Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = Fibre optic sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 617 KiB  
Project Report
European Partnership in Metrology Project: Photonic and Quantum Sensors for Practical Integrated Primary Thermometry (PhoQuS-T)
by Olga Kozlova, Rémy Braive, Tristan Briant, Stéphan Briaudeau, Paulina Castro Rodríguez, Guochun Du, Tufan Erdoğan, René Eisermann, Emile Ferreux, Dario Imbraguglio, Judith Elena Jordan, Stephan Krenek, Graham Machin, Igor P. Marko, Théo Martel, Maria Jose Martin, Richard A. Norte, Laurent Pitre, Sara Pourjamal, Marco Queisser, Israel Rebolledo-Salgado, Iago Sanchez, Daniel Schmid, Cliona Shakespeare, Fernando Sparasci, Peter G. Steeneken, Tatiana Steshchenko, Stephen J. Sweeney, Shahin Tabandeh, Georg Winzer, Anoma Yamsiri, Alethea Vanessa Zamora Gómez, Martin Zelan and Lars Zimmermannadd Show full author list remove Hide full author list
Metrology 2025, 5(3), 44; https://doi.org/10.3390/metrology5030044 - 19 Jul 2025
Viewed by 257
Abstract
Current temperature sensors require regular recalibration to maintain reliable temperature measurement. Photonic/quantum-based approaches have the potential to radically change the practice of thermometry through provision of in situ traceability, potentially through practical primary thermometry, without the need for sensor recalibration. This article gives [...] Read more.
Current temperature sensors require regular recalibration to maintain reliable temperature measurement. Photonic/quantum-based approaches have the potential to radically change the practice of thermometry through provision of in situ traceability, potentially through practical primary thermometry, without the need for sensor recalibration. This article gives an overview of the European Partnership in Metrology (EPM) project: Photonic and quantum sensors for practical integrated primary thermometry (PhoQuS-T), which aims to develop sensors based on photonic ring resonators and optomechanical resonators for robust, small-scale, integrated, and wide-range temperature measurement. The different phases of the project will be presented. The development of the integrated optical practical primary thermometer operating from 4 K to 500 K will be reached by a combination of different sensing techniques: with the optomechanical sensor, quantum thermometry below 10 K will provide a quantum reference for the optical noise thermometry (operating in the range 4 K to 300 K), whilst using the high-resolution photonic (ring resonator) sensor the temperature range to be extended from 80 K to 500 K. The important issues of robust fibre-to-chip coupling will be addressed, and application case studies of the developed sensors in ion-trap monitoring and quantum-based pressure standards will be discussed. Full article
Show Figures

Figure 1

16 pages, 9618 KiB  
Article
Scattering of Radiation by a Periodic Structure of Circular and Elliptical Microcavities in a Multimode Optical Waveguide
by Alexandra Yu. Petukhova, Anatolii V. Perminov, Mikhail A. Naparin and Victor V. Krishtop
Photonics 2025, 12(7), 727; https://doi.org/10.3390/photonics12070727 - 17 Jul 2025
Viewed by 265
Abstract
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the [...] Read more.
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the intensity distribution of scattered light with a wavelength of 1310 nm along the periodic structure, i.e., along the side surface of the waveguide, as a function of the microcavity dimensions and their spatial arrangement within the waveguide core. The optimal geometrical parameters of the microstructure, ensuring the most uniform light scattering, were identified. The model is valid for multimode optical fibres containing strictly periodic structures of microcavities with spherical or elliptical cross-sections that scatter laser radiation in all directions. One potential application of such fibres is as light sources in medical probes for surgical procedures requiring additional illumination and uniform irradiation of affected tissues. Furthermore, the findings of this study offer significant potential for the development of sensing elements for fibre-optic sensors. The findings of this study will facilitate the design of scattering structures with microcavities that ensure a highly uniform scattering pattern. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

19 pages, 40657 KiB  
Article
Development and Analysis of a Sustainable Interlayer Hybrid Unidirectional Laminate Reinforced with Glass and Flax Fibres
by York Schwieger, Usama Qayyum and Giovanni Pietro Terrasi
Polymers 2025, 17(14), 1953; https://doi.org/10.3390/polym17141953 - 16 Jul 2025
Viewed by 255
Abstract
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because [...] Read more.
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because of their relatively low environmental impact compared to carbon/carbon and carbon/glass hybrids. An analytical model was used to find an ideal combination of the two materials. With that model, the expected stress–strain relation could also be predicted analytically. The modelling was based on preliminary tensile tests of the two basic components investigated in this research: unidirectional laminates reinforced with either flax fibres or S-Glass fibres. Hybrid specimens were then designed, produced in a heat-assisted pressing process, and subjected to tensile tests. The strain measurement was performed using distributed fibre optic sensing. Ultimately, it was possible to obtain repeatable pseudo-ductile stress–strain behaviour with the chosen hybrid when the specimens were subjected to quasi-static uniaxial tension in the direction of the fibres. The intended damage-mode, consisting of a controlled delamination at the flax-fibre/glass-fibre interface after the flax fibres failed, followed by a load transfer to the glass fibre layers, was successfully achieved. The pseudo-ductile strain averaged 0.52% with a standard deviation of 0.09%, and the average load reserve after delamination was 145.5 MPa with a standard deviation of 48.5 MPa. The integrated fibre optic sensors allowed us to monitor and verify the damage process with increasing strain and load. Finally, the analytical model was compared to the measurements and was partially modified by neglecting the Weibull strength distribution of the high-strain material. Full article
Show Figures

Figure 1

29 pages, 4333 KiB  
Article
A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams
by Minol Jayawickrema, Madhubhashitha Herath, Nandita Hettiarachchi, Harsha Sooriyaarachchi, Sourish Banerjee, Jayantha Epaarachchi and B. Gangadhara Prusty
Metrology 2025, 5(3), 40; https://doi.org/10.3390/metrology5030040 - 3 Jul 2025
Viewed by 254
Abstract
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) [...] Read more.
Access to significant amounts of data is typically required to develop structural health monitoring (SHM) systems. In this study, a novel SHM approach was evaluated, with all training data collected solely from a validated finite element analysis (FEA) of a reinforced concrete (RC) beam and the structural health based on the tension side of a rebar under flexural loading. The developed SHM system was verified by four-point bending experiments on three RC beams cast in the dimensions of 4000 mm × 200 mm × 400 mm. Distributed optical fibre sensors (DOFS) were mounted on the concrete surface and on the bottom rebar to maximise sample points and investigate the reliability of the strain data. The FEA model was validated using a single beam and subsequently used to generate labelled SHM strain data by altering the dilation angle and rebar sizes. The generated strain data were then used to train an artificial neural network (ANN) classifier using deep learning (DL). Training and validation accuracy greater than 98.75% were recorded, and the model was trained to predict the tension state up to 90% of the steel yield limit. The developed model predicts the health condition with the input of strain data acquired from the concrete surface of reinforced concrete beams under various loading regimes. The model predictions were accurate for the experimental DOFS data acquired from the tested beams. Full article
Show Figures

Graphical abstract

14 pages, 3376 KiB  
Article
A Study of Ultra-Thin Surface-Mounted MEMS Fibre-Optic Fabry–Pérot Pressure Sensors for the In Situ Monitoring of Hydrodynamic Pressure on the Hull of Large Amphibious Aircraft
by Tianyi Feng, Xi Chen, Ye Chen, Bin Wu, Fei Xu and Lingcai Huang
Photonics 2025, 12(7), 627; https://doi.org/10.3390/photonics12070627 - 20 Jun 2025
Viewed by 293
Abstract
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their [...] Read more.
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their large size, fragility, intrusiveness, limited range, frequency response limitations, accuracy issues, and low sampling frequency. Fibre-optic sensors’ small size, immunity to electromagnetic interference, and reduced susceptibility to environmental disturbances have led to their progressive development in maritime and aeronautic fields. This research proposes a novel hydrodynamic profile encapsulation method using ultra-thin surface-mounted micro-electromechanical system (MEMS) fibre-optic Fabry–Pérot pressure sensors (total thickness of 1 mm). The proposed sensor exhibits an exceptional linear response and low-temperature sensitivity in hydrostatic calibration tests and shows superior response and detection accuracy in water-entry tests of wedge-shaped bodies. This work exhibits significant potential for the in situ monitoring of hydrodynamic loads during water landing, contributing to the research of large amphibious aircraft. Furthermore, this research demonstrates, for the first time, the proposed surface-mounted pressure sensor in conjunction with a high-speed acquisition system for the in situ monitoring of hydrodynamic pressure on the hull of a large amphibious prototype. Following flight tests, the sensors remained intact throughout multiple high-speed hydrodynamic taxiing events and 12 full water landings, successfully acquiring the complete dataset. The flight test results show that this proposed pressure sensor exhibits superior robustness in extreme environments compared to traditional invasive electrical sensors and can be used for full-scale hydrodynamic load flight tests. Full article
Show Figures

Figure 1

16 pages, 3286 KiB  
Article
Tachometric Cup Anemometer with Wind Direction Indicator and Fibre-Optic Signal Transmission
by Paweł Ligęza, Paweł Jamróz and Katarzyna Socha
Sensors 2025, 25(11), 3281; https://doi.org/10.3390/s25113281 - 23 May 2025
Viewed by 565
Abstract
This article presents an innovative design of a tachometric anemometer for measuring wind velocity and direction, which does not contain electronic components and systems or power supply systems in the measurement area. This device can be used in extremely unfavourable environmental operating conditions, [...] Read more.
This article presents an innovative design of a tachometric anemometer for measuring wind velocity and direction, which does not contain electronic components and systems or power supply systems in the measurement area. This device can be used in extremely unfavourable environmental operating conditions, in locations exposed to direct atmospheric discharges, in conditions requiring restrictive and intrinsic safety, in special military applications, and in measurements in the presence of extreme electromagnetic fields. An innovative optical–mechanical transducer is used in the anemometer. This transducer generates a light pulse signal, the frequency of which is a function of the flow velocity, and the duty cycle is a function of the wind direction. This signal is transmitted via optical fibre from the sensor assembly to the measuring station, located outside the measurement area. The design of the device is simple, durable, and resistant to environmental conditions. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

12 pages, 2111 KiB  
Article
Static Thermal Model of a Fibre-Optic Rotational Seismometer
by Piotr Zając, Marcin Janicki and Cezary Maj
Sensors 2025, 25(10), 3184; https://doi.org/10.3390/s25103184 - 19 May 2025
Viewed by 340
Abstract
Fibre-optic rotational seismometers are devices capable of high-accuracy measurements of rotation rates. Taking into account that temperature significantly influences their operation, particularly the optical signal path, accurate thermal models of these devices are required. This paper presents a static thermal model of such [...] Read more.
Fibre-optic rotational seismometers are devices capable of high-accuracy measurements of rotation rates. Taking into account that temperature significantly influences their operation, particularly the optical signal path, accurate thermal models of these devices are required. This paper presents a static thermal model of such a fibre-optic rotational seismometer. This compact thermal model is based on a thermal resistor network, where the temperature values are computed only in the most important locations of the device. The values of thermal model elements are estimated based on thermocouple temperature measurements. Owing to the accurate determination of temperature values, especially in fibre-optic loops, it was possible to achieve the desired device sensitivity. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 3776 KiB  
Review
Challenges in Adapting Fibre Optic Sensors for Biomedical Applications
by Sahar Karimian, Muhammad Mahmood Ali, Marion McAfee, Waqas Saleem, Dineshbabu Duraibabu, Sanober Farheen Memon and Elfed Lewis
Biosensors 2025, 15(5), 312; https://doi.org/10.3390/bios15050312 - 13 May 2025
Cited by 1 | Viewed by 1272
Abstract
Fibre optic sensors (FOSs) have developed as a transformative technology in healthcare, often offering unparalleled accuracy and sensitivity in monitoring various physiological and biochemical parameters. Their applications range from tracking vital signs to guiding minimally invasive surgeries, enabling advancements in medical diagnostics and [...] Read more.
Fibre optic sensors (FOSs) have developed as a transformative technology in healthcare, often offering unparalleled accuracy and sensitivity in monitoring various physiological and biochemical parameters. Their applications range from tracking vital signs to guiding minimally invasive surgeries, enabling advancements in medical diagnostics and treatment. However, the integration of FOSs into biomedical applications faces numerous challenges. This article describes some challenges for adopting FOSs for biomedical purposes, exploring technical and practical obstacles, and examining innovative solutions. Significant challenges include biocompatibility, miniaturization, addressing signal processing complexities, and meeting regulatory standards. By outlining solutions to the stated challenges, it is intended that this article provides a better understanding of FOS technologies in biomedical settings and their implementation. A broader appreciation of the technology, offered in this article, enhances patient care and improved medical outcomes. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
Show Figures

Figure 1

18 pages, 3539 KiB  
Article
Enhancing Sea Wave Monitoring Through Integrated Pressure Sensors in Smart Marine Cables
by Tiago Matos, Joao L. Rocha, Marcos S. Martins and Luis M. Gonçalves
J. Mar. Sci. Eng. 2025, 13(4), 766; https://doi.org/10.3390/jmse13040766 - 11 Apr 2025
Cited by 1 | Viewed by 629
Abstract
The need for real-time and scalable oceanographic monitoring has become crucial for coastal management, marine traffic control and environmental sustainability. This study investigates the integration of sensor technology into marine cables to enable real-time monitoring, focusing on tidal cycles and wave characteristics. A [...] Read more.
The need for real-time and scalable oceanographic monitoring has become crucial for coastal management, marine traffic control and environmental sustainability. This study investigates the integration of sensor technology into marine cables to enable real-time monitoring, focusing on tidal cycles and wave characteristics. A 2000 m cable demonstrator was deployed off the coast of Portugal, featuring three active repeater nodes equipped with pressure sensors at varying depths. The goal was to estimate hourly wave periods using fast Fourier transform and calculate significant wave height via a custom peak detection algorithm. The results showed strong coherence with tidal depth variations, with wave period estimates closely aligning with forecasts. The wave height estimations exhibited a clear relationship with tidal cycles, which demonstrates the system’s sensitivity to coastal hydrodynamics, a factor that numerical models designed for open waters often fail to capture. The study also highlights challenges in deep-water monitoring, such as signal attenuation and the need for high sampling rates. Overall, this research emphasises the scalability of sensor-integrated smart marine cables, offering a transformative opportunity to expand oceanographic monitoring capabilities. The findings open the door for future real-time ocean monitoring systems that can deliver valuable insights for coastal management, environmental monitoring and scientific research. Full article
(This article belongs to the Special Issue Applications of Sensors in Marine Observation)
Show Figures

Figure 1

34 pages, 10137 KiB  
Review
Progress in Luminescent Materials Based on Europium(III) Complexes of β-Diketones and Organic Carboxylic Acids
by Qianting Chen, Jie Zhang, Quanfeng Ye, Shanqi Qin, Lingyi Li, Mingyu Teng and Wai-Yeung Wong
Molecules 2025, 30(6), 1342; https://doi.org/10.3390/molecules30061342 - 17 Mar 2025
Cited by 2 | Viewed by 1541
Abstract
Europium(III) β-diketone and organic carboxylic acid complexes are designable, easy to prepare, and easy to modify and have excellent fluorescence properties (narrow emission spectral band, high colour purity, long fluorescence lifetime, high quantum yield, and a spectral emission range covering both the visible [...] Read more.
Europium(III) β-diketone and organic carboxylic acid complexes are designable, easy to prepare, and easy to modify and have excellent fluorescence properties (narrow emission spectral band, high colour purity, long fluorescence lifetime, high quantum yield, and a spectral emission range covering both the visible and near-infrared regions). These complexes play important roles in popular fields such as laser and fibre-optic communications, medical diagnostics, immunoassays, fluorescent lasers, sensors, anticounterfeiting, and organic light-emitting diodes (OLEDs). In the field of light-emitting materials, europium complexes are especially widely used in OLED lamps, especially because of their high-efficiency emission of red (among the three primary colours); accordingly, these complexes can be mixed with blue and green phosphors to obtain high-efficiency white phosphors that can be excited by near-ultraviolet light. This paper reviews the red-light-emitting europium complexes with β-diketone and organic carboxylic acid as ligands that have been studied over the last five years, describes the current problems, and discusses their future application prospects. Full article
Show Figures

Figure 1

14 pages, 1963 KiB  
Article
Decoupling of Mechanical and Thermal Signals in OFDR Measurements with Integrated Fibres Based on Fibre Core Doping
by Clemens Dittmar, Caroline Girmen, Markus Gastens, Niels König, Thorsten Siedenburg, Michael Wlochal, Robert H. Schmitt and Stefan Schael
Sensors 2025, 25(4), 1187; https://doi.org/10.3390/s25041187 - 15 Feb 2025
Viewed by 635
Abstract
In this paper, a new measurement principle for decoupling mechanical and thermal signals in an OFDR measurement with integrated optical fibres is investigated. Previous methods for decoupling require additional measuring equipment or knowledge about the substrate properties. This new method is based solely [...] Read more.
In this paper, a new measurement principle for decoupling mechanical and thermal signals in an OFDR measurement with integrated optical fibres is investigated. Previous methods for decoupling require additional measuring equipment or knowledge about the substrate properties. This new method is based solely on simultaneous measurements of two fibres with different temperature sensitivities resulting from different core doping processes. By exposing both fibres to the same thermal and mechanical load, the signal could be differentiated through the signal variations caused by the thermo-optical effect. The two fibres used in the tests have a sufficient response difference in the cryogenic temperature range. Therefore, the method is suitable for various applications, such as high-temperature superconductors as well as cryogenic and space applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 8257 KiB  
Article
Fibre Optic Method for Detecting Oil Fluorescence in Marine Sediments
by Emilia Baszanowska, Zbigniew Otremba and Maria Kubacka
Sensors 2025, 25(1), 173; https://doi.org/10.3390/s25010173 - 31 Dec 2024
Viewed by 949
Abstract
The aim of this study is to verify the possibility of detecting oil in the bottom sediment using a fibre optic system. The presence of oil is assessed on excitation–emission spectra obtained from spectral fluorescence signals of the sediment sample. A factory spectrofluorometer [...] Read more.
The aim of this study is to verify the possibility of detecting oil in the bottom sediment using a fibre optic system. The presence of oil is assessed on excitation–emission spectra obtained from spectral fluorescence signals of the sediment sample. A factory spectrofluorometer coupled with an experimental fibre optic measurement system was used. During the determination of spectra, the fibre optic system is set at a 45° angle to the sediment surface and placed above its surface. The light exciting the fluorescence and the light emitted by the sediment are transmitted in a combined bundle of fibre optic threads. The analysis of excitation–emission spectra of sediments contaminated with oil shows variability of the shapes of fluorescence spectra depending on the type and degree of oil contamination, which indicates the feasibility of the sensor design for detecting oil in the sediment in situ. Full article
Show Figures

Figure 1

17 pages, 5804 KiB  
Communication
Low-Coherence Integrated Optical Interferometer for Fibre Optic Sensors
by Petr Volkov, Alexander Bobrov, Oleg Vyazankin, Alexey Gorshkov, Alexander Goryunov, Glafira Lemeshevskaya, Andrey Lukyanov, Aleksey Nezhdanov, Daniil Semikov and Kirill Sidorenko
Sensors 2025, 25(1), 116; https://doi.org/10.3390/s25010116 - 27 Dec 2024
Viewed by 1034
Abstract
This paper proposes and implements a novel scheme for recording signals from fibre optic sensors based on tandem low-coherence interferometry with an integrated optical reference interferometer. The circuit allows precision control of the phase shift. Additionally, the paper illustrates the potential for detecting [...] Read more.
This paper proposes and implements a novel scheme for recording signals from fibre optic sensors based on tandem low-coherence interferometry with an integrated optical reference interferometer. The circuit allows precision control of the phase shift. Additionally, the paper illustrates the potential for detecting vibration and object deformation using fibre optic Fabry–Perot sensors connected to the registration system. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

31 pages, 6215 KiB  
Review
Emerging Trends in the Integration of Smart Sensor Technologies in Structural Health Monitoring: A Contemporary Perspective
by Arvindan Sivasuriyan, Dhanasingh Sivalinga Vijayan, Parthiban Devarajan, Anna Stefańska, Saurav Dixit, Anna Podlasek, Wiktor Sitek and Eugeniusz Koda
Sensors 2024, 24(24), 8161; https://doi.org/10.3390/s24248161 - 21 Dec 2024
Cited by 4 | Viewed by 7916
Abstract
In recent years, civil engineering has increasingly embraced communication tools for automation, with sensors playing a pivotal role, especially in structural health monitoring (SHM). These sensors enable precise data acquisition, measuring parameters like force, displacement, and temperature and transmit data for timely interventions [...] Read more.
In recent years, civil engineering has increasingly embraced communication tools for automation, with sensors playing a pivotal role, especially in structural health monitoring (SHM). These sensors enable precise data acquisition, measuring parameters like force, displacement, and temperature and transmit data for timely interventions to prevent failures. This approach reduces reliance on manual inspections, offering more accurate outcomes. This review explores various sensor technologies in SHM, such as piezoelectric, fibre optic, force, MEMS devices, GPS, LVDT, electromechanical impedance techniques, Doppler effect, and piezoceramic sensors, focusing on advancements from 2019 to 2024. A bibliometric analysis of 1468 research articles from WOS and Scopus databases shows a significant increase in publications, from 15 in 2019 to 359 in 2023 and 52 in 2024 (and still counting). This analysis identifies emerging trends and applications in smart sensor integration in civil and structural health monitoring, enhancing safety and efficiency in infrastructure management. Full article
(This article belongs to the Special Issue Recent Advances in Structural Health Monitoring and Damage Detection)
Show Figures

Figure 1

11 pages, 6054 KiB  
Article
A Novel Demodulation Algorithm for Micro-Displacement Measurement Based on FMCW Sinusoidal Modulation
by Zhen Xu, Yongjie Wang, Zhenqiang Li, Gaochao Li, Ke Li, Hongtao Zhang and Fang Li
Photonics 2024, 11(12), 1196; https://doi.org/10.3390/photonics11121196 - 20 Dec 2024
Cited by 1 | Viewed by 999
Abstract
Frequency-modulated continuous wave (FMCW) interferometry, an emerging laser interferometry technology, can be applied in the field of fibre-optic sensing to achieve high-precision micro-displacement measurements. To address nonlinearity issues in laser frequency modulation and localisation deviations of feature points in traditional algorithms, this paper [...] Read more.
Frequency-modulated continuous wave (FMCW) interferometry, an emerging laser interferometry technology, can be applied in the field of fibre-optic sensing to achieve high-precision micro-displacement measurements. To address nonlinearity issues in laser frequency modulation and localisation deviations of feature points in traditional algorithms, this paper proposes a demodulation algorithm suitable for sinusoidal frequency modulation schemes, incorporating the principle of orthogonal phase-locked amplification. The algorithm includes signal preprocessing, phase-locked amplification, error correction, and phase calculation. Experimental results show that the system achieves a measurement error standard deviation of 3.23 nanometres for static targets. The displacement measurement error at 100 μm is 0.057% F.S., and the linearity between the measured values and the actual displacement values is 0.99997. Compared with conventional methods, the approach introduced in this paper eliminates the need for separate nonlinear corrections of the current-to-optical frequency relationship and minimises the issue of feature point localization deviations, showing significant potential for practical applications. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

Back to TopTop