Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (376)

Search Parameters:
Keywords = Fabry–Perot sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3453 KB  
Review
Diamond Sensor Technologies: From Multi Stimulus to Quantum
by Pak San Yip, Tiqing Zhao, Kefan Guo, Wenjun Liang, Ruihan Xu, Yi Zhang and Yang Lu
Micromachines 2026, 17(1), 118; https://doi.org/10.3390/mi17010118 - 16 Jan 2026
Abstract
This review explores the variety of diamond-based sensing applications, emphasizing their material properties, such as high Young’s modulus, thermal conductivity, wide bandgap, chemical stability, and radiation hardness. These diamond properties give excellent performance in mechanical, pressure, thermal, magnetic, optoelectronic, radiation, biosensing, quantum, and [...] Read more.
This review explores the variety of diamond-based sensing applications, emphasizing their material properties, such as high Young’s modulus, thermal conductivity, wide bandgap, chemical stability, and radiation hardness. These diamond properties give excellent performance in mechanical, pressure, thermal, magnetic, optoelectronic, radiation, biosensing, quantum, and other applications. In vibration sensing, nano/poly/single-crystal diamond resonators operate from MHz to GHz frequencies, with high quality factor via CVD growth, diamond-on-insulator techniques, and ICP etching. Pressure sensing uses boron-doped piezoresistive, as well as capacitive and Fabry–Pérot readouts. Thermal sensing merges NV nanothermometry, single-crystal resonant thermometers, and resistive/diode sensors. Magnetic detection offers FeGa/Ti/diamond heterostructures, complementing NV. Optoelectronic applications utilize DUV photodiodes and color centers. Radiation detectors benefit from diamond’s neutron conversion capability. Biosensing leverages boron-doped diamond and hydrogen-terminated SGFETs, as well as gas targets such as NO2/NH3/H2 via surface transfer doping and Pd Schottky/MIS. Imaging uses AFM/NV probes and boron-doped diamond tips. Persistent challenges, such as grain boundary losses in nanocrystalline diamond, limited diamond-on-insulator bonding yield, high temperature interface degradation, humidity-dependent gas transduction, stabilization of hydrogen termination, near-surface nitrogen-vacancy noise, and the cost of high-quality single-crystal diamond, are being addressed through interface and surface chemistry control, catalytic/dielectric stack engineering, photonic integration, and scalable chemical vapor deposition routes. These advances are enabling integrated, high-reliability diamond sensors for extreme and quantum-enhanced applications. Full article
Show Figures

Figure 1

10 pages, 2756 KB  
Article
Tapered Fiber Bragg Grating Fabry–Pérot Cavity for Sensitivity-Enhanced Strain Sensing
by Jinchen Zhang, Chao Wang, Rui Dai, Yaqi Tang and Junhui Hu
Sensors 2026, 26(2), 581; https://doi.org/10.3390/s26020581 - 15 Jan 2026
Viewed by 66
Abstract
This paper presents a novel optical fiber axial strain sensor based on a Fabry–Perot interferometer (FPI) cavity incorporating Fiber Bragg Gratings (FBGs) and a tapered fiber, which has been experimentally validated. The sensor structure primarily consists of two identical FBGs with a bi-conical [...] Read more.
This paper presents a novel optical fiber axial strain sensor based on a Fabry–Perot interferometer (FPI) cavity incorporating Fiber Bragg Gratings (FBGs) and a tapered fiber, which has been experimentally validated. The sensor structure primarily consists of two identical FBGs with a bi-conical tapered fiber segment between them, achieving a strain sensitivity of 13.19 pm/με. This represents a 12-fold enhancement compared to conventional FBG-FPI, along with a resolution limit of 3.7 × 10−4 με. The proposed sensor offers notable advantages including low fabrication cost, compact structure, and excellent linearity, demonstrating significant potential for high-precision axial strain measurement applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

34 pages, 4355 KB  
Review
Thin-Film Sensors for Industry 4.0: Photonic, Functional, and Hybrid Photonic-Functional Approaches to Industrial Monitoring
by Muhammad A. Butt
Coatings 2026, 16(1), 93; https://doi.org/10.3390/coatings16010093 - 12 Jan 2026
Viewed by 180
Abstract
The transition toward Industry 4.0 requires advanced sensing platforms capable of delivering real-time, high-fidelity data under extreme industrial conditions. Thin-film sensors, leveraging both photonic and functional approaches, are emerging as key enablers of this transformation. By exploiting optical phenomena such as Fabry–Pérot interference, [...] Read more.
The transition toward Industry 4.0 requires advanced sensing platforms capable of delivering real-time, high-fidelity data under extreme industrial conditions. Thin-film sensors, leveraging both photonic and functional approaches, are emerging as key enablers of this transformation. By exploiting optical phenomena such as Fabry–Pérot interference, guided-mode resonance, plasmonics, and photonic crystal effects, thin-film photonic devices provide highly sensitive, electromagnetic interference-immune, and remotely interrogated solutions for monitoring temperature, strain, and chemical environments. Complementarily, functional thin films including oxide-based chemiresistors, nanoparticle coatings, and flexible electronic skins extend sensing capabilities to diverse industrial contexts, from hazardous gas detection to structural health monitoring. This review surveys the fundamental optical principles, material platforms, and deposition strategies that underpin thin-film sensors, emphasizing advances in nanostructured oxides, 2D materials, hybrid perovskites, and additive manufacturing methods. Application-focused sections highlight their deployment in temperature and stress monitoring, chemical leakage detection, and industrial safety. Integration into Internet of Things (IoT) networks, cyber-physical systems, and photonic integrated circuits is examined, alongside challenges related to durability, reproducibility, and packaging. Future directions point to AI-driven signal processing, flexible and printable architectures, and autonomous self-calibration. Together, these developments position thin-film sensors as foundational technologies for intelligent, resilient, and adaptive manufacturing in Industry 4.0. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

17 pages, 8386 KB  
Article
Interferometric Optical Fiber Sensor for Acoustic Emission Detection: Experimental Evaluation and Configuration Optimization
by Le Quang Trung, Yuki Takahashi, Motoki Haruta, Shinji Okazaki and Naoya Kasai
Fibers 2026, 14(1), 3; https://doi.org/10.3390/fib14010003 - 23 Dec 2025
Viewed by 385
Abstract
This study presents the experimental optimization of an interferometric optical fiber sensor for acoustic emission (AE) detection. The system employs a simple and low-cost structure composed of sensing and reference fibers, enabling interference-based detection without specialized components such as fiber Bragg gratings or [...] Read more.
This study presents the experimental optimization of an interferometric optical fiber sensor for acoustic emission (AE) detection. The system employs a simple and low-cost structure composed of sensing and reference fibers, enabling interference-based detection without specialized components such as fiber Bragg gratings or Fabry–Perot cavities. A narrowband laser source was selected through comparative experiments for its superior stability and interference performance. The influence of fiber-loop parameters, including the number of turns and the optical-path intensity ratio, was systematically evaluated to clarify their effects on AE sensitivity and frequency response. The experimental results demonstrate that detection performance and bandwidth can be flexibly tuned by optimizing the loop configuration. Finally, the sensor was validated using a tensile test, successfully detecting AE signals in the range of 20 kHz to 1 MHz. The proposed system provides a robust, EMI-resistant, and cost-effective interferometric solution for AE monitoring. Full article
Show Figures

Figure 1

22 pages, 301 KB  
Review
Artificial Intelligence and Machine Learning in Optical Fiber Sensors: A Review
by Lidan Cao, Sabrina Abedin, Guoqiang Cui and Xingwei Wang
Sensors 2025, 25(24), 7442; https://doi.org/10.3390/s25247442 - 7 Dec 2025
Viewed by 1028
Abstract
The integration of artificial intelligence (AI) with optical fiber sensing (OFS) is transforming the capabilities of modern sensing systems, enabling smarter, more adaptive, and higher-performance solutions across diverse applications. This paper presents a comprehensive review of AI-enhanced OFS technologies, encompassing both localized sensors [...] Read more.
The integration of artificial intelligence (AI) with optical fiber sensing (OFS) is transforming the capabilities of modern sensing systems, enabling smarter, more adaptive, and higher-performance solutions across diverse applications. This paper presents a comprehensive review of AI-enhanced OFS technologies, encompassing both localized sensors such as fiber Bragg gratings (FBG), Fabry–Perot (FP) interferometers, and Mach–Zehnder interferometers (MZI), and distributed sensing systems based on Rayleigh, Brillouin, and Raman scattering. A wide range of AI algorithms are discussed, including supervised learning, unsupervised learning, reinforcement learning, and deep neural architectures. The applications of AI in OFS were discussed. AI has been employed to enhance sensor design, optimize interrogation systems, and adaptively tune configurations, as well as to interpret complex sensor outputs for tasks like denoising, classification, event detection, and failure forecasting. Full article
15 pages, 4013 KB  
Article
Enhanced Mechanical Design for Fiber Fabry–Perot Interferometric Vibration Sensor in Oil and Gas Pipeline Safety Risk Monitoring
by Linsen Xiong, Shengli Chu, Yifan Gan, Bingcai Sun, Yinghua Jing and Jinming Zhang
Processes 2025, 13(12), 3885; https://doi.org/10.3390/pr13123885 - 2 Dec 2025
Viewed by 1493
Abstract
A mechanical structure of a fiber Fabry–Perot interferometric vibration sensor for monitoring oil and gas pipelines has been proposed, and design analysis research on performance improvement has been carried out. By designing a serpentine beam structure, the mechanical sensitivity of the sensor is [...] Read more.
A mechanical structure of a fiber Fabry–Perot interferometric vibration sensor for monitoring oil and gas pipelines has been proposed, and design analysis research on performance improvement has been carried out. By designing a serpentine beam structure, the mechanical sensitivity of the sensor is enhanced. Meanwhile, by designing a vertically symmetrical gravity-sensing structure, the cross-axis sensitivity of the sensor is reduced. The results of simulation analysis show that the mechanical sensitivity of the proposed design structure is 89.20 μm/g, which is 32.44 times that of the conventional structure. Moreover, due to the design of low cross-axis sensitivity, the optical sensitivity of the vibration sensor will not be degraded because of its installation status on the pipeline. The proposed mechanical structure provides a design reference for the application of the fiber Fabry–Perot interferometric vibration sensor on oil and gas pipelines, and offers potential for the development of a high-performance comprehensive safety risk monitoring system for oil and gas pipelines. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 2734 KB  
Article
Stability and Repeatability Analysis of a Phase-Modulated Optical Fibre Sensor for Transformer Oil Ageing Detection
by Ugochukwu Elele, Youssouf Brahami, Issouf Fofana, Azam Nekahi, Arshad Arshad and Kate McAulay
Sensors 2025, 25(22), 6851; https://doi.org/10.3390/s25226851 - 9 Nov 2025
Viewed by 652
Abstract
Transformer oil ageing alters key physicochemical properties, notably the refractive index (RI), due to physical, particulate, and chemical changes. As a result, refractometric fibre-optic sensors have gained attention for enabling real-time monitoring and overcoming the limitations of traditional offline diagnostics. This study explores [...] Read more.
Transformer oil ageing alters key physicochemical properties, notably the refractive index (RI), due to physical, particulate, and chemical changes. As a result, refractometric fibre-optic sensors have gained attention for enabling real-time monitoring and overcoming the limitations of traditional offline diagnostics. This study explores the use of a Fabry–Pérot phase-modulated fibre optic sensor (FISO FRI RI Sensor) for in-situ ageing detection in four industrial transformer oils: natural ester, synthetic ester, Nytro Bio 300X (vegetable-based), and Polaris GX (mineral-based). The oils were thermally aged under controlled conditions following degassing and drying. The sensor performance was evaluated using key metrics, including repeatability, thermal response, settling time, and linearity. Results show high repeatability (with standard deviations below 7 × 10−5 RIU and repeatability coefficients under 2 × 10−4 RIU), stable thermal response (~0.0004 RIU/°C), and strong thermal linearity (R2 > 0.99) across all samples. Natural ester and Nytro Bio 300X exhibited the most stable and consistent sensor responses, while synthetic ester and mineral oils showed greater variability due to temperature-induced RI shifts. These findings demonstrate the reliability and precision of this Fabry–Pérot phase-modulated sensor for online transformer oil condition monitoring, with strong potential for integration into smart grid diagnostics. Full article
(This article belongs to the Special Issue Advances and Innovations in Optical Fiber Sensors)
Show Figures

Figure 1

15 pages, 4308 KB  
Article
Bi-Directional Fabry–Perot Cavity Antenna Based on Polarization-Dependent Transmit–Reflect Metasurface
by Yanfei Ren, Zhenghu Xi, Tao Wang, Qinqin Liu, Shunli Zhang, Zhiwei Sun, Boyu Sima and Hao Zeng
Sensors 2025, 25(21), 6642; https://doi.org/10.3390/s25216642 - 30 Oct 2025
Viewed by 1116
Abstract
Metasurfaces (MSs) have been an effective method for the manipulation of electromagnetic (EM) radiation. However, this research mainly focused on controlling single-directional radiation. In this paper, a Fabry–Perot cavity (FPC) antenna based on the MSs technique is proposed, which obtains a bi-directional radiation [...] Read more.
Metasurfaces (MSs) have been an effective method for the manipulation of electromagnetic (EM) radiation. However, this research mainly focused on controlling single-directional radiation. In this paper, a Fabry–Perot cavity (FPC) antenna based on the MSs technique is proposed, which obtains a bi-directional radiation with independent control of the forward and backward radiation patterns. The antenna is located in an FPC with two MSs forming the top and bottom surfaces. The MSs can partially reflect the x-polarized incident wave, i.e., it is a partially reflective metasurface (PRMS). Meanwhile, it can transform a specific incident component from x-polarization into y-polarization with a transmittance around −9.2 dB. In addition, the phase of the x-polarized reflection and y-polarized transmission can be controlled independently. So, a bi-directional radiation, of which the forward and backward radiation can be independently controlled, is obtained by the FPC antenna by manipulating the transmission phase distribution of the two PRMSs. As validation, two bi-directional radiation FPC antennas are designed based on the proposed method. Antenna 1 achieved a bi-directional single-beam radiation, of which the forward and backward radiation radiate to 2° and 177° with a gain of 13.4 dBi and 12.3 dBi, respectively. Antenna 2 achieved a bi-directional multibeam radiation, which radiates dual beams forward and a single beam backward. The two beams forward fire to 37° and 322° with a gain of 9.53 dBi and 9.3 dBi, while the beam backward fires to 178° with a gain of 7.8 dBi. At last, the first antenna is fabricated and measured for experimental validation, achieving the coincident results as simulation. This research can be potentially applied in research on antennas, communication, and wireless sensors in several practical scenarios, such as multibeam electromagnetic radiation, multi-user communication, multi-target monitoring, and sensor–communication system integration. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 2192 KB  
Article
Cascaded MZI and FPI Sensor for Simultaneous Measurement of Air Pressure and Temperature Using Capillary Fiber and Dual-Core Fiber
by Tongtong Zhu, Xintong Zhong, Xinhao Guo, Qipeng Huang, Xiaoyong Chen, Chuanxin Teng, Peng-Cheng Li, Xuehao Hu and Hang Qu
Photonics 2025, 12(11), 1047; https://doi.org/10.3390/photonics12111047 - 23 Oct 2025
Viewed by 477
Abstract
In this paper, we propose and experimentally demonstrate a dual-parameter fiber optic sensor, which combines a Fabry–Perot interferometer (FPI) and a Mach–Zehnder interferometer (MZI) for simultaneous pressure and temperature sensing. The Fabry–Perot (FP) cavity is formed by sandwiching a capillary fiber between a [...] Read more.
In this paper, we propose and experimentally demonstrate a dual-parameter fiber optic sensor, which combines a Fabry–Perot interferometer (FPI) and a Mach–Zehnder interferometer (MZI) for simultaneous pressure and temperature sensing. The Fabry–Perot (FP) cavity is formed by sandwiching a capillary fiber between a single-mode fiber and a dual-core fiber (DCF). A fluid channel is very close to the central core of the DCF. By precisely drilling micro-air chambers in the annular cladding of a capillary fiber (CF) using a femtosecond laser, external air pressure can directly affect the capillary fiber and induce changes in the refractive index of the air in the CF. The F-P cavity achieves a pressure sensitivity of 3.67 nm/MPa with a temperature cross-sensitivity of 2.82 pm/°C. The MZI is constructed using a dual-core fiber filled with silicone oil in the fluidic channel, which enhances temperature sensitivity through the thermo-optic effect. The MZI sensor exhibits a nonlinear temperature response with an average sensitivity of 103.43 pm/°C. The corresponding pressure cross-sensitivity is about –0.11 nm/MPa. Due to very low cross-sensitivity, simultaneous measurement of temperature and gas pressure is feasible. In addition, we implement a variant by replacing silicone oil with a UV-curable adhesive, which delivers a comparable FP-based pressure sensitivity of ~3.93 nm/MPa while yielding an MZI-based temperature sensitivity of 71.7 pm/°C and potentially improved long-term stability. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

13 pages, 2547 KB  
Article
Compact FPI-Based Fiber Optic Humidity Sensors Functionalized with PMMA/PVA/PEG
by Hongtao Dang, Fujing Chen, Jin Li, Fuhua Liu and Jianye Yang
Polymers 2025, 17(21), 2810; https://doi.org/10.3390/polym17212810 - 22 Oct 2025
Cited by 1 | Viewed by 730
Abstract
The Fabry–Pérot interferometer (FPI) structure has been designed and fabricated through the heterogeneous splicing of single-mode fiber to hollow-core fiber, coupled with precision length cutting. Humidity sensitive materials of polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), and polyethylene glycol (PEG) film have been elaborated [...] Read more.
The Fabry–Pérot interferometer (FPI) structure has been designed and fabricated through the heterogeneous splicing of single-mode fiber to hollow-core fiber, coupled with precision length cutting. Humidity sensitive materials of polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), and polyethylene glycol (PEG) film have been elaborated via a dip-coating and withdrawal technique, enabling the development of three distinct FPI-based fiber optic humidity sensors. Experimental data revealed that the PMMA-coated FPI sensor demonstrated the lowest sensitivity to humidity variations, while the PEG-functionalized FPI exhibited a sensitivity approximately an order of magnitude higher than that of PMMA. The proposed fiber optic humidity probe features a compact design, simplified fabrication workflow, and robust compatibility with spatially restricted, integration-demanding, or electrically hostile environments unsuitable for conventional sensor deployment. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

14 pages, 2702 KB  
Article
Albendazole Detection at a Nanomolar Level Through a Fabry–Pérot Interferometer Realized via Molecularly Imprinted Polymers
by Ines Tavoletta, Ricardo Oliveira, Filipa Sequeira, Catarina Cardoso Novo, Luigi Zeni, Giancarla Alberti, Nunzio Cennamo and Rogerio Nunes Nogueira
Sensors 2025, 25(20), 6456; https://doi.org/10.3390/s25206456 - 18 Oct 2025
Viewed by 588
Abstract
Albendazole (ABZ) is a broad-spectrum anthelmintic drug whose residual presence in food and the environment raises public health concerns, requiring rapid and sensitive methods of detection. In this work, a sensitive Fabry–Pérot interferometer (FPI) probe was fabricated by realizing a cavity located at [...] Read more.
Albendazole (ABZ) is a broad-spectrum anthelmintic drug whose residual presence in food and the environment raises public health concerns, requiring rapid and sensitive methods of detection. In this work, a sensitive Fabry–Pérot interferometer (FPI) probe was fabricated by realizing a cavity located at the tip of a single-mode optical fiber core with a molecularly imprinted polymer (MIP) for ABZ detection. The fabrication process involved the development of a photoresist-based micro-hole filled by the specific MIP via thermal polymerization. Interferometric measurements obtained using the proposed sensor system have demonstrated a limit of detection (LOD) of 27 nM, a dynamic concentration range spanning from 27 nM (LOD) to 250 nM, and a linear response at the nanomolar level (27 nM–100 nM). The selectivity test demonstrated no signal when interfering molecules were present, and the application of the sensor for ABZ quantification in a commercial pharmaceutical sample provided good recovery, in accordance with bioanalytical validation standard methods. These results demonstrate the capability of a MIP layer-based FPI probe to provide low-cost and selective optical-sensing strategies, proposing a competitive approach to traditional analytical techniques for ABZ monitoring. Full article
Show Figures

Figure 1

12 pages, 4994 KB  
Article
Simultaneous Inclination and Azimuth Sensing Based on a Multi-Core Fiber Fabry–Perot Interferometer with Vernier Effect
by Jiayu Liu, Xianrui You, Rongsheng Liu, Dengwang Shi, Rui Zhou and Xueguang Qiao
Photonics 2025, 12(10), 1007; https://doi.org/10.3390/photonics12101007 - 13 Oct 2025
Viewed by 482
Abstract
Azimuth sensing plays a vital role in numerous industrial applications where tilt angle serves as a key parameter. To address the demand for accurate and reliable measurements, we propose an all-fiber two-dimensional inclinometer based on the Vernier effect in a multi-core fiber Fabry–Perot [...] Read more.
Azimuth sensing plays a vital role in numerous industrial applications where tilt angle serves as a key parameter. To address the demand for accurate and reliable measurements, we propose an all-fiber two-dimensional inclinometer based on the Vernier effect in a multi-core fiber Fabry–Perot interferometer. The sensor is capable of simultaneously measuring both inclination and azimuth angles with high accuracy. A cascaded Fabry–Perot interferometer was inscribed in a seven-core fiber using a femtosecond laser plane-by-plane direct writing technique. By monitoring the wavelength shifts in two peripheral cores, we demonstrated the feasibility and performance of the proposed sensor. The experimental results showed that the inclinometer exhibited high sensitivity, with maximum values of −0.5272 nm/° for azimuth measurement (maximum measurement error: 7.33°) and −0.5557 nm/° for inclination measurement (maximum measurement error: 5.97°). The measurement ranges extended from 0° to 360° for azimuth and from –90° to 90° for inclination. Owing to its wide measurement range, compact structure, and high sensitivity, the proposed all-fiber two-dimensional inclinometer holds significant potential for practical applications. Full article
(This article belongs to the Special Issue Novel Advances in Optical Fiber Gratings)
Show Figures

Figure 1

14 pages, 5356 KB  
Article
Fiber Optic Fabry-Perot Interferometer Pressure Sensors for Oil Well
by Zijia Liu, Jin Cheng, Jinheng Li, Junming Li, Longjiang Zhao, Zhiwei Zheng, Peizhe Huang and Hao Li
Sensors 2025, 25(20), 6297; https://doi.org/10.3390/s25206297 - 11 Oct 2025
Cited by 1 | Viewed by 1225
Abstract
In oil well environments, pressure sensors are often challenged by electromagnetic interference, temperature drift, and corrosive fluids, which reduce their stability and service life. To improve long-term reliability under these conditions, we developed a fiber optic Fabry–Perot (FP) cavity pressure sensor that employs [...] Read more.
In oil well environments, pressure sensors are often challenged by electromagnetic interference, temperature drift, and corrosive fluids, which reduce their stability and service life. To improve long-term reliability under these conditions, we developed a fiber optic Fabry–Perot (FP) cavity pressure sensor that employs an Inconel 718 diaphragm to provide both high mechanical strength and corrosion resistance. An integrated fiber Bragg grating (FBG) was included to monitor temperature simultaneously, allowing temperature–pressure cross-sensitivity to be decoupled. The sensor was fabricated and tested over a temperature range of 20–100 °C and a pressure range of 0–60 MPa. Experimental characterization showed that the FP cavity length shifted linearly with pressure, with a sensitivity of 377 nm/MPa, while the FBG demonstrated a temperature sensitivity of 0.012 nm/°C. After temperature compensation, the overall pressure measurement accuracy reached 0.5% of the full operating pressure range (0–60 MPa). These results confirm that the combined FP–FBG sensing approach maintained stable performance in harsh downhole conditions, making it suitable for pressure monitoring in shallow and medium-depth reservoirs. The proposed design offers a practical route to extend the operational lifetime of optical sensors in oilfield applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 13069 KB  
Article
Sensitive Detection of Multi-Point Temperature Based on FMCW Interferometry and DSP Algorithm
by Chengyu Mo, Yuqiang Yang, Xiaoguang Mu, Fujiang Li and Yuting Li
Nanomaterials 2025, 15(20), 1545; https://doi.org/10.3390/nano15201545 - 10 Oct 2025
Viewed by 550
Abstract
This paper presents a high-sensitivity multi-point seawater temperature detection system based on the virtual Vernier effect, achieved through multiplexed Fabry–Perot (FP) cavities combined with optical frequency-modulated continuous wave (FMCW) interferometry. To address the nonlinear frequency scanning issue inherent in FMCW systems, this paper [...] Read more.
This paper presents a high-sensitivity multi-point seawater temperature detection system based on the virtual Vernier effect, achieved through multiplexed Fabry–Perot (FP) cavities combined with optical frequency-modulated continuous wave (FMCW) interferometry. To address the nonlinear frequency scanning issue inherent in FMCW systems, this paper implemented a software compensation method. This approach enables accurate positioning of multiple FP sub-sensors and effective demodulation of the sensing interference spectrum (SIS) for each FP interferometer (FPI). Through digital signal processing (DSP) algorithms and spectral demodulation, each sub-FP sensor generates an artificial reference spectrum (ARS). The virtual Vernier effect is then achieved by means of a computational process that combines the SIS intensity with the corresponding ARS intensity. This eliminates the need for physical reference arrays with carefully detuned spatial frequencies, as is required in traditional Vernier effect implementations. The sensitivity amplification can be dynamically adjusted with the modulation function parameters. Experimental results demonstrate that an optical fiber link of 82.3 m was achieved with a high spatial resolution of 23.9 μm. Within the temperature range of 30 C to 70 C, the temperature sensitivities of the three enhanced EIS reached −275.56 pm/C, −269.78 pm/C, and −280.67 pm/C, respectively, representing amplification factors of 3.32, 4.93, and 6.13 compared to a single SIS. The presented approach not only enables effective multiplexing and spatial localization of multiple fiber sensors but also successfully amplifies weak signal detection. This breakthrough provides crucial technical support for implementing quasi-distributed optical sensitization sensing in marine environments, opening new possibilities for high-precision oceanographic monitoring. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 6701 KB  
Article
Novel Fabry-Pérot Filter Structures for High-Performance Multispectral Imaging with a Broadband from the Visible to the Near-Infrared
by Bo Gao, Tianxin Wang, Lu Chen, Shuai Wang, Chenxi Li, Fajun Xiao, Yanyan Liu and Weixing Yu
Sensors 2025, 25(19), 6123; https://doi.org/10.3390/s25196123 - 3 Oct 2025
Cited by 1 | Viewed by 3652
Abstract
The integration of a pixelated Fabry–Pérot filter array onto the image sensor enables on-chip snapshot multispectral imaging, significantly reducing the size and weight of conventional spectral imaging equipment. However, a traditional Fabry–Pérot cavity, based on metallic or dielectric layers, exhibits a narrow bandwidth, [...] Read more.
The integration of a pixelated Fabry–Pérot filter array onto the image sensor enables on-chip snapshot multispectral imaging, significantly reducing the size and weight of conventional spectral imaging equipment. However, a traditional Fabry–Pérot cavity, based on metallic or dielectric layers, exhibits a narrow bandwidth, which restricts their utility in broader applications. In this work, we propose novel Fabry–Pérot filter structures that employ dielectric thin films for phase modulation, enabling single-peak filtering across a broad operational wavelength range from 400 nm to 1100 nm. The proposed structures are easy to fabricate and compatible with complementary metal-oxide-semiconductor (CMOS) image sensors. Moreover, the structures show low sensitivity to oblique incident angles of up to 30° with minimal wavelength shifts. This advanced Fabry–Pérot filter design provides a promising pathway for expanding the operational wavelength of snapshot spectral imaging systems, thereby potentially extending their application across numerous related fields. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop