wang, Kuan Yang, Xuefeng Liu, Yiye Zhang, Yunmei Chen, Nana Wang, Lili Yu, Shaojing Liu, Yaqi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(7), 543; https://doi.org/10.3390/cimb47070543 - 12 Jul 2025
Viewed by 531
Abstract
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management [...] Read more.
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management of glucose and lipid metabolism. However, the anti-diabetic efficacy of cinnamon is not completely understood. The objective of this research was to clarify the anti-diabetic mechanism associated with cinnamon extract through a combination of chemical profiling, network pharmacology, and in vivo investigations. The results indicated that 32 chemical ingredients, including quercetin, were identified through UPLC-Q-TOF-MS. Network pharmacology revealed that 471 targets related to 14 compounds were screened. The analysis of GO enrichment revealed that the primary pathways were notably enhanced in the metabolism of insulin and glucose. In vivo analyses showed that cinnamon could effectively alleviate hyperglycemia, insulin resistance, and lipid metabolism abnormalities via increased relative abundance of Akkermansia and Ligilactobacillus at the genus level and a decreased Firmicutes/Bacteroidetes ratio at the phylum level. Moreover, cinnamon reduced the serum levels of lipopolysaccharide (LPS) and proinflammatory cytokines (IL-6 and TNF-α) and significantly increased the colon Zonula occludens-1 (ZO-1) and occludin protein levels. It was also observed that cinnamon improved the fecal SCFA levels (acetic, propionic, butyric, valeric and caproic acid), while also modifying the bile acid (BA) profile and increasing the conjugated-to-unconjugated BA ratio. The Western blotting analysis further demonstrated that cinnamon activated intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. In summary, the finding confirmed that cinnamon ameliorated glucose and lipid metabolism disorders by safeguarding the intestinal barrier and modulating the gut microbiota and metabolites, thereby activating intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

25 pages, 1644 KiB  
Review
The Role of Gut Microbiota in the Development and Treatment of Obesity and Overweight: A Literature Review
by Gabriela Augustynowicz, Maria Lasocka, Hubert Paweł Szyller, Marta Dziedziak, Agata Mytych, Joanna Braksator and Tomasz Pytrus
J. Clin. Med. 2025, 14(14), 4933; https://doi.org/10.3390/jcm14144933 - 11 Jul 2025
Viewed by 656
Abstract
The gut microbiota, dominated by bacteria from the Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria phyla, plays an essential role in fermenting indigestible carbohydrates, regulating metabolism, synthesizing vitamins, and maintaining immune functions and intestinal barrier integrity. Dysbiosis is associated with obesity development. Shifts in the [...] Read more.
The gut microbiota, dominated by bacteria from the Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria phyla, plays an essential role in fermenting indigestible carbohydrates, regulating metabolism, synthesizing vitamins, and maintaining immune functions and intestinal barrier integrity. Dysbiosis is associated with obesity development. Shifts in the ratio of Firmicutes to Bacteroidetes, particularly an increase in Firmicutes, may promote enhanced energy storage, appetite dysregulation, and increased inflammatory processes linked to insulin resistance and other metabolic disorders. The purpose of this literature review is to summarize the current state of knowledge on the relationship between the development and treatment of obesity and overweight and the gut microbiota. Current evidence suggests that probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) can influence gut microbiota composition and metabolic parameters, including body weight and BMI. The most promising effects are observed with probiotic supplementation, particularly when combined with prebiotics, although efficacy depends on strain type, dose, and duration. Despite encouraging preclinical findings, FMT has shown limited and inconsistent results in human studies. Diet and physical activity are key modulators of the gut microbiota. Fiber, plant proteins, and omega-3 fatty acids support beneficial bacteria, while diets low in fiber and high in saturated fats promote dysbiosis. Aerobic exercise increases microbial diversity and supports growth of favorable bacterial strains. While microbiota changes do not always lead to immediate weight loss, modulating gut microbiota represents an important aspect of obesity prevention and treatment strategies. Further research is necessary to better understand the mechanisms and therapeutic potential of these interventions. Full article
(This article belongs to the Special Issue Metabolic Syndrome and Its Burden on Global Health)
Show Figures

Figure 1

17 pages, 4748 KiB  
Article
Impact of the Gut Microbiota–Metabolite Axis on Intestinal Fatty Acid Absorption in Huainan Pigs
by Jing Wang, Liangying Zhu, Yangyang Wang, Qiang Ma, Xiangzhou Yan, Mingxun Li and Baosong Xing
Microorganisms 2025, 13(7), 1609; https://doi.org/10.3390/microorganisms13071609 - 8 Jul 2025
Viewed by 465
Abstract
The gut microbiota critically influences lipid metabolism and fat deposition in pigs, processes that underpin pork quality preferences and differentiate the meat traits of Chinese indigenous breeds (fat-type) from those of Western commercial breeds (lean-type). To explore the mechanisms underlying breed-specific fatty acid [...] Read more.
The gut microbiota critically influences lipid metabolism and fat deposition in pigs, processes that underpin pork quality preferences and differentiate the meat traits of Chinese indigenous breeds (fat-type) from those of Western commercial breeds (lean-type). To explore the mechanisms underlying breed-specific fatty acid absorption, we compared the rectal and colonic microbiota and metabolite profiles of Huainan and Large White pigs using 16S rRNA sequencing and untargeted metabolomics. HN pigs exhibited enriched Lactobacillus johnsonii and Lactobacillus amylovorus, along with a significantly higher Firmicutes/Bacteroidetes ratio. Functional predictions further revealed elevated microbial pathways related to glycolysis, pyruvate metabolism, and ABC transporters in HN pigs. Conversely, LW pigs showed increased abundance of potentially pro-inflammatory bacteria and enriched pathways for lipopolysaccharide (LPS) biosynthesis. Metabolites such as 4-ethyl-2-heptylthiazole and picolinic acid were significantly upregulated in HN pigs and served as robust biomarkers (Area Under the Curve, AUC = 1.0),with perfect discrimination observed in both rectal and colonic samples. Integrative analysis identified 52 co-enriched microbial and metabolic pathways in HN pigs, including short-chain fatty acid (SCFA) production, lipid biosynthesis and transport, amino acid metabolism, ABC transporter activity, and the PPAR signaling pathway, supporting a microbiota–metabolite axis that enhances fatty acid absorption and gut immune balance. These findings provide mechanistic insight into breed-specific fat deposition and offer candidate biomarkers for improving pork quality via precision nutrition and breeding. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

17 pages, 2986 KiB  
Article
Modulatory Role of Hesperetin–Copper(II) on Gut Microbiota in Type 2 Diabetes Mellitus Mice
by Xi Peng, Yushi Wei, Deming Gong and Guowen Zhang
Foods 2025, 14(13), 2390; https://doi.org/10.3390/foods14132390 - 6 Jul 2025
Viewed by 495
Abstract
Background: Exploring new strategies to improve type 2 diabetes mellitus (T2DM) is one of the frontier hotspots in the field of healthy food. Flavonoid–metal complexes have become one of the research hotspots in the field of health foods due to their unique structural [...] Read more.
Background: Exploring new strategies to improve type 2 diabetes mellitus (T2DM) is one of the frontier hotspots in the field of healthy food. Flavonoid–metal complexes have become one of the research hotspots in the field of health foods due to their unique structural and functional properties. Methods: In this study, the effect of hesperetin–copper(II) complex [Hsp–Cu(II)] on the gut microbiota of mice with T2DM was investigated by the 16S rRNA high-throughput sequencing. Results: The analyses of α and β diversity indicated that the richness and diversity of gut microbiota in the T2DM mice decreased and the community structure was significantly different from the normal mice. Hsp–Cu(II) increased the abundances of the beneficial bacteria (Lactobacillus, Ligilactobacillus, Romboutsia, Faecalibaculum, and Dubosiella), and decreased the amounts of the harmful bacteria (Desulfobacterota, Corynebacterium, and Desulfovibrio) and the ratio of Firmicutes/Bacteroidetes (from 44.5 to 5.8) in the T2DM mice, which was beneficial for regulating the composition of intestinal microbiota. The linear discriminant analysis effect size analysis showed that the intervention of Hsp–Cu(II) made the short-chain fatty acid (SCFA) producers (o_Lachnospirales, f_Lachnospiraceae, g_Faecalibaculum, g_Romboutsia, and g_Turicibacter) and the lactic acid bacteria producers (f_Lactobacillaceae and o_Lactobacillales) highly enriched, and the production of its metabolite SCFAs (acetic acid, propionic acid, butyric acid, and valeric acid) were increased in a dose-dependent manner, promoting the SCFA metabolism. Conclusions: Hsp–Cu(II) may improve glucose metabolic disorders and alleviate T2DM by modulating gut microbiota composition, promoting probiotics proliferation and SCFAs production, restoring intestinal barrier integrity, and suppressing local inflammation. These research findings may provide a theoretical basis for developing Hsp–Cu(II) as a new hypoglycemic nutritional supplement, and offer new ideas for the dietary food nutritional regulation to alleviate T2DM. Full article
Show Figures

Figure 1

21 pages, 10334 KiB  
Article
Gypenosides Alleviate Hyperglycemia by Regulating Gut Microbiota Metabolites and Intestinal Permeability
by Rong Wang, Xue-Feng Liu, Kuan Yang, Li-Li Yu, Shao-Jing Liu, Na-Na Wang, Yun-Mei Chen, Ya-Qi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(7), 515; https://doi.org/10.3390/cimb47070515 - 3 Jul 2025
Viewed by 370
Abstract
Background/Objectives: Gypenosides (Gps) are the main active compounds of Gynostemma and show promise in managing diabetes; nevertheless, the mechanism by which Gps exert anti-diabetic effects is still not fully understood. The aim of this study is to clarify the molecular mechanisms of [...] Read more.
Background/Objectives: Gypenosides (Gps) are the main active compounds of Gynostemma and show promise in managing diabetes; nevertheless, the mechanism by which Gps exert anti-diabetic effects is still not fully understood. The aim of this study is to clarify the molecular mechanisms of Gps in ameliorating glucose dysregulation. Methods: Qualitative and quantitative analyses on the chemical components of Gps were performed, respectively. Type 2 diabetes mellitus mouse models were established, and the mice were subsequently treated with Gps at doses of 200, 100, or 50 mg/kg for 4 weeks. Biochemical markers were measured. Histopathological assessments of hepatic and colonic tissues were conducted. The compositions of the intestinal microbiota, short-chain fatty acids (SCFAs), and bile acids (BAs) in fecal samples were analyzed. Western blotting was applied to examine the activation of relevant signaling pathways. Results: Gps have potent regulatory effects on metabolic homeostasis by improving glucose and lipid profiles and alleviating hepatic tissue damage. Treatment with Gps significantly reduced serum levels of lipopolysaccharides and key pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α). Moreover, Gps enhanced the integrity of the gut barrier by upregulating the level of tight junction proteins (ZO-1 and occludin). Microbiota profiling revealed that Gps markedly increased microbial diversity and richness, decreased the ratio of Firmicutes/Bacteroidetes, and elevated Bacteroidia abundance from the phylum to the genus level. Targeted metabolomics further demonstrated that Gps modulated gut microbial metabolites by promoting SCFA production and reshaping BA profiles. Specifically, Gps elevated the primary-to-secondary BA ratio while reducing the 12α-hydroxylated to non-12α-hydroxylated BA ratio. Mechanistically, Western blotting demonstrated that Gps triggered the hepatic PI3K/AKT pathway and the intestinal BA/FXR/FGF15 axis, suggesting the coordinated regulation of metabolic and gut–liver axis signaling pathways. Conclusions: Gps significantly ameliorate hyperglycemia and hyperlipidemia through a multifaceted mechanism involving gut microbiota modulation, the restoration of intestinal barrier function, and the regulation of microbial metabolites such as SCFAs and BAs. These findings offer novel insights into their mechanism of action via the gut–liver axis. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

18 pages, 1903 KiB  
Article
Effects of Dietary Ratio of Insoluble Fiber to Soluble Fiber on Reproductive Performance, Biochemical Parameters, and Fecal Microbial Composition of Gestating Sows
by Xiaolu Wen, Qiwen Wu, Kaiguo Gao, Xuefen Yang, Hao Xiao, Zongyong Jiang and Li Wang
Animals 2025, 15(13), 1850; https://doi.org/10.3390/ani15131850 - 23 Jun 2025
Viewed by 392
Abstract
This study aimed to investigate the effects of dietary ISF:SF ratio on reproductive performance, biochemical parameters, colostrum composition, and fecal microbial composition in gestating sows. A total of 30 multiparous sows were randomly allocated to three dietary treatment groups: 8% inulin diet (ISF:SF [...] Read more.
This study aimed to investigate the effects of dietary ISF:SF ratio on reproductive performance, biochemical parameters, colostrum composition, and fecal microbial composition in gestating sows. A total of 30 multiparous sows were randomly allocated to three dietary treatment groups: 8% inulin diet (ISF:SF 1.14, Inulin group), 8% cotton fiber diet (ISF:SF 6.61, Cotton group), and 4% inulin + 4% cotton fiber diet (ISF:SF 2.37, Inulin + Cotton group). The results showed that, compared to the other groups, the Inulin group had a significantly higher number of piglets born alive, as well as increased plasma concentrations of acetic acid, butyric acid, hexanoic acid, and total short-chain fatty acids (SCFAs) (p < 0.05). Sows in the Inulin group had significantly lower fecal scores than those in the other groups from days 81 to 85 and from days 106 to 110 of gestation (p < 0.05). On day 90 of gestation, the serum levels of albumin, urea, uric acid, calcium, and phosphorus in the Inulin group were significantly lower than those in the other groups (p < 0.05). Additionally, the serum levels of triacylglycerol in the Inulin + Cotton Fiber group were significantly higher than those in the other groups (p < 0.05). However, there were no significant differences in serum concentrations of total protein, creatinine, glucose, cholesterol, HDL-cholesterol, or LDL-cholesterol among the treatments (p > 0.05). On day 110 of gestation, the serum content of urea, uric acid, calcium, and phosphorus in the Inulin group was significantly lower than those in the other groups (p < 0.05). Furthermore, the plasma levels of uric acid, triacylglycerol, and HDL-cholesterol in the Inulin + Cotton Fiber group were significantly higher than those in the Cotton Fiber group (p < 0.05), while the creatinine levels in the Inulin group were higher than those in the other groups (p < 0.05). No differences were observed in the composition and immune performance of colostrum (p > 0.05). Microbial sequencing analysis showed that dietary inulin supplementation to increase the proportion of soluble fiber significantly decreased the abundance of Firmicutes, Clostridia, Clostridiales, Lachnospiraceae, Streptococcaceae, and Streptococcus (p < 0.05). The abundance of short-chain fatty acid-producing microorganisms—Bacteroidetes, Bacteroidia, Bacteroidales, and Muribaculaceae—was significantly increased (p < 0.05). The results indicated that inulin supplementation decreased the dietary ISF:SF ratio, significantly alleviated constipation in sows, increased the number of piglets born alive, regulated intestinal microecology, and increased the plasma concentrations of short-chain fatty acids (SCFAs), including acetic, propionic, and butyric acids. Full article
Show Figures

Figure 1

12 pages, 288 KiB  
Article
The Role of Maternal Gut Firmicutes/Bacteroidetes Ratio in Shaping Fetal Development and Neonatal Microbial Communities
by Arianna Omaña-Covarrubias, Luis Guillermo González-Olivares, Lydia López Póntigo, Ana Teresa Nez-Castro, Rogelio Cruz-Martínez and Marcela Hernández-Ortega
Life 2025, 15(7), 990; https://doi.org/10.3390/life15070990 - 20 Jun 2025
Viewed by 609
Abstract
According to research, intrauterine exposure to non-pathogenic maternal microorganisms during pregnancy is influenced by the mother’s nutritional, metabolic, and immunological status. This study investigates the association between maternal gut microbiota composition, fetal development, and neonatal microbiota, with the aim of exploring their interconnected [...] Read more.
According to research, intrauterine exposure to non-pathogenic maternal microorganisms during pregnancy is influenced by the mother’s nutritional, metabolic, and immunological status. This study investigates the association between maternal gut microbiota composition, fetal development, and neonatal microbiota, with the aim of exploring their interconnected health dynamics. A cohort-based correlational study was conducted involving 114 women (≥18 years old, ≤12 weeks of gestation) attending prenatal consultations at the ISSSTE General Hospital in Pachuca de Soto, Hidalgo, México. Data were collected at four stages: before 11 weeks, at 11–14 weeks, at 20–24 weeks, and at 31 weeks of pregnancy. Assessments included anthropometric measurements, biochemical markers, and intestinal microbiota analysis. The Firmicutes/Bacteroidetes (F/B) ratio positively correlated with venous duct flow and expected weight for gestational week (r = 0.02272, p = 0.0323; r = 0.2344, p = 0.0271). Bacteroidetes showed a positive correlation with birth weight (r = 0.2876, p = 0.0063), birth height (r = 0.5889, p < 0.001), and head circumference (r = 0.2163, p = 0.0418). Correlation analysis revealed significant relationships between maternal and neonatal microbiota, particularly for Bacteroidetes and Firmicutes. The findings suggest that maternal gut microbiota significantly influences fetal growth and neonatal microbiota composition. These insights underscore the importance of maternal health during pregnancy. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

16 pages, 3483 KiB  
Article
Design and Activity Evaluation of Berberine-Loaded Dual pH and Enzyme-Sensitive Colon-Targeting Microparticles
by Jingqi Sun, Xinlong Chai, Xiwen Zeng, Qingwei Wang, Yanwen Ling, Lihong Wang and Jin Su
Pharmaceutics 2025, 17(6), 778; https://doi.org/10.3390/pharmaceutics17060778 - 13 Jun 2025
Viewed by 618
Abstract
Ulcerative colitis (UC) is a multifactorial disorder, and conventional oral berberine (BBR) suffers from poor colonic targeting. This study aimed to develop a colon-targeted microparticle system (BBR-ES MPs) based on chitosan (CS) and Eudragit S-100 to enhance BBR delivery efficiency and therapeutic efficacy [...] Read more.
Ulcerative colitis (UC) is a multifactorial disorder, and conventional oral berberine (BBR) suffers from poor colonic targeting. This study aimed to develop a colon-targeted microparticle system (BBR-ES MPs) based on chitosan (CS) and Eudragit S-100 to enhance BBR delivery efficiency and therapeutic efficacy in UC. Methods: BBR-CS nanocarriers were prepared via ionotropic gelation and coated with Eudragit S-100 to form pH/enzyme dual-responsive MPs. Colon-targeting performance was validated through in vitro release assays. SPF-grade male KM mice (Ethics Approval No.: JMSU-2021090301) with dextran sulfate sodium (DSS)-induced UC were divided into normal, model, BBR, and BBR-ES MPs groups. Therapeutic outcomes were evaluated by monitoring body weight, disease activity index (DAI), colon length, histopathology, inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-10), and myeloperoxidase (MPO) activity via ELISA. Gut microbiota diversity was analyzed using 16S rRNA sequencing. Results: BBR-ES MP treatment significantly reduced DAI scores (p < 0.01), restored colon length, downregulated pro-inflammatory cytokines (IL-1β, IL-6, TNF-α; p < 0.05), and upregulated anti-inflammatory IL-10. Microbiota analysis revealed that the Bacteroidetes/Firmicutes ratio, which decreased in the model group, was restored post-treatment, with alpha/beta diversity approaching normal levels. BBR-ES MPs outperformed free BBR at equivalent doses. Conclusion: BBR-ES MPs achieved colon-targeted drug delivery via pH/enzyme dual-responsive mechanisms, effectively alleviating UC inflammation and modulating gut dysbiosis, offering a safe and precise therapeutic strategy for UC management. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

27 pages, 4462 KiB  
Article
Highland Barley Tartary Buckwheat Coarse Grain Biscuits Ameliorated High-Fat Diet-Induced Hyperlipidaemia in Mice Through Gut Microbiota Modulation and Enhanced Short-Chain Fatty Acid Secretion Mice
by Xiuqing Yang, Xiongfei Kang, Linfang Li and Shaoyu Zhang
Foods 2025, 14(12), 2079; https://doi.org/10.3390/foods14122079 - 12 Jun 2025
Viewed by 1291
Abstract
Dietary modification plays a crucial role in managing and preventing hyperlipidemia. This study examined the combination of highland barley, tartary buckwheat, mung beans, Ormosia hosiei, black rice, and corn germ oil in multi-grain biscuit form. This formulation leverages the synergistic interactions among bioactive [...] Read more.
Dietary modification plays a crucial role in managing and preventing hyperlipidemia. This study examined the combination of highland barley, tartary buckwheat, mung beans, Ormosia hosiei, black rice, and corn germ oil in multi-grain biscuit form. This formulation leverages the synergistic interactions among bioactive compounds, which exert preventive and therapeutic effects against lipid disorders. C57BL/6N mice were fed a high-fat diet for 12 weeks to establish a hyperlipidemia model, followed by feeding with highland barley tartary buckwheat coarse-grain biscuits for 4 weeks. The experimental outcomes revealed that the highland barley tartary buckwheat coarse-grain biscuits effectively controlled body weight and reduced fasting blood sugar levels: body weight was restored to approximately 29 g, and the fasting blood sugar level returned to the normal range of 6 mmol/L. We also observed improved organ indices and regulated blood lipids in hyperlipidemic mice. The total cholesterol of high-fat mice was reduced to 5 mmol/L and the triglyceride level to 1 mmol/L. A significant reduction in inflammatory markers and histopathological improvement in hepatic and adipose tissues were also observed. The intervention enhanced leptin and adiponectin secretion while elevating concentrations of acetic, propionic, butyric, valeric, and caproic acids. Microbiome analysis demonstrated favorable shifts in bacterial populations, characterized by increased Bacteroidetes and Verrucomicrobia abundance and a decreased Firmicutes-to-Proteobacteria ratio, promoting beneficial genera while suppressing potentially pathogenic taxa. These findings suggest that the developed highland barley tartary buckwheat coarse-grain biscuits are a promising dietary intervention for hyperlipidemia management. The effects were potentially mediated through gut microbiota modulation and enhanced short-chain fatty acid production. This research provides novel insights into functional food development for hyperlipidemia. Full article
Show Figures

Figure 1

Back to TopTop