Albendazole Detection at a Nanomolar Level Through a Fabry–Pérot Interferometer Realized via Molecularly Imprinted Polymers
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Real Sample
2.3. Preparation of the MIP Prepolymeric Solution
2.4. Sensing Principle and Optical Interferometry Background
2.5. Interferometric Measurements and Processing of Data
3. MIP-Based Fabry–Pérot Optical Fiber Sensor
3.1. Experimental Setup
3.2. Production Steps of the Optical-Chemical Sensor

4. Results and Discussion
4.1. Binding Tests
4.2. Selectivity Tests
4.3. Real Sample Analysis: Evaluation of ABZ in Pharmaceutical Formulation
4.4. Comparative Analysis of ABZ Sensors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frazão, O.; Baptista, J.M.; Santos, J.L.; Kobelke, J.; Schuster, K. Refractive index tip sensor based on Fabry-Pérot cavities formed by a suspended core fibre. J. Eur. Opt. Soc.-Rapid Publ. 2009, 4, 09041. [Google Scholar] [CrossRef]
- Li, J.H.; Wu, J.; Yu, Y.X. DFT exploration of sensor performances of two-dimensional WO3 to ten small gases in terms of work function and band gap ghanges and I-V responses. Appl. Surf. Sci. 2021, 546, 149104. [Google Scholar] [CrossRef]
- Kao, K.; Alocilja, E.C. Integrated sample to detection of carbapenem-resistant bacteria extracted from water samples using a portable gold nanoparticle-based biosensor. Sensors 2025, 25, 5293. [Google Scholar] [CrossRef]
- Rao, Y.J.; Ran, Z.L.; Gong, Y. Fiber-Optic Fabry–Pérot Sensors: An Introduction; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Choi, H.Y.; Park, K.S.; Park, S.J.; Paek, U.C.; Lee, B.H.; Choi, E.S. Miniature Fiber-Optic high temperature sensor based on a hybrid structured Fabry–Pérot interferometer. Opt. Lett. 2008, 33, 2455. [Google Scholar] [CrossRef]
- Tafulo, P.A.R.; Jorge, P.A.S.; Santos, J.L.; Araujo, F.M.; Frazao, O. Intrinsic Fabry–Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement. IEEE Sens. J. 2012, 12, 8–12. [Google Scholar] [CrossRef]
- Liao, C.R.; Hu, T.Y.; Wang, D.N. Optical fiber Fabry-Pérot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Opt. Express 2012, 20, 22813. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.; Bilro, L.; Nogueira, R. Fabry-Pérot cavities based on photopolymerizable resins for sensing applications. Opt. Mater. Express 2018, 8, 2208. [Google Scholar] [CrossRef]
- Oliveira, R.; Bilro, L.; Marques, T.H.R.; Cordeiro, C.M.B.; Nogueira, R. Simultaneous detection of humidity and temperature through an adhesive based Fabry–Pérot cavity combined with polymer fiber bragg grating. Opt. Lasers Eng. 2019, 114, 37–43. [Google Scholar] [CrossRef]
- Oliveira, R.; Cardoso, M.; Rocha, A.M. Two-dimensional vector bending sensor based on Fabry-Pérot cavities in a multicore Fiber. Opt. Express 2022, 30, 2230. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, C.; Lin, Z.; Wang, Y.; Tong, R.; Cai, L. Plug-and-play Fabry-Pérot interferometric biosensor with vernier effect for label-free detection of bovine serum albumin. Sens. Actuators B Chem. 2024, 416, 135999. [Google Scholar] [CrossRef]
- Qiu, H.; Yao, Y.; Dong, Y.; Tian, J. Fiber-optic immunosensor based on a Fabry–Pérot interferometer for single-molecule detection of biomarkers. Biosens. Bioelectron. 2024, 255, 116265. [Google Scholar] [CrossRef]
- FISO Technologies Inc. Available online: http://www.fiso.com (accessed on 18 September 2025).
- Haupt, K.; Linares, A.V.; Bompart, M.; Bui, B.T.S. Molecularly imprinted polymers. In Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–28. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2018, 119, 94–119. [Google Scholar] [CrossRef]
- Chen, L.; Xu, S.; Li, J. Recent Advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922. [Google Scholar] [CrossRef] [PubMed]
- Vasapollo, G.; Del Sole, R.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed]
- Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B. Molecularly imprinted polymers—Potential and challenges in analytical chemistry. Anal. Chim. Acta 2005, 534, 31–39. [Google Scholar] [CrossRef]
- Büyüktiryaki, S. Molecularly imprinted polymer nanoparticles for pharmaceutical applications: Sample preparation, sensor-based detection, and controlled drug release. Polymers 2025, 17, 2283. [Google Scholar] [CrossRef]
- Kadhem, A.J.; Gentile, G.J.; Fidalgo de Cortalezzi, M.M. Molecularly imprinted polymers (MIPs) in sensors for environmental and biomedical applications: A review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef]
- Rebelo, P.; Costa-Rama, E.; Seguro, I.; Pacheco, J.G.; Nouws, H.P.A.; Cordeiro, M.N.D.S.; Delerue-Matos, C. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens. Bioelectron. 2021, 172, 112719. [Google Scholar] [CrossRef]
- Huang, X.; Xia, L.; Li, G. Recent progress of molecularly imprinted optical sensors. Chemosensors 2023, 11, 168. [Google Scholar] [CrossRef]
- Henry, O.Y.F.; Cullen, D.C.; Piletsky, S.A. Optical interrogation of molecularly imprinted polymers and development of MIP sensors: A Review. Anal. Bioanal. Chem. 2005, 382, 947–956. [Google Scholar] [CrossRef]
- Arcadio, F.; Del Prete, D.; Zeni, L.; Cennamo, N.; Seggio, M. Optical sensor chips monitored via extrinsic optical fiber schemes. IEEE Sens. Rev. 2025, 2, 179–198. [Google Scholar] [CrossRef]
- Horton, J. Albendazole: A Review of anthelmintic efficacy and safety in humans. Parasitology 2000, 121, S113–S132. [Google Scholar] [CrossRef]
- Ido, A.; Inoue, Y.; Okujima, C.; Okamoto, M.; Miura, T.; Kawashima, A.; Takahashi, S. Distribution and persistence of the anthelmintic drug albendazole in yellowtail aquaculture. Aquac. Rep. 2025, 44, 103038. [Google Scholar] [CrossRef]
- Kitzman, D.; Cheng, K.-J.; Fleckenstein, L. HPLC Assay for albendazole and metabolites in human plasma for clinical pharmacokinetic studies. J. Pharm. Biomed. Anal. 2002, 30, 801–813. [Google Scholar] [CrossRef]
- Valois, M.E.C.; Takayanagui, O.M.; Bonato, P.S.; Lanchote, V.L.; Carvalho, D. Determination of albendazole metabolites in plasma by HPLC. J. Anal. Toxicol. 1994, 18, 86–90. [Google Scholar] [CrossRef]
- Wu, Z.; Medlicott, N.J.; Razzak, M.; Tucker, I.G. Development and optimization of a rapid HPLC method for analysis of ricobendazole and albendazole sulfone in sheep plasma. J. Pharm. Biomed. Anal. 2005, 39, 225–232. [Google Scholar] [CrossRef]
- Melikyan, S.; Biront, N.; Venyatynska, O.; Pazderska, O.; Mysko, G.; Yanovych, D. Development of methods for quantitative determination of albendazole and its metabolites in biological tissues using HPLC/FLD. Sci. Tech. Bull. State Sci. Res. Control. Inst. Vet. Med. Prod. Fodd. Addit. Inst. Anim. Biol. 2021, 22, 160–168. [Google Scholar] [CrossRef]
- Refat, M.S.; Mohamed, G.G.; Fathi, A. Spectrophotometric determination of albendazole drug in tablets: Spectroscopic characterization of the charge-transfer solid complexes. Chin. J. Chem. 2011, 29, 324–332. [Google Scholar] [CrossRef]
- Ahmed, D.A.; Abdel-Aziz, O.; Abdel-Ghany, M.; Weshahy, S.A. Stability indicating determination of albendazole in bulk drug and pharmaceutical dosage form by chromatographic and spectrophotometric methods. Future J. Pharm. Sci. 2018, 4, 161–165. [Google Scholar] [CrossRef]
- Soto, C.; Contreras, D.; Orellana, S.; Yañez, J.; Toral, M.I. Simultaneous determination of albendazole and praziquantel by second derivative spectrophotometry and multivariated calibration methods in veterinary pharmaceutical formulation. Anal. Sci. 2010, 26, 891–896. [Google Scholar] [CrossRef][Green Version]
- Paias, F.O.; Lanchote, V.L.; Takayanagui, O.M.; Bonato, P.S. Enantioselective analysis of albendazole sulfoxide in cerebrospinal fluid by capillary electrophoresis. Electrophoresis 2001, 22, 3263–3269. [Google Scholar] [CrossRef] [PubMed]
- Prost, F.; Caslavska, J.; Thormann, W. Chiral analysis of albendazole sulfoxide enantiomers in human plasma and saliva using capillary electrophoresis with on-column absorption and fluorescence detection. J. Sep. Sci. 2002, 25, 1043–1054. [Google Scholar] [CrossRef]
- Basavaiah, K.; Prameela, H.C. Two simple methods for the estimation of albendazole and its dosage forms using chloramine-T. Il Farm. 2003, 58, 527–534. [Google Scholar] [CrossRef]
- Basavaiah, K.; Prameela, H.C. Use of an oxidation reaction for the quantitative determination of albendazole with chloramine-T and acid dyes. Anal. Sci. 2003, 19, 779–784. [Google Scholar] [CrossRef][Green Version]
- Abu Zuhri, A.Z.; Hussein, A.I.; Musmar, M.; Yaish, S. Adsorptive stripping voltammetric determination of albendazole at a hanging mercury drop electrode. Anal. Lett. 1999, 32, 2965–2975. [Google Scholar] [CrossRef]
- Santos, A.L.; Takeuchi, R.M.; Mariotti, M.P.; De Oliveira, M.F.; Zanoni, M.V.B.; Stradiotto, N.R. Study of electrochemical oxidation and determination of albendazole using a glassy carbon-rotating disk electrode. Il Farm. 2005, 60, 671–674. [Google Scholar] [CrossRef]
- Gowda, J.I.; Kantikar, R.B.; Harakuni, D.G.; Jadhav, K.Y.; Chanagoudar, V.C.; Nandibewoor, S.T. Electrochemical determination of albendazole at glassy carbon electrode. J. AOAC Int. 2016, 99, 1522–1526. [Google Scholar] [CrossRef]
- Lourencao, B.C.; Baccarin, M.; Medeiros, R.A.; Rocha-Filho, R.C.; Fatibello-Filho, O. Differential Pulse Voltammetric Determination of Albendazole in Pharmaceutical Tablets Using a Cathodically Pretreated Boron-Doped Diamond ElectrodeJ. Electroanal. Chem. 2013, 707, 15–19. [Google Scholar] [CrossRef]
- Vázquez, E.M.; Romero, B.; Sahagún, A.M.; López, C.; de la Puente, R.; Rodríguez, J.M.; Fernández, N.; Diez, M.J.; Díez, R. Analytical method for the simultaneous determination of albendazole and metabolites using HPLC-PDA: A validation study. Molecules 2025, 30, 2039. [Google Scholar] [CrossRef]
- Srivastava, J.; Singh, M. A biopolymeric nano-receptor for sensitive and selective recognition of albendazole. Anal. Methods 2016, 8, 1026–1033. [Google Scholar] [CrossRef]
- Suaifan, G.A.R.Y.; Khanfar, M.F.; Shehadeh, M.B.; Alnajajrah, A.; Abuhamdan, R.; Hasan, S.A. An electrochemical sensor for the detection of albendazole using glassy carbon electrode modified with platinum-palladium nanocomposites. Biosensors 2022, 12, 1026. [Google Scholar] [CrossRef]
- Gowda, J.I.; Hurakadli, G.S.; Nandibewoor, S.T. Pretreated graphite pencil electrode based voltammetric sensing of albendazole. Anal. Chem. Lett. 2017, 7, 389–401. [Google Scholar] [CrossRef]
- Yuan, H.-Q.; Xia, Y.-F.; Zhong, Y.-F.; Li, W.; Zhu, H.; Wang, R.; Chen, P.; Gao, Z.; Zhu, X.; Li, Y.-X.; et al. Dual-emissive Eu(III)-functionalized metal-organic frameworks for visual, rapid, and intelligent sensing of albendazole and albendazole sulfoxide in animal-origin food. Anal. Chim. Acta 2024, 1288, 342196. [Google Scholar] [CrossRef] [PubMed]
- Cacho, C.; Turiel, E.; Pérez-Conde, C. Molecularly imprinted polymers: An analytical tool for the determination of benzimidazole compounds in water samples. Talanta 2009, 78, 1029–1035. [Google Scholar] [CrossRef]
- Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 2011, 11, 11752–11760. [Google Scholar] [CrossRef] [PubMed]
- Desimoni, E.; Brunetti, B. About estimating the limit of detection by the signal to noise approach. Pharm. Anal. Acta 2015, 06, 1–4. [Google Scholar] [CrossRef]
- Záhonyi, P.; Szabó, E.; Domokos, A.; Haraszti, A.; Gyürkés, M.; Moharos, E.; Nagy, Z.K. Continuous integrated production of glucose granules with enhanced flowability and tabletability. Int. J. Pharm 2022, 626, 122197. [Google Scholar] [CrossRef] [PubMed]
- Hebbink, G.A.; Dickhoff, B.H.J. Application of Lactose in the Pharmaceutical Industry. In Lactose; Elsevier: Amsterdam, The Netherlands, 2019; pp. 175–229. [Google Scholar] [CrossRef]
- Gillis, J.C.; Markham, A. Irbesartan A Review of its Pharmacodynamic and Pharmacokinetic Properties and Therapeutic Use in the Management of Hypertension. Drugs 1997, 54, 885–902. [Google Scholar] [CrossRef]
- Tiwari, G.; Tiwari, R. Bioanalytical method validation: An updated review. Pharm. Methods 2010, 1, 25. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, M.; Yang, B.; Wu, C.; Wu, K.; Sun, S. Alkalized MXene/laser-induced graphene-based integrated three-electrode devices for micro-droplet detection of albendazole. Anal. Chim. Acta 2025, 1356, 344051. [Google Scholar] [CrossRef]
- Molina, C.L.; Puma, M.C.L.; Hernandez, Y.; Castillo, J.E.F.; Rimache, J.R.; Acosta, J.; Galarreta, B.C.; Eguiluz, M. Study of the interaction of the aptamer Cz12 with albendazole sulfoxide by molecular docking and Uv-Vis-Nir spectroscopy. SSRN Prepr. 2025. [Google Scholar] [CrossRef]




| λ0 [nm] | Δλmax [nm] | Kaff [nM]−1 | R2 | Slow-conc | LOD [nM] |
|---|---|---|---|---|---|
| −1.19(2) | 19.8(1.5) | 0.012(5) | 0.97 | 0.25 nm/nM | 27 |
| Sample | Δλ [nm] | ABZ Concentration in the Diluted Samples | Estimated ABZ Concentration |
|---|---|---|---|
| Real sample diluted 1:5 × 106 | 7.4 | 58 nM | 58 nM × 5·106 = 0.29 M |
| Real sample diluted 1:2.5 × 106 | 11 | 116 nM | 116 nM × 2.5·106 = 0.3 M |
| Sensor | Sensing Principle | Type of Receptor | Detection Range | LOD | Reference |
|---|---|---|---|---|---|
| Biopolymer-derived nanoconfiguration | Electrochemical | MIP | Micromolar | 0.45 μM | [43] |
| Pretreated Graphite Pencil Electrode | Electrochemical | - | Nanomolar | 5.42 nM | [45] |
| Pt-Pd-Modified Glassy Carbon Electrode | Electrochemical | - | Micromolar | 0.08 μM | [44] |
| Integrated three-electrode devices based on alkalized Ti3C2Tx/LIG | Electrochemical | - | Nanomolar | 7.5 nM | [54] |
| Dual-emissive Eu(III)-functionalized metal–organic frameworks | Fluorescence | - | Micromolar | 0.1 μM | [46] |
| Nanoaptasensor based on AuNTs | Plasmonic | Aptamer | Micromolar | 13 nM | [55] |
| MIP-based Fabry-Pérot optical fiber probe | Interferometric | MIP | Nanomolar | 27 nM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavoletta, I.; Oliveira, R.; Sequeira, F.; Novo, C.C.; Zeni, L.; Alberti, G.; Cennamo, N.; Nogueira, R.N. Albendazole Detection at a Nanomolar Level Through a Fabry–Pérot Interferometer Realized via Molecularly Imprinted Polymers. Sensors 2025, 25, 6456. https://doi.org/10.3390/s25206456
Tavoletta I, Oliveira R, Sequeira F, Novo CC, Zeni L, Alberti G, Cennamo N, Nogueira RN. Albendazole Detection at a Nanomolar Level Through a Fabry–Pérot Interferometer Realized via Molecularly Imprinted Polymers. Sensors. 2025; 25(20):6456. https://doi.org/10.3390/s25206456
Chicago/Turabian StyleTavoletta, Ines, Ricardo Oliveira, Filipa Sequeira, Catarina Cardoso Novo, Luigi Zeni, Giancarla Alberti, Nunzio Cennamo, and Rogerio Nunes Nogueira. 2025. "Albendazole Detection at a Nanomolar Level Through a Fabry–Pérot Interferometer Realized via Molecularly Imprinted Polymers" Sensors 25, no. 20: 6456. https://doi.org/10.3390/s25206456
APA StyleTavoletta, I., Oliveira, R., Sequeira, F., Novo, C. C., Zeni, L., Alberti, G., Cennamo, N., & Nogueira, R. N. (2025). Albendazole Detection at a Nanomolar Level Through a Fabry–Pérot Interferometer Realized via Molecularly Imprinted Polymers. Sensors, 25(20), 6456. https://doi.org/10.3390/s25206456

