Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = Fe-based shape-memory alloy (Fe–SMA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5092 KB  
Article
Hybrid Flexural Strengthening Technique of Reinforced Concrete Beams Using Fe-SMA and CFRP Materials
by Mohammadsina Sharifi Ghalehnoei, Ahad Javanmardi, Maria Rashidi and Andreas Lampropoulos
Buildings 2025, 15(22), 4039; https://doi.org/10.3390/buildings15224039 - 10 Nov 2025
Viewed by 581
Abstract
This study proposes a hybrid flexural strengthening technique for reinforced concrete (RC) beams by combining the near-surface mounted (NSM) and externally bonded reinforcement (EBR) methods. In this technique, iron-based shape memory alloy (Fe-SMA) strips are used for the NSM component, while either a [...] Read more.
This study proposes a hybrid flexural strengthening technique for reinforced concrete (RC) beams by combining the near-surface mounted (NSM) and externally bonded reinforcement (EBR) methods. In this technique, iron-based shape memory alloy (Fe-SMA) strips are used for the NSM component, while either a carbon fiber reinforced polymer (CFRP) sheet or an Fe-SMA sheet is applied as the EBR component. The proposed hybrid-strengthening method aims to enhance the flexural load capacity and ductility of existing RC beams. To evaluate the effectiveness of the proposed method, numerical models were developed using ABAQUS software and validated against experimental results. A comprehensive numerical investigation was carried out on 52 RC beams, categorized into six groups with various hybrid-strengthening configurations. In addition, the effect of the prestressing of NSM Fe-SMA strips and the prestressing of EBR CFRP or EBR Fe-SMA sheet on the flexural performance of the beams was also examined. The results indicated that the hybrid-strengthening method significantly improved the cracking, yielding, and ultimate load capacities of the beams; however, in most cases, it reduced their deflection. Notably, prestressing the EBR Fe-SMA sheet in beams with higher reinforcement ratios produced a pronounced improvement in ductility. Full article
Show Figures

Figure 1

28 pages, 7919 KB  
Article
Numerical Study on Shear-Oriented Parameters in RC Beams with Openings Reinforced by Fe-SMA Rebars
by Mohamed Elkafrawy, Ahmed Khalil, Rami Hawileh and Mohammad AlHamaydeh
Buildings 2025, 15(12), 2028; https://doi.org/10.3390/buildings15122028 - 12 Jun 2025
Cited by 1 | Viewed by 1937
Abstract
Reinforced concrete (RC) beams with openings in shear spans exhibited a significantly reduced structural performance due to disruptions in load transfer mechanisms. This numerical study investigated the influence of pre-stressed iron-based Shape Memory Alloy (Fe-SMA) rebars on the behavior of RC beams with [...] Read more.
Reinforced concrete (RC) beams with openings in shear spans exhibited a significantly reduced structural performance due to disruptions in load transfer mechanisms. This numerical study investigated the influence of pre-stressed iron-based Shape Memory Alloy (Fe-SMA) rebars on the behavior of RC beams with web openings, focusing on the effect of shear-oriented design parameters, including the stirrup spacing, stirrup diameter, and horizontal reinforcement around the opening. A nonlinear finite element analysis (NLFEA) was conducted using ABAQUS/CAE software 2020 to simulate the response of RC beams under these conditions. The results showed that the presence of web openings in RC beams reduced the ultimate load capacity and stiffness. However, the pre-stressed Fe-SMA reinforcement effectively mitigated these adverse effects, restoring much of the solid beam’s performance. Among the studied parameters, reducing the stirrup spacing significantly improved the load-bearing capacity, with the smallest spacing (100 mm) restoring 86% of the solid beam’s ultimate load. Increasing the Fe-SMA stirrup diameter further enhanced performance, with T16 stirrups recovering 92% of the solid beam’s ultimate load capacity. The most substantial improvement occurred when horizontal reinforcement was introduced, particularly with T16 stirrups, achieving a 95% load recovery, nearly matching the solid RC beam structural performance. These findings demonstrated the promising potential of pre-stressed Fe-SMA reinforcement as a viable solution for restoring the structural strength of RC beams with web openings. Full article
(This article belongs to the Special Issue Strengthening and Rehabilitation of Structures or Buildings)
Show Figures

Figure 1

19 pages, 11634 KB  
Article
Numerical Study to Evaluate the Flexural Performance of Concrete Beams Tensile Reinforced with Fe-Based Shape Memory Alloy Rebar According to Heating Temperature
by Ki-Nam Hong, Sang-Won Ji and Yeong-Mo Yeon
Materials 2025, 18(8), 1703; https://doi.org/10.3390/ma18081703 - 9 Apr 2025
Cited by 1 | Viewed by 866
Abstract
An Fe-based shape memory alloy (Fe-SMA) is an alloy that has a characteristic of being able to return to its original shape when heated, even after undergoing plastic deformation. Many researchers have conducted various studies to understand the effectiveness of using Fe-SMA in [...] Read more.
An Fe-based shape memory alloy (Fe-SMA) is an alloy that has a characteristic of being able to return to its original shape when heated, even after undergoing plastic deformation. Many researchers have conducted various studies to understand the effectiveness of using Fe-SMA in concrete structures. Most studies selected the heating temperature of Fe-SMA to be below 160 °C based on the logic that concrete hydrolyzes when its temperature exceeds 160 °C. However, because the recovery stress of Fe-SMA increases as the heating temperature increases, it is expected that greater prestress could be introduced when the heating temperature is high. In this study, to confirm this, a numerical study was conducted to evaluate the effect of Fe-SMA heating temperature on the flexural performance of concrete members through finite element (FE) analysis. The analysis results showed that the initial crack load of the specimen increased by about 89% to 173% as the heating temperature of Fe-SMA increased. In addition, the accuracy of the proposed FE model (FEM) was verified through experiments. As a result, it was confirmed that the proposed FE analysis can relatively accurately predict the failure mode and load–displacement relationship of the specimen. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 29079 KB  
Article
Molecular Dynamics Investigation on Grain Size-Dependent Superelastic Behavior of CuZr Shape Memory Alloys
by Mixun Zhu, Kai Wang, Hongtao Zhong, Huahuai Shen, Yong Zhang, Xiaoling Fu and Yuanzheng Yang
Metals 2025, 15(2), 142; https://doi.org/10.3390/met15020142 - 29 Jan 2025
Viewed by 1481
Abstract
The superelasticity of CuZr shape memory alloys (SMAs) originates from stress-induced transformations between the B2 (austenite) and B19’ (martensite) phases. Grain size is a key parameter affecting the superelasticity of shape memory alloys. Previous studies on NiTi, Fe-based, and Cu-based SMAs confirm that [...] Read more.
The superelasticity of CuZr shape memory alloys (SMAs) originates from stress-induced transformations between the B2 (austenite) and B19’ (martensite) phases. Grain size is a key parameter affecting the superelasticity of shape memory alloys. Previous studies on NiTi, Fe-based, and Cu-based SMAs confirm that altering grain size effectively regulates superelasticity. Current research on the influence of grain size on the superelasticity of CuZr shape memory alloys (SMAs) is relatively sparse. This study employs molecular dynamics simulations to evaluate the effect of grain size on the superelasticity of CuZr SMAs through uniaxial loading–unloading tests. Polycrystalline samples with grain sizes of 6.59 nm, 5 nm, and 4 nm were analyzed. The results indicate that reducing grain size can decrease the irrecoverable strain, thereby enhancing superelasticity. The improvement in superelasticity is attributed to a higher recovery rate of the martensite-to-austenite transformation, allowing more plastic deformation within the grain interior to recover during unloading, and thereby reducing the irrecoverable strain. The recovery rate of the martensite-to-austenite transformation is closely related to the elastic strain energy accumulated within the grain interior during loading. Full article
Show Figures

Figure 1

17 pages, 19203 KB  
Article
Perspectives on Adhesive–Bolted Hybrid Connection between Fe Shape Memory Alloys and Concrete Structures for Active Reinforcements
by Xuhong Qiang, Delin Zhang, Yapeng Wu and Xu Jiang
Appl. Sci. 2024, 14(19), 8800; https://doi.org/10.3390/app14198800 - 30 Sep 2024
Cited by 1 | Viewed by 1724
Abstract
The prestressed active reinforcement of concrete structures using iron-based shape memory alloys (Fe-SMAs) is investigated in this experimental study through three connecting methods: adhesive–bolted hybrid connection, bolted connection, and adhesively bonded connection by activating at elevated temperatures (heating and cooling) and constraining deformation [...] Read more.
The prestressed active reinforcement of concrete structures using iron-based shape memory alloys (Fe-SMAs) is investigated in this experimental study through three connecting methods: adhesive–bolted hybrid connection, bolted connection, and adhesively bonded connection by activating at elevated temperatures (heating and cooling) and constraining deformation to generate prestress inside Fe-SMAs, through which compressive stress is generated in the parent concrete structures. In tests, the Fe-SMA is activated at 250 °C using a hot air gun, generating a prestress of 184.6–246 MPa. The experimental results show that local stress concentration in the concrete specimen and Fe-SMA plate around the hole is caused by the bolted connection. The adhesively bonded connection is prone to softening and slip of the structural adhesive during the activation process, thereby reducing the overall recovery force of Fe-SMAs. The adhesive–bolted hybrid connection effectively mitigates the local stress concentration problem of concrete and Fe-SMAs at anchor holes, while avoiding the prestress loss caused by the softening and slip of structural adhesive during elevated-temperature activation, achieving good reinforcement effect. This study on the connection methods of an Fe-SMA for reinforcing concrete structures provides both experimental support and practical guidance for its engineering application, offering new perspectives for future research. Full article
Show Figures

Figure 1

16 pages, 9986 KB  
Article
Microstructure and Shape Memory Properties of Gas Tungsten Arc Welded Fe-17Mn-5Si-10Cr-4Ni-(V, C) Shape Memory Alloy
by Dohyung Kim, Taeyoon Kim, Changwook Ji, Sangwon Ji, Wookjin Lee and Wangryeol Kim
Materials 2024, 17(18), 4547; https://doi.org/10.3390/ma17184547 - 16 Sep 2024
Cited by 4 | Viewed by 1722
Abstract
In this study, microstructure, mechanical, and shape memory properties of the welded Fe-based shape memory alloy (Fe-SMA) plates with a nominal composition of Fe-17Mn-5Si-10Cr-4Ni-(V, C) (wt.%) by gas tungsten arc welding were investigated. The optimal heat input to ensure full penetration of the [...] Read more.
In this study, microstructure, mechanical, and shape memory properties of the welded Fe-based shape memory alloy (Fe-SMA) plates with a nominal composition of Fe-17Mn-5Si-10Cr-4Ni-(V, C) (wt.%) by gas tungsten arc welding were investigated. The optimal heat input to ensure full penetration of the Fe-SMA plate with a thickness of 2 mm was found to be 0.12 kJ. The solidified grain morphology adjacent to the partially melted zone was columnar, whereas the equiaxed morphology emerged as solidification proceeded. The ultimate tensile decreased after welding owing to the much larger grain size of the fusion zone (FZ) and heat-affected zone (HAZ) than that of the base material (BM). Weldment showed lower pseudoelastic (PE) recovery strain and higher shape memory effect (SME) than those of the plate, which could be ascribed to the large grain size of the FZ and HAZ. Recovery stress (RS) slightly decreased after welding owing to lower mechanical properties of weldment. On the other hand, aging treatment significantly improved all PE recovery, SME, and RS via carbide precipitation. Digital image correlation analysis revealed that HAZ showed the lowest SME after heating and cooling, implying that the improved SME of FZ compensated for the low SME of the HAZ. Full article
Show Figures

Graphical abstract

30 pages, 33889 KB  
Review
A Review of Additively Manufactured Iron-Based Shape Memory Alloys
by Qian Sun, Xiaojun Tan, Mingjun Ding, Bo Cao and Takeshi Iwamoto
Crystals 2024, 14(9), 773; https://doi.org/10.3390/cryst14090773 - 29 Aug 2024
Cited by 9 | Viewed by 4795
Abstract
Iron-based shape memory alloys (Fe-SMAs), traditionally manufactured, are favored in engineering applications owing to their cost-effectiveness and ease of fabrication. However, the conventional manufacturing process of Fe-SMAs is time-consuming and raw-material-wasting. In contrast, additive manufacturing (AM) technology offers a streamlined approach to the [...] Read more.
Iron-based shape memory alloys (Fe-SMAs), traditionally manufactured, are favored in engineering applications owing to their cost-effectiveness and ease of fabrication. However, the conventional manufacturing process of Fe-SMAs is time-consuming and raw-material-wasting. In contrast, additive manufacturing (AM) technology offers a streamlined approach to the integral molding of materials, significantly reducing raw material usage and fabrication time. Despite its potential, research on AMed Fe-SMAs remains in its early stages. This review provides updated information on current AM technologies utilized for Fe-SMAs and their applications. It provides an in-depth discussion on how printing parameters, defects, and post-printing microstructure control affect the mechanical properties and shape memory effect (SME) of AMed Fe-SMAs. Furthermore, this review identifies existing challenges in the AMed Fe-SMA approach and proposes future research directions, highlighting potential areas for development. The insights presented aim to guide improvements in the material properties of AMed Fe-SMAs by optimizing printing parameters and enhancing the SME through microstructure adjustment. Full article
(This article belongs to the Special Issue Shape Memory Alloys: Recent Advances and Future Perspectives)
Show Figures

Figure 1

18 pages, 22431 KB  
Article
Designing a Robotic Gripper Based on the Actuating Capacity of NiTi-Based Shape Memory Wires
by Adrian Petru Teodoriu, Bogdan Pricop, Nicoleta-Monica Lohan, Mihai Popa, Radu Ioachim Comăneci, Ioan Doroftei and Leandru-Gheorghe Bujoreanu
Actuators 2024, 13(8), 319; https://doi.org/10.3390/act13080319 - 21 Aug 2024
Cited by 3 | Viewed by 1985
Abstract
In the present study, the capacity of two commercial NiTi and NiTiCu shape memory alloy (SMA) wires to develop work-generating (WG) and constrained-recovery (CR) shape memory effects (SMEs), as well as the capacity of a commercial NiTiFe super-elastic wire to act as cold-shape [...] Read more.
In the present study, the capacity of two commercial NiTi and NiTiCu shape memory alloy (SMA) wires to develop work-generating (WG) and constrained-recovery (CR) shape memory effects (SMEs), as well as the capacity of a commercial NiTiFe super-elastic wire to act as cold-shape restoring element, have been investigated. Using differential scanning calorimetry (DSC), the reversible martensitic transformation to austenite of the three NiTi-based wires under study was emphasized by means of an endothermic minimum of the heat flow variation with temperature. NiTi and NiTiCu wire fragments were further tested for both WG-SME and CR-SME developed during the heating, from room temperature (RT) to different maximum temperatures selected from the DSC thermograms. The former tests revealed the capacity to repetitively lift various loads during repetitive heating, while the latter tests disclosed the repetitive development of shrinkage stresses during the repetitive heating of elongated wires. The tensile behavior of the three NiTi-based SMA wires was analyzed by failure and loading–unloading tests. The study disclosed the actuation capacity of NiTi and NiTiCu shape memory wires, which were able to develop work while being heated, as well as the resetting capacity of NiTiFe super-elastic wires, which can restore the initial undeformed shape of shape memory wires which soften while being cooled down. These features enable the design of a robotic gripper based on the development of NiTi-based actuators with repetitive action. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—2nd Edition)
Show Figures

Figure 1

25 pages, 14064 KB  
Article
A Novel Technique for Improving Cyclic Behavior of Steel Connections Equipped with Smart Memory Alloys
by Ali S. Alqarni, Mohammad J. Alshannag and Mahmoud M. Higazey
Materials 2024, 17(13), 3226; https://doi.org/10.3390/ma17133226 - 1 Jul 2024
Cited by 2 | Viewed by 1830
Abstract
Residual drifts are an important measure of post-earthquake functionality in bridges and buildings, and can determine whether the structure remains fit for its intended purpose or not. This study aims at investigating numerically, through finite element (FE) analysis in ABAQUS, the cyclic response [...] Read more.
Residual drifts are an important measure of post-earthquake functionality in bridges and buildings, and can determine whether the structure remains fit for its intended purpose or not. This study aims at investigating numerically, through finite element (FE) analysis in ABAQUS, the cyclic response of exterior steel I beam-hollow column connection using welded shape memory alloys (SMA) bolts and seat angles. This is followed by validating the numerical model using an accredited experimental data available in the literature through different techniques, (1) SMA bolts, (2) SMA angles, (3) SMA bolts and angles. The parameters investigated included: SMA type, SMA angle thickness, SMA bolt diameter, SMA angle stiffener and SMA angle direction. The cyclic performance of the steel connection was enhanced further by varying the bolt diameter, plate thickness, angle type and direction. The results revealed that the connections equipped with a combination of SMA plates and SMA angles reduced the residual drift by up to 94%, and doubled the self-centering capability compared to conventional steel connections. Moreover, the parametric analysis showed that Fe-based SMA members could be a good alternative to NiTi based SMA members for improving the self-centering capability and reducing the residual drifts of conventional steel connections. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

14 pages, 8466 KB  
Article
Laser-Directed Energy Deposition of Fe-Mn-Si-Based Shape Memory Alloy: Microstructure, Mechanical Properties, and Shape Memory Properties
by Bing Liu, Cong Yao, Jingtao Kang, Ruidi Li and Pengda Niu
Materials 2024, 17(1), 131; https://doi.org/10.3390/ma17010131 - 27 Dec 2023
Cited by 8 | Viewed by 2194
Abstract
Fe-Mn-Si shape memory alloys (SMAs) have gained significant attention due to their unique characteristics. However, there remains a gap in the literature regarding the fabrication of these alloys using laser-directed energy deposition (LDED). This study fills this void, investigating the properties of Fe-Mn-Si [...] Read more.
Fe-Mn-Si shape memory alloys (SMAs) have gained significant attention due to their unique characteristics. However, there remains a gap in the literature regarding the fabrication of these alloys using laser-directed energy deposition (LDED). This study fills this void, investigating the properties of Fe-Mn-Si SMAs produced by LDED. The shape memory performance of as-deposited Fe-Mn-Si SMAs was studied using a tensile method. Alloys underwent different degrees of deformation to assess their shape memory effect. Microstructural evaluations were conducted post-deformation to observe the internal structures of the alloys. The tensile tests revealed that shape recovery rates for deformation levels of 3%, 7%, 11%, and 15% were 68.1%, 44.2%, 31.7%, and 17.6%, respectively. Notably, the maximum recoverable deformation of the LDED-formed Fe-Mn-Si-based shape memory alloy reached 3.49%, surpassing the traditional deformation processing SMAs (<3%). The presence of a significant number of stacking faults was linked to the enhanced shape memory performance. The LDED technique demonstrates promising potential for the fabrication of Fe-Mn-Si SMAs, producing alloys with enhanced shape memory performance compared to traditionally processed SMAs. The study’s findings offer new insights and broaden the applicability of LDED in the field of SMAs. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 29863 KB  
Article
Additive Manufacturing of Fe-Mn-Si-Based Shape Memory Alloys: State of the Art, Challenges and Opportunities
by Lucia Del-Río, Maria L. Nó, Raul Gómez, Leire García-Sesma, Ernesto Urionabarrenetxea, Pablo Ortega, Ane M. Mancisidor, Maria San Sebastian, Nerea Burgos and Jose M. San Juan
Materials 2023, 16(24), 7517; https://doi.org/10.3390/ma16247517 - 5 Dec 2023
Cited by 8 | Viewed by 4029
Abstract
Additive manufacturing (AM) constitutes the new paradigm in materials processing and its use on metals and alloys opens new unforeseen possibilities, but is facing several challenges regarding the design of the microstructure, which is particularly awkward in the case of functional materials, like [...] Read more.
Additive manufacturing (AM) constitutes the new paradigm in materials processing and its use on metals and alloys opens new unforeseen possibilities, but is facing several challenges regarding the design of the microstructure, which is particularly awkward in the case of functional materials, like shape memory alloys (SMA), as they require a robust microstructure to withstand the constraints appearing during their shape change. In the present work, the attention is focused on the AM of the important Fe-Mn-Si-based SMA family, which is attracting a great technological interest in many industrial sectors. Initially, an overview on the design concepts of this SMA family is offered, with special emphasis to the problems arising during AM. Then, such concepts are considered in order to experimentally develop the AM production of the Fe-20Mn-6Si-9Cr-5Ni (wt%) SMA through laser powder bed fusion (LPBF). The complete methodology is approached, from the gas atomization of powders to the LPBF production and the final thermal treatments to functionalize the SMA. The microstructure is characterized by scanning and transmission electron microscopy after each step of the processing route. The reversibility of the ε martensitic transformation and its evolution on cycling are studied by internal friction and electron microscopy. An outstanding 14% of fully reversible thermal transformation of ε martensite is obtained. The present results show that, in spite of the still remaining challenges, AM by LPBF offers a good approach to produce this family of Fe-Mn-Si-based SMA, opening new opportunities for its applications. Full article
(This article belongs to the Special Issue State of the Art in Materials for Additive Manufacturing)
Show Figures

Figure 1

15 pages, 6732 KB  
Article
Fe-Mn-Al-Ni Shape Memory Alloy Additively Manufactured via Laser Powder Bed Fusion
by Ismail Alhamdi, Anwar Algamal, Abdalmageed Almotari, Majed Ali, Umesh Gandhi and Ala Qattawi
Crystals 2023, 13(10), 1505; https://doi.org/10.3390/cryst13101505 - 17 Oct 2023
Cited by 11 | Viewed by 3140
Abstract
Fe-Mn-Al-Ni is an Fe-based shape memory alloy (SMA) featuring higher stability and low temperature dependency of superelasticity stress over a wide range of temperatures. Additive manufacturing (AM) is a promising technique for fabricating Fe-SMA with enhanced properties, which can eliminate the limitations associated [...] Read more.
Fe-Mn-Al-Ni is an Fe-based shape memory alloy (SMA) featuring higher stability and low temperature dependency of superelasticity stress over a wide range of temperatures. Additive manufacturing (AM) is a promising technique for fabricating Fe-SMA with enhanced properties, which can eliminate the limitations associated with conventional fabrication and allow for the manufacture of complicated shapes with only a single-step fabrication. The current work investigates the densification behavior and fabrication window of an Fe-Mn-Al-Ni SMA using laser powder bed fusion (LPBF). Experimental optimization was performed to identify the optimum processing window parameters in terms of laser power and scanning speed to fabricate Fe-Mn-Al-Ni SMA samples. Laser remelting was also employed to improve the characteristics of Fe-Mn-Al-Ni-fabricated samples. Characterization and testing techniques were carried out to assess the densification behavior of Fe-Mn-Al-Ni to study surface roughness, density, porosity, and hardness. The findings indicated that using a laser power range of 175–200 W combined with a scanning speed of 800 mm/s within the defined processing window parameters can minimize the defects with the material and lead to decreased surface roughness, lower porosity, and higher densification. Full article
(This article belongs to the Special Issue Microstructure and Properties of Steels and Other Structural Alloys)
Show Figures

Figure 1

21 pages, 8587 KB  
Article
Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi–Ag Shape Memory Alloys
by Ana-Maria Roman, Ramona Cimpoeșu, Bogdan Pricop, Nicoleta-Monica Lohan, Marius Mihai Cazacu, Leandru-Gheorghe Bujoreanu, Cătălin Panaghie, Georgeta Zegan, Nicanor Cimpoeșu and Alice Mirela Murariu
J. Funct. Biomater. 2023, 14(7), 377; https://doi.org/10.3390/jfb14070377 - 19 Jul 2023
Cited by 1 | Viewed by 2402
Abstract
Iron-based SMAs can be used in the medical field for both their shape memory effect (SME) and biodegradability after a specific period, solving complicated chirurgical problems that are partially now addressed with shape-memory polymers or biodegradable polymers. Iron-based materials with (28–32 wt %) [...] Read more.
Iron-based SMAs can be used in the medical field for both their shape memory effect (SME) and biodegradability after a specific period, solving complicated chirurgical problems that are partially now addressed with shape-memory polymers or biodegradable polymers. Iron-based materials with (28–32 wt %) Mn and (4–6 wt %) Si with the addition of 1 and 2 wt % Ag were obtained using levitation induction melting equipment. Addition of silver to the FeMnSi alloy was proposed in order to enhance its antiseptic property. Structural and chemical composition analyses of the newly obtained alloys were performed by X-ray diffraction (confirming the presence of ε phase), scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The corrosion resistance was evaluated through immersion tests and electrolyte pH solution variation. Dynamic mechanical solicitations were performed with amplitude sweep performed on the FeMnSi–1Ag and FeMnSi–2Ag samples, including five deformation cycles at 40 °C, with a frequency of 1 Hz, 5 Hz and 20 Hz. These experiments were meant to simulate the usual behavior of some metallic implants subjected to repetitive mechanical loading. Atomic force microscopy was used to analyze the surface roughness before and after the dynamic mechanical analysis test followed by the characterization of the surface profile change by varying dynamic mechanical stress. Differential scanning calorimetry was performed in order to analyze the thermal behavior of the material in the range of −50–+200 °C. X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) along with Neaspec nano-FTIR experiments were performed to identify and confirm the corrosion compounds (oxides, hydroxides or carbonates) formed on the surface. Full article
(This article belongs to the Special Issue Corrosion Science in Biodegradable Implants)
Show Figures

Figure 1

27 pages, 13213 KB  
Article
Numerical Investigation on the Performance of Exterior Beam–Column Joints Reinforced with Shape Memory Alloys
by Mahmoud M. Higazey, Mohammad J. Alshannag and Ali S. Alqarni
Buildings 2023, 13(7), 1801; https://doi.org/10.3390/buildings13071801 - 15 Jul 2023
Cited by 7 | Viewed by 4118
Abstract
Upgraded design standards coupled with the damage caused by natural disasters have led to the development of smart materials with the potential to modernize current construction practices. This investigation proposes a nonlinear finite element (FE) model for evaluating the performance of beam–column joints [...] Read more.
Upgraded design standards coupled with the damage caused by natural disasters have led to the development of smart materials with the potential to modernize current construction practices. This investigation proposes a nonlinear finite element (FE) model for evaluating the performance of beam–column joints (RC-BCJ) reinforced with shape memory alloys (SMA) and steel rebars. The model was validated based on accredited experimental data, followed by parametric analysis in ABAQUS to optimize the use of SMA bars for enhancing the seismic resistance of RC-BCJ without compromising their energy dissipation capacity. Parameters investigated include the (a) SMA–steel reinforcement ratio, (b) lengths of SMA bars, (c) elastic modulus of SMA, (d) compressive strength of concrete, and (e) axial load applied on the column. The finite element simulation results indicated that the model was capable of predicting the optimum length of SMA bars sufficient for relocating the plastic hinge away from the face of the column along the beam. Further, simulation results proved that the use of SMA bars in conjunction with steel reinforcement could be considered as an effective tool for enhancing the seismic performance of RC-BCJ joints. Among the parameters investigated, high-strength concrete was the most effective in improving joint resistance. Full article
(This article belongs to the Special Issue New Technologies in Concrete Structures)
Show Figures

Figure 1

20 pages, 9123 KB  
Article
Numerical Investigation of Flexural Behavior of Reinforced Concrete (RC) T-Beams Strengthened with Pre-Stressed Iron-Based (FeMnSiCrNi) Shape Memory Alloy Bars
by Ahmed Khalil, Mohamed Elkafrawy, Rami Hawileh, Mohammad AlHamaydeh and Wael Abuzaid
J. Compos. Sci. 2023, 7(6), 258; https://doi.org/10.3390/jcs7060258 - 19 Jun 2023
Cited by 14 | Viewed by 3342
Abstract
Shape memory alloy (SMA) is a material that can change shape in response to external stimuli such as temperature, stress, or magnetic fields. SMA types include nitinol (nickel-titanium), copper-aluminum-nickel, copper-zinc-aluminum, iron-manganese-silicon, and various nickel-titanium-X alloys, each exhibiting unique shape memory properties for different [...] Read more.
Shape memory alloy (SMA) is a material that can change shape in response to external stimuli such as temperature, stress, or magnetic fields. SMA types include nitinol (nickel-titanium), copper-aluminum-nickel, copper-zinc-aluminum, iron-manganese-silicon, and various nickel-titanium-X alloys, each exhibiting unique shape memory properties for different applications. Reinforced concrete (RC) T-beams strengthened and pre-stressed with Fe-SMA bars are numerically investigated for their flexural response under the influence of various parameters. The bars are embedded in a concrete layer attached to the beam’s soffit. Based on the numerical results, it was found that increasing the compression strength from 30 to 60 MPa slightly improves the beam’s strength (by 2%), but it significantly increases its ductility by approximately 45%. As opposed to this, the strength and ductility of the pre-stressed T-beam are considerably improved by using a larger diameter of Fe-SMA bars. Specifically, using 12 mm Fe-SMA bar over 6 mm resulted in 65% and 47% greater strength and ductility, respectively. Furthermore, this study examines the importance of considering the flange in the flexural design of pre-stressed beams. It is seen that considering a 500 mm flange width enhanced the ductility by 25% compared to the rectangular-section beam. The authors recommend further experimental work to validate and supplement the calculations and methodology used in the current numerical analysis. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

Back to TopTop