Shape Memory Alloys: Recent Advances and Future Perspectives

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Crystalline Metals and Alloys".

Deadline for manuscript submissions: 10 July 2025 | Viewed by 5609

Special Issue Editors

School of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, China
Interests: smart materials; mechanical metamaterials; additive manufacturing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Japan
Interests: mechanics of materials; impact engineering; measurement; shape memory alloys; martensitic transformation

E-Mail Website
Guest Editor
Academy of Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Hiroshima, Japan
Interests: mechanics of materials; shape memory alloys; martensitic transformation; phase transformation; plasticity; microstructures; crystal plasticity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Shape Memory Alloys (SMAs) have emerged as a transformative class of materials, finding applications in various fields, from healthcare to aerospace. As research in this area continues to advance, a dynamic online presence becomes crucial to keep researchers, engineers, and practitioners informed about the latest developments.

This Special Issue is dedicated to showcasing research of the highest quality. We are confident that this Special Issue, entitled "Shape Memory Alloys: Recent Advances and Future Perspectives", will offer valuable research insights for shape memory alloy enthusiasts. We eagerly invite you to contribute to this Special Issue. We invite researchers, engineers, and practitioners to contribute original research articles and review manuscripts on the following topics (though the following list is not exhaustive, and other topics may be discussed):

  • Microstructural analysis and characterization of shape memory alloys;
  • Shape memory response and effect of shape memory alloys;
  • Mechanical behavior of shape memory alloys;
  • Exploring novel designs to tailor the properties through the shape memory effect;
  • Examining the diverse applications of shape memory alloys;
  • Production and processing of shape memory alloys;
  • 3D and 4D printed shape memory alloys;
  • Addressing the challenges and current trends in the research of different shape memory alloys.

Dr. Bo Cao
Dr. Chong Gao
Dr. Takeshi Iwamoto
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • shape memory alloys
  • shape memory effect
  • smart materials
  • microstructures
  • mechanical properties
  • phase transformations
  • 3D/4D printing
  • grains
  • textures
  • programmed morphing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 5165 KiB  
Article
Effect of Accumulative High-Pressure Torsion on Structure and Electrochemical Behavior of Biodegradable Fe-30Mn-5Si (wt.%) Alloy
by Pulat Kadirov, Yulia Zhukova, Dmitry Gunderov, Maria Antipina, Tatyana Teplyakova, Natalia Tabachkova, Alexandra Baranova, Sofia Gunderova, Yury Pustov and Sergey Prokoshkin
Crystals 2025, 15(4), 351; https://doi.org/10.3390/cryst15040351 - 9 Apr 2025
Viewed by 256
Abstract
A high-pressure torsion (HPT) with a number of revolutions (n) of up to 10 and an advanced method of accumulative HPT (AccHPT), n = 10 with subsequent post-deformation annealing (PDA) at 500 and 600 °C, were applied to a biodegradable Fe-30Mn-5Si (wt.%) alloy. [...] Read more.
A high-pressure torsion (HPT) with a number of revolutions (n) of up to 10 and an advanced method of accumulative HPT (AccHPT), n = 10 with subsequent post-deformation annealing (PDA) at 500 and 600 °C, were applied to a biodegradable Fe-30Mn-5Si (wt.%) alloy. The effect of HPT, AccHPT and AccHPT with PDA on the microstructure, phase composition, microhardness and electrochemical behavior in Hanks’ solution was studied. HPT with n = 1 and 5 resulted in forming a mixed submicrocrystalline (SMCS) and nanocrystalline (NCS)structure, while HPT, n = 10 and AccHPT, n = 10 resulted in a predominant NCS with grain/subgrain sizes of 15–100 nm and 5–40 nm, respectively. PDA after AccHPT resulted in a mixture of SMCS and NCS. HPT, n = 5, n = 10 and AccHPT, n = 10 led to a transition from a two-phase (γ-austenite and ε-martensite) state after reference quenching, and HPT, n = 1 to a single-phase state (stress-induced and deformed ε-martensite), while the AccHPT, n = 10 with PDA results in a two-phase state of γ-austenite and cooling-induced ε-martensite, similarly to reference heat treatment (RHT). The increase in n resulted in the microhardness increasing up to its maximum after AccHPT, followed by a slight decrease after PDA. HPT and AccHPT led the biodegradation rate to decrease as compared to the initial state. PDA after AccHPT at 500 and 600 °C resulted in a two-phase state corresponding to an elevated biodegradation rate without significant material softening. The observed electrochemical behavior features are explained by changes in a combination of the phase state and the overall level of crystal lattice distortion. Full article
(This article belongs to the Special Issue Shape Memory Alloys: Recent Advances and Future Perspectives)
Show Figures

Figure 1

12 pages, 894 KiB  
Article
Micro-Computed Tomographic Evaluation of the Shaping Ability of Vortex Blue and TruNatomyTM Ni-Ti Rotary Systems
by Batool Alghamdi, Mey Al-Habib, Mona Alsulaiman, Lina Bahanan, Ali Alrahlah, Leonel S. J. Bautista, Sarah Bukhari, Mohammed Howait and Loai Alsofi
Crystals 2024, 14(11), 980; https://doi.org/10.3390/cryst14110980 - 14 Nov 2024
Viewed by 1036
Abstract
This study aimed to assess and evaluate the canal shaping ability of two different Ni-Ti rotary systems, Vortex Blue (VB) and TruNatomy (TN), using micro-computed tomography in extracted premolars. A total of 20 extracted bifurcated maxillary first premolars with two separate canals were [...] Read more.
This study aimed to assess and evaluate the canal shaping ability of two different Ni-Ti rotary systems, Vortex Blue (VB) and TruNatomy (TN), using micro-computed tomography in extracted premolars. A total of 20 extracted bifurcated maxillary first premolars with two separate canals were randomly divided into two groups and prepared with either VB 35/0.04 (Dentsply Maillefer, Ballaigues, Switzerland) or TN Medium 36/0.03 (Dentsply Sirona). Pre- and post-instrumentation micro-CT scans were analyzed to measure the following parameters: percentage of untouched canal surface area, changes in canal surface area, changes in canal volume, structural model index (SMI), changes in canal angulation, changes in dentin thickness, transportation, and centering ability. Statistical analysis was performed with a significance level set at p-value < 0.05. Both VB and TN files showed a significant increase in the basic canal geometry parameters including canal surface area and canal volume. Both file systems showed no significant changes in SMI or dentin thickness after canal instrumentation (p > 0.05). Some degree of canal transportation and a similar centering ability ratio with no significant difference were observed in both file systems (p > 0.05). TN files showed less pre-cervical dentin removal when compared to VB files. A significant difference was found in the TN group regarding the dentin removal between coronal and apical thirds (p = 0.03). Both VB and TN files produced comparable root canal preparation with no considerable shaping mishaps and errors. Both files showed minimum canal transportation and minimum straightening of the canal curvature. TN files removed less pre-cervical dentin than apical dentin. Full article
(This article belongs to the Special Issue Shape Memory Alloys: Recent Advances and Future Perspectives)
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 33889 KiB  
Review
A Review of Additively Manufactured Iron-Based Shape Memory Alloys
by Qian Sun, Xiaojun Tan, Mingjun Ding, Bo Cao and Takeshi Iwamoto
Crystals 2024, 14(9), 773; https://doi.org/10.3390/cryst14090773 - 29 Aug 2024
Cited by 2 | Viewed by 2609
Abstract
Iron-based shape memory alloys (Fe-SMAs), traditionally manufactured, are favored in engineering applications owing to their cost-effectiveness and ease of fabrication. However, the conventional manufacturing process of Fe-SMAs is time-consuming and raw-material-wasting. In contrast, additive manufacturing (AM) technology offers a streamlined approach to the [...] Read more.
Iron-based shape memory alloys (Fe-SMAs), traditionally manufactured, are favored in engineering applications owing to their cost-effectiveness and ease of fabrication. However, the conventional manufacturing process of Fe-SMAs is time-consuming and raw-material-wasting. In contrast, additive manufacturing (AM) technology offers a streamlined approach to the integral molding of materials, significantly reducing raw material usage and fabrication time. Despite its potential, research on AMed Fe-SMAs remains in its early stages. This review provides updated information on current AM technologies utilized for Fe-SMAs and their applications. It provides an in-depth discussion on how printing parameters, defects, and post-printing microstructure control affect the mechanical properties and shape memory effect (SME) of AMed Fe-SMAs. Furthermore, this review identifies existing challenges in the AMed Fe-SMA approach and proposes future research directions, highlighting potential areas for development. The insights presented aim to guide improvements in the material properties of AMed Fe-SMAs by optimizing printing parameters and enhancing the SME through microstructure adjustment. Full article
(This article belongs to the Special Issue Shape Memory Alloys: Recent Advances and Future Perspectives)
Show Figures

Figure 1

Back to TopTop