Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = Ffowcs-Williams and Hawkings (FW-H) model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6828 KiB  
Article
Acoustic Characterization of Leakage in Buried Natural Gas Pipelines
by Yongjun Cai, Xiaolong Gu, Xiahua Zhang, Ke Zhang, Huiye Zhang and Zhiyi Xiong
Processes 2025, 13(7), 2274; https://doi.org/10.3390/pr13072274 - 17 Jul 2025
Viewed by 316
Abstract
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the [...] Read more.
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the realizable k-ε and Large Eddy Simulation (LES) turbulence models, the Peng–Robinson equation of state, a broadband noise source model, and the Ffowcs Williams–Hawkings (FW-H) acoustic analogy. The effects of pipeline operating pressure (2–10 MPa), leakage hole diameter (1–6 mm), soil type (sandy, loam, and clay), and leakage orientation on the flow field, acoustic source behavior, and sound field distribution were systematically investigated. The results indicate that the leakage hole size and soil medium exert significant influence on both flow dynamics and acoustic propagation, while the pipeline pressure mainly affects the strength of the acoustic source. The leakage direction was found to have only a minor impact on the overall results. The leakage noise is primarily composed of dipole sources arising from gas–solid interactions and quadrupole sources generated by turbulent flow, with the frequency spectrum concentrated in the low-frequency range of 0–500 Hz. This research elucidates the acoustic characteristics of pipeline leakage under various conditions and provides a theoretical foundation for optimal sensor deployment and accurate localization in buried pipeline leak detection systems. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

25 pages, 9825 KiB  
Article
Noise Reduction Mechanism and Spectral Scaling of Slat Gap Filler Device at Low Angle of Attack
by Yingzhe Zhang, Peiqing Liu and Baohong Bai
Aerospace 2025, 12(6), 541; https://doi.org/10.3390/aerospace12060541 - 15 Jun 2025
Viewed by 419
Abstract
Slat noise poses a significant challenge during aircraft landing. Slat gap filler (SGF) technology has shown promise in mitigating slat noise, yet its noise reduction mechanisms and characteristics remain unclear. This study numerically investigates the noise reduction mechanisms of SGF and analyzes its [...] Read more.
Slat noise poses a significant challenge during aircraft landing. Slat gap filler (SGF) technology has shown promise in mitigating slat noise, yet its noise reduction mechanisms and characteristics remain unclear. This study numerically investigates the noise reduction mechanisms of SGF and analyzes its noise characteristics using the high-lift common research model (CRM-HL). The lattice Boltzmann solver simulates the unsteady flow field, and the Ffowcs-Williams and Hawkings (FW-H) equation predicts far-field noise. The computed results exhibit a satisfactory concordance with experimental measurements. Furthermore, the near-field flow dynamics have been elucidated through proper orthogonal decomposition. The findings demonstrate that the SGF alters the distribution patterns of flow dynamics and pressure fluctuations, thereby effectively attenuating the mode energy. Moreover, our findings demonstrate that SGF significantly reduces slat noise. The noise reduction mechanism can be attributed to decreased surface pressure fluctuations on the leading edge of the main wing, and a shifted broadband noise peak to a lower frequency due to the enlarged slat cove flow vortex caused by SGF. Finally, a scaling analysis of the slat noise spectra indicates that the SGF noise spectra align well with baseline slat noise spectra when the characteristic length scale is determined by the vortex structure. Full article
Show Figures

Figure 1

16 pages, 3004 KiB  
Article
Experimental and Numerical Study of a UAV Propeller Printed in Clear Resin
by Mingtai Chen, Jacob Wimsatt, Tianming Liu and Tiegang Fang
Aerospace 2025, 12(5), 362; https://doi.org/10.3390/aerospace12050362 - 22 Apr 2025
Cited by 1 | Viewed by 998
Abstract
This paper presents an experimental and numerical investigation of a 254 mm resin-printed propeller operating at rotational speeds between 3000 and 9000 RPM. Propeller thrust and torque were measured using a six-degree-of-freedom load cell, while acoustic data were captured with a microphone positioned [...] Read more.
This paper presents an experimental and numerical investigation of a 254 mm resin-printed propeller operating at rotational speeds between 3000 and 9000 RPM. Propeller thrust and torque were measured using a six-degree-of-freedom load cell, while acoustic data were captured with a microphone positioned three times the propeller diameter from the center. To complement the experimental analysis, computational simulations were conducted using ANSYS Fluent with the detached eddy simulation (DES) model, the Ffowcs-Williams and Hawkings (FW-H) model, and a transient flow solver. The figure of merit (FM) results show that the resin propeller slightly outperforms two commercial counterparts with a marginal difference between the wood and resin propellers. Additionally, the resin propeller demonstrates better noise performance, exhibiting the lowest primary tonal noise, broadband noise, and overall sound pressure level (OASPL), with minimal differences between the two commercial counterparts. ANSYS Fluent simulations predict thrust and torque within a 10% error margin, showing particularly accurate results for primary tonal noise. A new trade-off index is proposed to assess the balance between propeller performance and aeroacoustics, revealing distinct trends compared to traditional metrics. Furthermore, aerodynamic phenomena such as flow separation on the leading edge near the tip, flow separation behind the middle trailing edge, and vortex interactions at the root are identified as key contributors to tonal and broadband noise. These findings provide valuable insights into propeller design and aeroacoustic optimization. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 7350 KiB  
Article
Numerical Predictions of Low-Reynolds-Number Propeller Aeroacoustics: Comparison of Methods at Different Fidelity Levels
by Guangyuan Huang, Ankit Sharma, Xin Chen, Atif Riaz and Richard Jefferson-Loveday
Aerospace 2025, 12(2), 154; https://doi.org/10.3390/aerospace12020154 - 18 Feb 2025
Viewed by 791
Abstract
Low-Reynolds-number propeller systems have been widely used in aeronautical applications, such as unmanned aerial vehicles (UAV) and electric propulsion systems. However, the aerodynamic sound of the propeller systems is often significant and can lead to aircraft noise problems. Therefore, effective predictions of propeller [...] Read more.
Low-Reynolds-number propeller systems have been widely used in aeronautical applications, such as unmanned aerial vehicles (UAV) and electric propulsion systems. However, the aerodynamic sound of the propeller systems is often significant and can lead to aircraft noise problems. Therefore, effective predictions of propeller noise are important for designing aircraft, and the different phases in aircraft design require specific prediction approaches. This paper aimed to perform a comparison study on numerical methods at different fidelity levels for predicting the aerodynamic noise of low-Reynolds-number propellers. The Ffowcs-Williams and Hawkings (FWH), Hanson, and Gutin methods were assessed as, respectively, high-, medium-, and low-fidelity noise models. And a coarse-grid large eddy simulation was performed to model the propeller aerodynamics and to inform the three noise models. A popular propeller configuration, which has been used in previous experimental and numerical studies on propeller noise, was employed. This configuration consisted of a two-bladed propeller mounted on a cylindrical nacelle. The propeller had a diameter of D=9 and a pitch-to-diameter ratio of P/D=1, and was operated in a forward-flight condition with a chord-based Reynolds number of Re=4.8×104, a tip Mach number of M=0.231, and an advance ratio of J=0.485. The results were validated against existing experimental measurements. The propeller flow was characterized by significant tip vortices, weak separation over the leading edges of the blade suction sides, and small-scale vortical structures from the blade trailing edges. The far-field noise was characterized by tonal noise, as well as broadband noise. The mechanism of the noise generation and propagation were clarified. The capacities of the three noise modeling methods for predicting such propeller noise were evaluated and compared. Full article
Show Figures

Figure 1

16 pages, 16399 KiB  
Article
Investigation of Valve Seat Cone Angle on Small Opening Direct-Acting Relief Valve Cavitation Noise
by Tiechao Qiu, Liu Yang, Jiannan Zhang, Zhanqi Wang, Yanhe Song and Chao Ai
Machines 2024, 12(7), 434; https://doi.org/10.3390/machines12070434 - 25 Jun 2024
Cited by 4 | Viewed by 1534
Abstract
Direct-acting relief valves are important pressure-control components in hydraulic systems; however, noise problems are now common. This study aimed to reduce and numerically analyze the valve cavitation and noise using the Zwart–Gerber–Belamri (ZBG) model with the Ffowcs Williams and Hawkings (FW–H) model to [...] Read more.
Direct-acting relief valves are important pressure-control components in hydraulic systems; however, noise problems are now common. This study aimed to reduce and numerically analyze the valve cavitation and noise using the Zwart–Gerber–Belamri (ZBG) model with the Ffowcs Williams and Hawkings (FW–H) model to optimize the design based on the sound field perspective. First, a direct-acting relief valve flow field model was established to determine the relationship between the seat structure and the degree of cavitation through a CFD (Computational Fluid Dynamics) simulation. Second, sound field analysis was conducted based on the cavitation and non-cavitation flow fields, respectively, and the resulting noise levels were compared. Finally, prototypes of the relief valve were manufactured, and noise levels between the original and optimized valves were compared. The results revealed that cavitation within the relief valve generated noise while optimizing the valve seat cone angle suppressed this phenomenon, thereby reducing the noise emitted by the optimized valve by 18.2 dB compared to the original valve. These findings can serve as a guide for designing and optimizing direct-acting relief valves. Full article
(This article belongs to the Special Issue Components of Hydrostatic Drive Systems)
Show Figures

Figure 1

22 pages, 14119 KiB  
Article
Acoustic Field Radiation Prediction and Verification of Underwater Vehicles under a Free Surface
by Yung-Wei Chen, Cheng-Cheng Pan, Yi-Hsien Lin, Chao-Feng Shih, Jian-Hong Shen and Chun-Ming Chang
J. Mar. Sci. Eng. 2023, 11(10), 1940; https://doi.org/10.3390/jmse11101940 - 8 Oct 2023
Cited by 3 | Viewed by 1859
Abstract
This study aimed to examine the acoustic field radiated by propellers and underwater vehicles. For the verification of sound radiation in underwater vehicles, numerical methods are widely used in addition to experiments and propeller blade frequencies for calculation and validation. Numerical convergence and [...] Read more.
This study aimed to examine the acoustic field radiated by propellers and underwater vehicles. For the verification of sound radiation in underwater vehicles, numerical methods are widely used in addition to experiments and propeller blade frequencies for calculation and validation. Numerical convergence and accuracy are more important for near-field and far-field problems. This paper uses the boundary element method (BEM) to assess the convergence of the finite volume method (FVM). In this study, the FVM, including the Reynolds-averaged Navier–Stokes method and the Ffowcs Williams–Hawkings (FW-H) acoustic model, is used to investigate the influence of various geometric inflows on the hydrodynamic and noise performance of the propeller. Then, the sound radiation of the FVM is compared with the BEM at the far field to determine the number of meshed elements. Furthermore, spectral analysis is being conducted to examine the noise generated by the underwater vehicle and propeller. The objective is to investigate the influence of the free surface on propeller efficiency. After verifying the numerical simulation, the results indicate that a relationship can be established between water pressure and propeller thrust under specific conditions. This relationship can be used to estimate the magnitude of propeller thrust at different water depths. The simulated results of propeller thrust, torque coefficient, propulsion efficiency, and sound radiation in this study are consistent with experimental values. This demonstrates the accuracy and practicality of the findings of numerical procedures in engineering applications. Full article
Show Figures

Figure 1

28 pages, 9160 KiB  
Article
Fast Evaluations of Integrals in the Ffowcs Williams–Hawkings Formulation in Aeroacoustics via the Fast Multipole Method
by Yadong Zhang and Yijun Liu
Acoustics 2023, 5(3), 817-844; https://doi.org/10.3390/acoustics5030048 - 11 Sep 2023
Cited by 2 | Viewed by 3410
Abstract
A new approach to accelerating the evaluation of monopole and dipole source integrals via the fast multipole method (FMM) in the time domain for general three-dimensional (3-D) aeroacoustic problems is presented in this paper. In this approach, the aeroacoustic field is predicted via [...] Read more.
A new approach to accelerating the evaluation of monopole and dipole source integrals via the fast multipole method (FMM) in the time domain for general three-dimensional (3-D) aeroacoustic problems is presented in this paper. In this approach, the aeroacoustic field is predicted via a hybrid method that uses computational fluid dynamics (CFD) for near-field flow field calculations and the Ffowcs Williams–Hawkings (FW-H) acoustic analogy for far-field sound field predictions. The evaluation of the surface integrals of the monopole and dipole source terms appearing in the FW-H formulation is accelerated by a 3-D FMM to reduce computational cost. The proposed method is referred to as Fast FW-H in this work. The performance and efficiency of the proposed methodology are demonstrated using several examples. First, aeroacoustic predictions for the cases of a stationary acoustic monopole, moving acoustic monopole and stationary acoustic dipole in a uniform flow are studied, generally showing good agreement with the analytical solutions. Second, the sound field radiating from a flow passing a finite-length circular cylinder and the propeller of an unmanned aerial vehicle (UAV) during forward flight are studied, and the computed results obtained via the FW-H and Fast FW-H methods in the time domain with a stationary, permeable surface are compared. The overall computational efficiency of the sound field solutions obtained via the Fast FW-H method is found to be approximately two times faster than the computational efficiency of the original FW-H method, indicating that this proposed approach can be an accurate and efficient computational tool for modelling far-field aeroacoustic problems. Full article
(This article belongs to the Collection Featured Position and Review Papers in Acoustics Science)
Show Figures

Figure 1

14 pages, 3178 KiB  
Article
Aeroacoustic and Aerodynamic Adjoint-Based Shape Optimization of an Axisymmetric Aero-Engine Intake
by Morteza Monfaredi, Varvara Asouti, Xenofon Trompoukis, Konstantinos Tsiakas and Kyriakos Giannakoglou
Aerospace 2023, 10(9), 743; https://doi.org/10.3390/aerospace10090743 - 22 Aug 2023
Cited by 1 | Viewed by 2622
Abstract
A continuous adjoint-based aeroacoustic optimization, based on a hybrid model including the Ffowcs Williams–Hawkings (FW–H) acoustic analogy, to account for the multidisciplinary design of aero-engine intakes with an axisymmetric geometry, is presented. To optimize such an intake, the generatrix of its lips is [...] Read more.
A continuous adjoint-based aeroacoustic optimization, based on a hybrid model including the Ffowcs Williams–Hawkings (FW–H) acoustic analogy, to account for the multidisciplinary design of aero-engine intakes with an axisymmetric geometry, is presented. To optimize such an intake, the generatrix of its lips is parameterized using B-Splines, and the energy contained in the sound pressure spectrum, at the blade passing frequency at receivers located axisymmetrically around the axis of the engine, is minimized. The engine is not included in the optimization and manifests its presence through an independently computed time-series of static pressure over the annular boundary of the simulation domain that corresponds to the inlet to the fan. Taking advantage of the case axisymmetry, the steady 3D RANS equations are solved in the rotating frame of reference and post-processed to compute the flow quantities’ time-series required by the FW–H analogy. The numerical solution of the unsteady flow equations and the otherwise excessive overall cost of the optimization are, thus, avoided. The objective function gradient is computed using the continuous adjoint method, coupled with the analytical differentiation of the FW–H analogy. The adjoint equations are also solved in the rotating frame via steady solver. Full article
(This article belongs to the Special Issue Adjoint Method for Aerodynamic Design and Other Applications in CFD)
Show Figures

Figure 1

15 pages, 6476 KiB  
Article
A Numerical Simulation of the Underwater Supersonic Gas Jet Evolution and Its Induced Noise
by Wei Yu, Baoshou Wang and Chun Zhang
Appl. Sci. 2023, 13(14), 8336; https://doi.org/10.3390/app13148336 - 19 Jul 2023
Cited by 1 | Viewed by 1757
Abstract
To explore the complex flow field and noise characteristics of underwater high-speed gas jets, the mixture multiphase model, large eddy simulation method, and Ffowcs Williams–Hawking (FW–H) acoustic model were used for simulations, and the numerical methods were validated by the gas jet noise [...] Read more.
To explore the complex flow field and noise characteristics of underwater high-speed gas jets, the mixture multiphase model, large eddy simulation method, and Ffowcs Williams–Hawking (FW–H) acoustic model were used for simulations, and the numerical methods were validated by the gas jet noise experimental results. The results revealed that during the initial stages, the jet collided with the water surface and created low-pressure high-temperature gas bubbles, accompanied by much high-frequency noise. When the jet reached its maximum length, its impact weakened, the bubble broke, the jet transformed into a conical shape, and the jet noise changed from high- to low-frequency. The pressure fluctuation peaked near the position at which the Mach number reached 1, indicating that the jet was the most unstable at the sonic point. Additionally, at low frequencies, the sound pressure levels between jets with different nozzle pressure ratios were similar, whereas above 400 Hz, under-expanded jets had higher sound pressure levels. This paper provides theoretical guidance for the study of underwater jet noise. Full article
Show Figures

Figure 1

27 pages, 8915 KiB  
Article
Numerical Investigation of Self-Propulsion Performance and Noise Level of DARPA Suboff Model
by Chunyu Guo, Xu Wang, Chongge Chen, Yinghong Li and Jian Hu
J. Mar. Sci. Eng. 2023, 11(6), 1206; https://doi.org/10.3390/jmse11061206 - 10 Jun 2023
Cited by 11 | Viewed by 2356
Abstract
Propulsion noise is an enduring problem of significant military and environmental importance. Hence, it is crucial to investigate propeller noise characteristics. In this study, the hydrodynamic performance and noise level of the DARPA (Defense Advanced Research Projects Agency) Suboff submarine with the E1619 [...] Read more.
Propulsion noise is an enduring problem of significant military and environmental importance. Hence, it is crucial to investigate propeller noise characteristics. In this study, the hydrodynamic performance and noise level of the DARPA (Defense Advanced Research Projects Agency) Suboff submarine with the E1619 propeller were analyzed. The hull resistance and propeller hydrodynamics were studied separately, and the numerical results were validated using available experimental values. The self-propulsion point was determined by matching the hull resistance and propeller thrust following ITTC (International Towing Tank Conference) convention. Based on hydrodynamics and acoustic Ffowcs Williams–Hawkings (FW–H) models, the underwater-radiated noise characteristics in the self-propulsion state were simulated. The calculations indicated that the contribution of the quadrupole term in the FW–H equation is not negligible in the high-frequency band. Compared with the noise of open-water propellers, the spectrum of the E1619 propeller in its self-propulsion state is more complex, and the upstream noise is amplified. Full article
(This article belongs to the Special Issue CFD Analysis in Ocean Engineering)
Show Figures

Figure 1

24 pages, 8181 KiB  
Article
Numerical Study on Flow and Noise Characteristics of High-Temperature and High-Pressure Steam Ejector
by Jiajie Zhang, Yun Liu, Yumeng Guo, Jingxian Zhang and Suxia Ma
Energies 2023, 16(10), 4158; https://doi.org/10.3390/en16104158 - 17 May 2023
Cited by 5 | Viewed by 1988
Abstract
Based on the shear stress transfer (SST) k-ω model, Ffowcs-Williams and Hawkings (FW–H) equation, and Lilley sound source equation, the flow and sound field of high-temperature and high-pressure steam ejectors are simulated. The entrainment performance, near-field sound source, and far-field noise [...] Read more.
Based on the shear stress transfer (SST) k-ω model, Ffowcs-Williams and Hawkings (FW–H) equation, and Lilley sound source equation, the flow and sound field of high-temperature and high-pressure steam ejectors are simulated. The entrainment performance, near-field sound source, and far-field noise of the steam ejector are discussed. The influences of working parameters including the primary steam pressure, the secondary steam pressure, and the back pressure are analyzed. The results show that under the design conditions, the steam ejector has two shock waves and three sound source regions. A shear layer at the boundary of the first shock wave generates the Sound source-I, and the flow separation at the boundary of the second shock wave causes the Sound source-III. The Sound source-II is located near the mixing chamber wall and the sound pressure levels around the ejector depend on the distances from the Sound source-II. In terms of the entrainment performance, with the increasing primary pressure or the decreasing secondary pressure, as the driving pressure difference of the secondary steam decreases, so does the entrainment ratio. As the back pressure increases, the entrainment ratio firstly remains constant, and then rapidly decreases when the back pressure exceeds the critical value at pb = 5.5 MPa. In terms of the noise characteristics, the sound pressure level and the intensity of the second shock wave have a positive correlation. When the primary or secondary pressure increases, the sound pressure level increases. Moreover, with the increasing back pressure, the sound pressure level firstly decreases, reaches the minimum of 98.2 dB at the critical back pressure, and then slowly increases. Full article
(This article belongs to the Special Issue Thermal Management Strategies and Advanced Regulation Techniques)
Show Figures

Figure 1

15 pages, 6200 KiB  
Article
Numerical Modeling of Cavitation Rates and Noise Acoustics of Marine Propellers
by Kwanda Mercury Dlamini, Vuyo Terrence Hashe and Thokozani Justin Kunene
Math. Comput. Appl. 2023, 28(2), 42; https://doi.org/10.3390/mca28020042 - 15 Mar 2023
Cited by 5 | Viewed by 3459
Abstract
The study numerically investigated the noise dissipation, cavitation, output power, and energy produced by marine propellers. A Ffowcs Williams–Hawkings (FW–H) model was used to determine the effects of three different marine propellers with three to five blades and a fixed advancing ratio. The [...] Read more.
The study numerically investigated the noise dissipation, cavitation, output power, and energy produced by marine propellers. A Ffowcs Williams–Hawkings (FW–H) model was used to determine the effects of three different marine propellers with three to five blades and a fixed advancing ratio. The large-eddy Simulations model best predicted the turbulent structures’ spatial and temporal variation, which would better illustrate the flow physics. It was found that a high angle of incidence between the blade’s leading edge and the water flow direction typically causes the hub vortex to cavitate. The roll-up of the cavitating tip vortex was closely related to propeller noise. The five-blade propeller was quieter under the same dynamic conditions, such as the advancing ratio, compared to three- or four-blade propellers. Full article
(This article belongs to the Special Issue Current Problems and Advances in Computational and Applied Mechanics)
Show Figures

Figure 1

16 pages, 2682 KiB  
Article
Acoustic Response of a Vibrating Elongated Cylinder in a Hydrodynamic Turbulent Flow
by Giacomo Rismondo, Marta Cianferra and Vincenzo Armenio
J. Mar. Sci. Eng. 2022, 10(12), 1918; https://doi.org/10.3390/jmse10121918 - 6 Dec 2022
Cited by 2 | Viewed by 1552
Abstract
The present paper contains the results of the numerical analysis of the interaction between a Newtonian incompressible turbulent flow and a linear elastic slender body, together with the influence of the fluid–structure interaction (FSI) on the noise generation and propagation. The purpose is [...] Read more.
The present paper contains the results of the numerical analysis of the interaction between a Newtonian incompressible turbulent flow and a linear elastic slender body, together with the influence of the fluid–structure interaction (FSI) on the noise generation and propagation. The purpose is to evaluate the differences in term of acoustic pressure between the case where the solid body is rigid (infinite stiffness) and the case where it is elastic (finite stiffness). A partitioned and implicit algorithm with the arbitrary Lagrangian–Eulerian method (ALE) is used for the interaction between the fluid and solid. For the evaluation of the turbulent fluid motion, we use a large eddy simulation (LES) with the Smagorinsky subgrid scale model. The equation for the solid is solved through the Lagrangian description of the momentum equation and the second Piola–Kirchoff stress tensor. In addition, the acoustic analogy of Lighthill is used to characterize the acoustic source (the slender body) by directly using the fluid dynamic fields. In particular, we use the Ffowcs Williams and Hawkings (FW-H) equation for the evaluation of the acoustic pressure in the fluid medium. As a first numerical experiment, we analyze a square cylinder immersed in a turbulent flow characterized by two different values of stiffness: one infinite (rigid case) and one finite (elastic case). In the latter case, the body stiffness and mean flow velocity are such that they induce the lock-in phenomenon. Finally, we evaluate the differences in terms of acoustic pressure between the two different cases. Full article
Show Figures

Figure 1

5 pages, 2034 KiB  
Proceeding Paper
Acoustic Response of Fully Passive Airfoil under Gust
by Muhammad Arqam, Kashif Ayaz, Muhammad Ebrahem and Shehryar Manzoor
Eng. Proc. 2022, 23(1), 36; https://doi.org/10.3390/engproc2022023036 - 27 Sep 2022
Viewed by 1664
Abstract
Acoustic response from a freely responding symmetric airfoil subjected to gust is investigated in a two-dimensional numerical environment. Gust model is superimposed on the inlet velocity up till the critical flutter velocity. Second order transient formulation, kω turbulence model and dynamic [...] Read more.
Acoustic response from a freely responding symmetric airfoil subjected to gust is investigated in a two-dimensional numerical environment. Gust model is superimposed on the inlet velocity up till the critical flutter velocity. Second order transient formulation, kω turbulence model and dynamic meshing technique were adopted. By employing the Ffowcs Williams and Hawkings (FW-H) acoustic methodology, the acoustic signature generated by the airfoil for the range of velocities (0.85 ≤ U/Uc ≤ 1 near the critical flutter velocity is quantified over a range of acoustic receivers in the surrounding of the airfoil. Sound pressure levels (SPLs) are determined, and directionalities have been studied. It is revealed that the distribution of sound pressure level at the exciting frequency is affected by the gust profile. Scales of these sound pressure levels, however, relied on the Reynolds number and the dynamics of the system. Full article
(This article belongs to the Proceedings of The 2nd International Conference on Advances in Mechanical Engineering)
Show Figures

Figure 1

22 pages, 7575 KiB  
Article
A Novel FDTD–PML Scheme for Noise Propagation Generated by Biomimetic Flapping Thrusters in the Ocean Environment
by Iro Malefaki and Kostas Belibassakis
J. Mar. Sci. Eng. 2022, 10(9), 1240; https://doi.org/10.3390/jmse10091240 - 3 Sep 2022
Cited by 3 | Viewed by 2417
Abstract
Biomimetic flapping-foil thrusters can operate efficiently while offering desirable levels of thrust required for the propulsion of a small vessel or an Autonomous Underwater Vehicle (AUV). These systems have been studied both as main propulsion devices and for augmenting ship propulsion in waves. [...] Read more.
Biomimetic flapping-foil thrusters can operate efficiently while offering desirable levels of thrust required for the propulsion of a small vessel or an Autonomous Underwater Vehicle (AUV). These systems have been studied both as main propulsion devices and for augmenting ship propulsion in waves. In this work, the unsteady hydrofoil loads are used to calculate the source terms of the Ffowcs Williams–Hawkings (FW-H) equation which is applied to model noise propagation in the underwater ocean acoustic environment. The solution provided by a simplified version of the Farassat formulation in free space is extended to account for a bounded domain and an inhomogeneous medium, characterizing the sea acoustic waveguide. Assuming the simplicity azimuthal symmetry of the environmental parameters, a numerical model is developed based on a Finite Difference Time Domain (FDTD) scheme, incorporating free-surface and seabed effects, in the presence of a variable sound speed profile. For the treatment of the outgoing radiating field, a Perfectly Matched Layer (PML) technique is implemented. Numerical results are presented illustrating the applicability of the method. Full article
Show Figures

Figure 1

Back to TopTop