Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = FLIM spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1494 KiB  
Review
Towards Optical Biopsy in Glioma Surgery
by Konstantin S. Yashin, Vladislav I. Shcheslavskiy, Igor A. Medyanik, Leonid Ya. Kravets and Marina V. Shirmanova
Int. J. Mol. Sci. 2025, 26(10), 4554; https://doi.org/10.3390/ijms26104554 - 9 May 2025
Viewed by 1073
Abstract
Currently, the focus of intraoperative imaging in brain tumor surgery is beginning to shift to optical methods such as optical coherence tomography (OCT), Raman spectroscopy, confocal laser endomicroscopy (CLE), and fluorescence lifetime imaging (FLIM). Optical imaging technologies provide in vivo and real-time high-resolution [...] Read more.
Currently, the focus of intraoperative imaging in brain tumor surgery is beginning to shift to optical methods such as optical coherence tomography (OCT), Raman spectroscopy, confocal laser endomicroscopy (CLE), and fluorescence lifetime imaging (FLIM). Optical imaging technologies provide in vivo and real-time high-resolution images of tissues. “Optical biopsy” can be considered as an alternative to traditional approaches for intraoperative histopathologic consultation. Intraoperative optical imaging can help to achieve precise intraoperative identification of tumor infiltrations within the surrounding brain parenchyma. Therefore, it can be considered as a complement to existing approaches based on wide-field imaging modalities such as MRI, US, or 5-ALA fluorescence. A promising future direction for intraoperative guidance during brain tumor surgery or stereotactic biopsy lies in the integration of optical imaging with machine learning techniques, enabling automated differentiation between tumor tissue and healthy brain parenchyma. We present this review to increase knowledge and form critical opinions in the field of using optical imaging in brain tumor surgery. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

26 pages, 3631 KiB  
Article
Exploring Time-Resolved Fluorescence Data: A Software Solution for Model Generation and Analysis
by Thomas-Otavio Peulen
Spectrosc. J. 2025, 3(2), 16; https://doi.org/10.3390/spectroscj3020016 - 1 May 2025
Viewed by 1336
Abstract
Time-resolved fluorescence techniques, such as fluorescence lifetime imaging microscopy (FLIM), fluorescence correlation spectroscopy (FCS), and time-resolved fluorescence spectroscopy, are ideally suited for investigating molecular dynamics and interactions in biological and chemical systems. However, the analysis and interpretation of these datasets require advanced computational [...] Read more.
Time-resolved fluorescence techniques, such as fluorescence lifetime imaging microscopy (FLIM), fluorescence correlation spectroscopy (FCS), and time-resolved fluorescence spectroscopy, are ideally suited for investigating molecular dynamics and interactions in biological and chemical systems. However, the analysis and interpretation of these datasets require advanced computational tools capable of handling diverse models and datasets. This paper presents a comprehensive software solution designed for model generation and analysis of time-resolved fluorescence data with a strong focus on fluorescence for quantitative structural analysis and biophysics. The software supports the integration of multiple fluorescence techniques and provides users with robust tools for performing complex model analysis across diverse experimental data. By enabling global analysis, model generation, data visualization, and sampling over model parameters, the software enhances the interpretability of intricate fluorescence phenomena. By providing flexible modeling capabilities, this solution offers a versatile platform for researchers to extract meaningful insights from time-resolved fluorescence data, aiding in the understanding of dynamic biomolecular processes. Full article
(This article belongs to the Special Issue Feature Papers in Spectroscopy Journal)
Show Figures

Graphical abstract

13 pages, 1545 KiB  
Article
Phase-Sensitive Fluorescence Image Correlation Spectroscopy
by Andrew H. A. Clayton
Int. J. Mol. Sci. 2024, 25(20), 11165; https://doi.org/10.3390/ijms252011165 - 17 Oct 2024
Viewed by 1088
Abstract
Fluorescence lifetime imaging microscopy is sensitive to molecular interactions and environments. In homo-dyne frequency-domain fluorescence lifetime imaging microscopy, images of fluorescence objects are acquired at different phase settings of the detector. The detected intensity as a function of detector phase is a sinusoidal [...] Read more.
Fluorescence lifetime imaging microscopy is sensitive to molecular interactions and environments. In homo-dyne frequency-domain fluorescence lifetime imaging microscopy, images of fluorescence objects are acquired at different phase settings of the detector. The detected intensity as a function of detector phase is a sinusoidal function that is sensitive to the lifetime of the fluorescent species. In this paper, the theory of phase-sensitive fluorescence image correlation spectroscopy is described. In this version of lifetime imaging, image correlation spectroscopy analysis (i.e., spatial autocorrelation) is applied to successive fluorescence images acquired at different phase settings of the detector. Simulations of different types of lifetime distributions reveal that the phase-dependent density of fluorescent objects is dependent on the heterogeneity of lifetimes present in the objects. We provide an example of this analysis workflow to a cervical cancer cell stained with a fluorescent membrane probe. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

12 pages, 2854 KiB  
Article
Multi-Modal Investigation of Metabolism in Murine Breast Cancer Cell Lines Using Fluorescence Lifetime Microscopy and Hyperpolarized 13C-Pyruvate Magnetic Resonance Spectroscopy
by Sarah Erickson-Bhatt, Benjamin L. Cox, Erin Macdonald, Jenu V. Chacko, Paul Begovatz, Patricia J. Keely, Suzanne M. Ponik, Kevin W. Eliceiri and Sean B. Fain
Metabolites 2024, 14(10), 550; https://doi.org/10.3390/metabo14100550 - 15 Oct 2024
Viewed by 1635
Abstract
Background/Objectives: Despite the role of metabolism in breast cancer metastasis, we still cannot predict which breast tumors will progress to distal metastatic lesions or remain dormant. This work uses metabolic imaging to study breast cancer cell lines (4T1, 4T07, and 67NR) with [...] Read more.
Background/Objectives: Despite the role of metabolism in breast cancer metastasis, we still cannot predict which breast tumors will progress to distal metastatic lesions or remain dormant. This work uses metabolic imaging to study breast cancer cell lines (4T1, 4T07, and 67NR) with differing metastatic potential in a 3D collagen gel bioreactor system. Methods: Within the bioreactor, hyperpolarized magnetic resonance spectroscopy (HP-MRS) is used to image lactate/pyruvate ratios, while fluorescence lifetime imaging microscopy (FLIM) of endogenous metabolites measures metabolism at the cellular scale. Results: HP-MRS results showed no lactate peak for 67NR and a comparatively large lactate/pyruvate ratio for both 4T1 and 4T07 cell lines, suggestive of greater pyruvate utilization with greater metastatic potential. Similar patterns were observed using FLIM with significant increases in FAD intensity, redox ratio, and NAD(P)H lifetime. The lactate/pyruvate ratio was strongly correlated to NAD(P)H lifetime, consistent with the role of NADH as an electron donor for the glycolytic pathway, suggestive of an overall upregulation of metabolism (both glycolytic and oxidative), for the 4T07 and 4T1 cell lines compared to the non-metastatic 67NR cell line. Conclusions: These findings support a complementary role for HP-MRS and FLIM enabled by a novel collagen gel bioreactor system to investigate metastatic potential and cancer metabolism. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Graphical abstract

21 pages, 4551 KiB  
Article
Benefits of Combined Fluorescence Lifetime Imaging Microscopy and Fluorescence Correlation Spectroscopy for Biomedical Studies Demonstrated by Using a Liposome Model System
by Kristina Bruun, Hans-Gerd Löhmannsröben and Carsten Hille
Biophysica 2024, 4(2), 207-226; https://doi.org/10.3390/biophysica4020015 - 25 Apr 2024
Viewed by 1948
Abstract
Drug delivery systems play a pivotal role in targeted pharmaceutical transport and controlled release at specific sites. Liposomes, commonly used as drug carriers, constitute a fundamental part of these systems. Moreover, the drug–liposome model serves as a robust platform for investigating interaction processes [...] Read more.
Drug delivery systems play a pivotal role in targeted pharmaceutical transport and controlled release at specific sites. Liposomes, commonly used as drug carriers, constitute a fundamental part of these systems. Moreover, the drug–liposome model serves as a robust platform for investigating interaction processes at both cellular and molecular levels. To advance our understanding of drug carrier uptake mechanisms, we employed fluorescence lifetime imaging microscopy (FLIM) and fluorescence correlation spectroscopy (FCS), leveraging the unique benefits of two-photon (2P) excitation. Our approach utilized giant unilamellar vesicles (GUVs) as a simplified model system for cell membranes, labelled with the amphiphilic fluorescent dye 3,3′-dioctadecyloxa-carbocyanine (DiOC18(3)). Additionally, large unilamellar vesicles (LUVs) functioned as a drug carrier system, incorporating the spectrally distinct fluorescent sulforhodamine 101 (SRh101) as a surrogate drug. The investigation emphasized the diverse interactions between GUVs and LUVs based on the charged lipids employed. We examined the exchange kinetics and structural alterations of liposome carriers during the uptake process. Our study underscores the significance of employing 2P excitation in conjunction with FLIM and FCS. This powerful combination offers a valuable methodological approach for studying liposome interactions, positioning them as an exceptionally versatile model system with a distinct technical advantage. Full article
Show Figures

Figure 1

26 pages, 6567 KiB  
Article
Dual Emissive Zn(II) Naphthalocyanines: Synthesis, Structural and Photophysical Characterization with Theory-Supported Insights towards Soluble Coordination Compounds with Visible and Near-Infrared Emission
by Sidharth Thulaseedharan Nair Sailaja, Iván Maisuls, Alexander Hepp, Dana Brünink, Nikos L. Doltsinis, Andreas Faust, Sven Hermann and Cristian A. Strassert
Int. J. Mol. Sci. 2024, 25(5), 2605; https://doi.org/10.3390/ijms25052605 - 23 Feb 2024
Viewed by 1597
Abstract
Metal phthalocyaninates and their higher homologues are recognized as deep-red luminophores emitting from their lowest excited singlet state. Herein, we report on the design, synthesis, and in-depth characterization of a new class of dual-emissive (visible and NIR) metal naphthalocyaninates. A 4-N, [...] Read more.
Metal phthalocyaninates and their higher homologues are recognized as deep-red luminophores emitting from their lowest excited singlet state. Herein, we report on the design, synthesis, and in-depth characterization of a new class of dual-emissive (visible and NIR) metal naphthalocyaninates. A 4-N,N-dimethylaminophen-4-yl-substituted naphthalocyaninato zinc(II) complex (Zn-NMe2Nc) and the derived water-soluble coordination compound (Zn-NMe3Nc) exhibit a near-infrared fluorescence from the lowest ligand-centered state, along with a unique push–pull-supported luminescence in the visible region of the electromagnetic spectrum. An unprecedentedly broad structural (2D-NMR spectroscopy and mass spectrometry) as well as photophysical characterization (steady-state state and time-resolved photoluminescence spectroscopy) is presented. The unique dual emission was assigned to two independent sets of singlet states related to the intrinsic Q-band of the macrocycle and to the push–pull substituents in the molecular periphery, respectively, as predicted by TD-DFT calculations. In general, the elusive chemical aspects of these macrocyclic compounds are addressed, involving both reaction conditions, thorough purification, and in-depth characterization. Besides the fundamental aspects that are investigated herein, the photoacoustic properties were exemplarily examined using phantom gels to assess their tomographic imaging capabilities. Finally, the robust luminescence in the visible range arising from the push–pull character of the peripheral moieties demonstrated a notable independence from aggregation and was exemplarily implemented for optical imaging (FLIM) through time-resolved multiphoton micro(spectro)scopy. Full article
(This article belongs to the Special Issue Feature Papers in 'Physical Chemistry and Chemical Physics' 2024)
Show Figures

Graphical abstract

35 pages, 7519 KiB  
Review
Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies
by Maxim E. Darvin
Pharmaceutics 2023, 15(9), 2272; https://doi.org/10.3390/pharmaceutics15092272 - 3 Sep 2023
Cited by 18 | Viewed by 5156
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk [...] Read more.
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment—a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted. Full article
Show Figures

Graphical abstract

11 pages, 3208 KiB  
Article
Physiological Significance of the Heterogeneous Distribution of Zeaxanthin and Lutein in the Retina of the Human Eye
by Wojciech Grudzinski, Rafal Luchowski, Jan Ostrowski, Alicja Sęk, Maria Manuela Mendes Pinto, Renata Welc-Stanowska, Monika Zubik-Duda, Grzegorz Teresiński, Robert Rejdak and Wieslaw I. Gruszecki
Int. J. Mol. Sci. 2023, 24(13), 10702; https://doi.org/10.3390/ijms241310702 - 27 Jun 2023
Cited by 5 | Viewed by 2650
Abstract
Zeaxanthin and lutein are xanthophyll pigments present in the human retina and particularly concentrated in its center referred to as the yellow spot (macula lutea). The fact that zeaxanthin, including its isomer meso-zeaxanthin, is concentrated in the central part of the retina, [...] Read more.
Zeaxanthin and lutein are xanthophyll pigments present in the human retina and particularly concentrated in its center referred to as the yellow spot (macula lutea). The fact that zeaxanthin, including its isomer meso-zeaxanthin, is concentrated in the central part of the retina, in contrast to lutein also present in the peripheral regions, raises questions about the possible physiological significance of such a heterogeneous distribution of macular xanthophylls. Here, we attempt to address this problem using resonance Raman spectroscopy and confocal imaging, with different laser lines selected to effectively distinguish the spectral contribution of lutein and zeaxanthin. Additionally, fluorescence lifetime imaging microscopy (FLIM) is used to solve the problem of xanthophyll localization in the axon membranes. The obtained results allow us to conclude that one of the key advantages of a particularly high concentration of zeaxanthin in the central part of the retina is the high efficiency of this pigment in the dynamic filtration of light with excessive intensity, potentially harmful for the photoreceptors. Full article
(This article belongs to the Special Issue The Role of Lutein for Human Health)
Show Figures

Figure 1

11 pages, 1749 KiB  
Article
A Single Fluorescent Protein-Based Indicator with a Time-Resolved Fluorescence Readout for Precise pH Measurements in the Alkaline Range
by Tatiana R. Simonyan, Elena A. Protasova, Anastasia V. Mamontova, Aleksander M. Shakhov, Konstantin A. Lukyanov, Eugene G. Maksimov and Alexey M. Bogdanov
Int. J. Mol. Sci. 2022, 23(21), 12907; https://doi.org/10.3390/ijms232112907 - 26 Oct 2022
Cited by 4 | Viewed by 2656
Abstract
The real-time monitoring of the intracellular pH in live cells with high precision represents an important methodological challenge. Although genetically encoded fluorescent indicators can be considered as a probe of choice for such measurements, they are hindered mostly by the inability to determine [...] Read more.
The real-time monitoring of the intracellular pH in live cells with high precision represents an important methodological challenge. Although genetically encoded fluorescent indicators can be considered as a probe of choice for such measurements, they are hindered mostly by the inability to determine an absolute pH value and/or a narrow dynamic range of the signal, making them inefficient for recording the small pH changes that typically occur within cellular organelles. Here, we study the pH sensitivity of a green-fluorescence-protein (GFP)-based emitter (EGFP-Y145L/S205V) with the alkaline-shifted chromophore’s pKa and demonstrate that, in the pH range of 7.5–9.0, its fluorescence lifetime changes by a factor of ~3.5 in a quasi-linear manner in mammalian cells. Considering the relatively strong lifetime response in a narrow pH range, we proposed the mitochondria, which are known to have a weakly alkaline milieu, as a target for live-cell pH measurements. Using fluorescence lifetime imaging microscopy (FLIM) to visualize the HEK293T cells expressing mitochondrially targeted EGFP-Y145L/S205V, we succeeded in determining the absolute pH value of the mitochondria and recorded the ETC-uncoupler-stimulated pH shift with a precision of 0.1 unit. We thus show that a single GFP with alkaline-shifted pKa can act as a high-precision indicator that can be used in a specific pH range. Full article
(This article belongs to the Special Issue Advanced Fluorescence Methodologies: Focus on Molecular Research)
Show Figures

Figure 1

19 pages, 4199 KiB  
Article
Penetration Depth of Propylene Glycol, Sodium Fluorescein and Nile Red into the Skin Using Non-Invasive Two-Photon Excited FLIM
by Mohammad Alhibah, Marius Kröger, Sabine Schanzer, Loris Busch, Jürgen Lademann, Ingeborg Beckers, Martina C. Meinke and Maxim E. Darvin
Pharmaceutics 2022, 14(9), 1790; https://doi.org/10.3390/pharmaceutics14091790 - 26 Aug 2022
Cited by 14 | Viewed by 3918
Abstract
The stratum corneum (SC) forms a strong barrier against topical drug delivery. Therefore, understanding the penetration depth and pathways into the SC is important for the efficiency of drug delivery and cosmetic safety. In this study, TPT-FLIM (two-photon tomography combined with [...] Read more.
The stratum corneum (SC) forms a strong barrier against topical drug delivery. Therefore, understanding the penetration depth and pathways into the SC is important for the efficiency of drug delivery and cosmetic safety. In this study, TPT-FLIM (two-photon tomography combined with fluorescence lifetime imaging) was applied as a non-invasive optical method for the visualization of skin structure and components to study penetration depths of exemplary substances, like hydrophilic propylene glycol (PG), sodium fluorescein (NaFl) and lipophilic Nile red (NR) into porcine ear skin ex vivo. Non-fluorescent PG was detected indirectly based on the pH-dependent increase in the fluorescence lifetime of SC components. The pH similarity between PG and viable epidermis limited the detection of PG. NaFl reached the viable epidermis, which was also proved by laser scanning microscopy. Tape stripping and confocal Raman micro-spectroscopy were performed additionally to study NaFl, which revealed penetration depths of ≈5 and ≈8 μm, respectively. Lastly, NR did not permeate the SC. We concluded that the amplitude-weighted mean fluorescence lifetime is the most appropriate FLIM parameter to build up penetration profiles. This work is anticipated to provide a non-invasive TPT-FLIM method for studying the penetration of topically applied drugs and cosmetics into the skin. Full article
(This article belongs to the Special Issue Tissue Diagnosis, Phototherapy and Drug Delivery)
Show Figures

Figure 1

32 pages, 2045 KiB  
Review
Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring
by Lucas Becker, Nicole Janssen, Shannon L. Layland, Thomas E. Mürdter, Anne T. Nies, Katja Schenke-Layland and Julia Marzi
Cancers 2021, 13(22), 5682; https://doi.org/10.3390/cancers13225682 - 13 Nov 2021
Cited by 22 | Viewed by 7416
Abstract
Hurdles for effective tumor therapy are delayed detection and limited effectiveness of systemic drug therapies by patient-specific multidrug resistance. Non-invasive bioimaging tools such as fluorescence lifetime imaging microscopy (FLIM) and Raman-microspectroscopy have evolved over the last decade, providing the potential to be translated [...] Read more.
Hurdles for effective tumor therapy are delayed detection and limited effectiveness of systemic drug therapies by patient-specific multidrug resistance. Non-invasive bioimaging tools such as fluorescence lifetime imaging microscopy (FLIM) and Raman-microspectroscopy have evolved over the last decade, providing the potential to be translated into clinics for early-stage disease detection, in vitro drug screening, and drug efficacy studies in personalized medicine. Accessing tissue- and cell-specific spectral signatures, Raman microspectroscopy has emerged as a diagnostic tool to identify precancerous lesions, cancer stages, or cell malignancy. In vivo Raman measurements have been enabled by recent technological advances in Raman endoscopy and signal-enhancing setups such as coherent anti-stokes Raman spectroscopy or surface-enhanced Raman spectroscopy. FLIM enables in situ investigations of metabolic processes such as glycolysis, oxidative stress, or mitochondrial activity by using the autofluorescence of co-enzymes NADH and FAD, which are associated with intrinsic proteins as a direct measure of tumor metabolism, cell death stages and drug efficacy. The combination of non-invasive and molecular-sensitive in situ techniques and advanced 3D tumor models such as patient-derived organoids or microtumors allows the recapitulation of tumor physiology and metabolism in vitro and facilitates the screening for patient-individualized drug treatment options. Full article
Show Figures

Figure 1

9 pages, 3645 KiB  
Communication
Phototherapy of Brain Tumours Using a Fibre Optic Neurosystem
by Yuliya Maklygina, Igor Romanishkin, Aleksej Skobeltsin, Dina Farrakhova and Victor Loschenov
Photonics 2021, 8(11), 462; https://doi.org/10.3390/photonics8110462 - 21 Oct 2021
Cited by 2 | Viewed by 2106
Abstract
In this work, a new approach was tested to assess the cellular composition of tissues by time-resolved methods of fluorescence analysis of exogenous and endogenous fluorophores. First of all, the differences in fluorescence kinetics of endogenous fluorophores (coenzymes NADH and FAD) in tumour [...] Read more.
In this work, a new approach was tested to assess the cellular composition of tissues by time-resolved methods of fluorescence analysis of exogenous and endogenous fluorophores. First of all, the differences in fluorescence kinetics of endogenous fluorophores (coenzymes NADH and FAD) in tumour and immunocompetent cells were determined. After that, differences in fluorescence kinetics of photosensitizer 5 ALA-induced protoporphyrin IX were established due to its different metabolism in cells of different phenotypes. Kinetics of photoluminescence of NADH and FAD coenzymes as well as photosensitizer were studied by means of two different methods: time-resolved spectroscopy based on a streak-camera and fibre optic neuroscopy, which served to perform process monitoring and regular fluorescence diagnosis of the probed region. Time-resolved fluorescence microscopy (FLIM) was used as a control technique. Time-resolved spectroscopic fluorescence lifetime analysis was performed on sexually mature female rats induced with glioma C6 brain tumour under in vivo conditions; thus, under conditions where the immune system actively intervenes in the process of oncogenesis. In this regard, the aim of the study was to recognize the cellular composition of the brain tumour tissue, namely the ratio of cancer and immunocompetent cells and their mutual localization. Understanding the role of the immune system thus provides new ways and approaches for further diagnosis and therapy, making tumour-associated immune cells a prime target for modern therapies. Full article
(This article belongs to the Special Issue Specialty Optical Fibers, Fiber Lasers and Their Applications)
Show Figures

Figure 1

19 pages, 3395 KiB  
Article
Fluorescently Labeled Cellulose Nanofibers for Environmental Health and Safety Studies
by Ilabahen Patel, Jeremiah Woodcock, Ryan Beams, Stephan J. Stranick, Ryan Nieuwendaal, Jeffrey W. Gilman, Marina R. Mulenos, Christie M. Sayes, Maryam Salari, Glen DeLoid, Philip Demokritou, Bryan Harper, Stacey Harper, Kimberly J. Ong, Jo Anne Shatkin and Douglas M. Fox
Nanomaterials 2021, 11(4), 1015; https://doi.org/10.3390/nano11041015 - 15 Apr 2021
Cited by 20 | Viewed by 4737
Abstract
An optimal methodology for locating and tracking cellulose nanofibers (CNFs) in vitro and in vivo is crucial to evaluate the environmental health and safety properties of these nanomaterials. Here, we report the use of a new boron-dipyrromethene (BODIPY) reactive fluorescent probe, meso-DichlorotriazineEthyl BODIPY [...] Read more.
An optimal methodology for locating and tracking cellulose nanofibers (CNFs) in vitro and in vivo is crucial to evaluate the environmental health and safety properties of these nanomaterials. Here, we report the use of a new boron-dipyrromethene (BODIPY) reactive fluorescent probe, meso-DichlorotriazineEthyl BODIPY (mDTEB), tailor-made for labeling CNFs used in simulated or in vivo ingestion exposure studies. Time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) was used to confirm covalent attachment and purity of mDTEB-labeled CNFs. The photoluminescence properties of mDTEB-labeled CNFs, characterized using fluorescence spectroscopy, include excellent stability over a wide pH range (pH2 to pH10) and high quantum yield, which provides detection at low (μM) concentrations. FLIM analysis also showed that lignin-like impurities present on the CNF reduce the fluorescence of the mDTEB-labeled CNF, via quenching. Therefore, the chemical composition and the methods of CNF production affect subsequent studies. An in vitro triculture, small intestinal, epithelial model was used to assess the toxicity of ingested mDTEB-labeled CNFs. Zebrafish (Danio rerio) were used to assess in vivo environmental toxicity studies. No cytotoxicity was observed for CNFs, or mDTEB-labeled CNFs, either in the triculture cells or in the zebrafish embryos. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

21 pages, 5947 KiB  
Article
Novel (Phenothiazinyl)Vinyl-Pyridinium Dyes and Their Potential Applications as Cellular Staining Agents
by Bianca Stoean, Dumitrita Rugina, Monica Focsan, Ana-Maria Craciun, Mǎdǎlina Nistor, Tamas Lovasz, Alexandru Turza, Ioan-Dan Porumb, Emese Gál, Castelia Cristea, Luminita Silaghi-Dumitrescu, Simion Astilean and Luiza Ioana Gaina
Int. J. Mol. Sci. 2021, 22(6), 2985; https://doi.org/10.3390/ijms22062985 - 15 Mar 2021
Cited by 9 | Viewed by 3177
Abstract
We report here the synthesis and structural characterization of novel cationic (phenothiazinyl)vinyl-pyridinium (PVP) dyes, together with optical (absorption/emission) properties and their potential applicability as fluorescent labels. Convective heating, ultrasound irradiation and mechanochemical synthesis were considered as alternative synthetic methodologies proficient for overcoming drawbacks [...] Read more.
We report here the synthesis and structural characterization of novel cationic (phenothiazinyl)vinyl-pyridinium (PVP) dyes, together with optical (absorption/emission) properties and their potential applicability as fluorescent labels. Convective heating, ultrasound irradiation and mechanochemical synthesis were considered as alternative synthetic methodologies proficient for overcoming drawbacks such as long reaction time, nonsatisfactory yields or solvent requirements in the synthesis of novel dye (E)-1-(3-chloropropyl)-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium bromide 3d and its N-alkyl-2-methylpyridinium precursor 1c. The trans geometry of the newly synthesized (E)-4-(2-(7-bromo-10-ethyl-10H-phenothiazin-3-yl)vinyl)-1-methylpyridin-1-ium iodide 3b and (E)-1-methyl-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium tetrafluoroborate 3a′ was confirmed by single crystal X-ray diffraction. A negative solvatochromism of the dyes in polar solvents was highlighted by UV-Vis spectroscopy and explanatory insights were supported by molecular modeling which suggested a better stabilization of the lowest unoccupied molecular orbitals (LUMO). The photostability of the dye 3b was investigated by irradiation at 365 nm in different solvents, while the steady-state and time-resolved fluorescence properties of dye 3b and 3a′ in solid state were evaluated under one-photon excitation at 485 nm. The in vitro cytotoxicity of the new PVP dyes on B16-F10 melanoma cells was evaluated by WST-1 assay, while their intracellular localization was assessed by epi-fluorescence conventional microscopy imaging as well as one- and two-photon excited confocal fluorescence lifetime imaging microscopy (FLIM). PVP dyes displayed low cytotoxicity, good internalization inside melanoma cells and intense fluorescence emission inside the B16-F10 murine melanoma cells, making them suitable staining agents for imaging applications. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Graphical abstract

16 pages, 4038 KiB  
Article
Three-Dimensional High Spatial Localization of Efficient Resonant Energy Transfer from Laser-Assisted Precipitated Silver Clusters to Trivalent Europium Ions
by Yannick Petit, Gustavo Galleani, Guillaume Raffy, Jean-Charles Desmoulin, Véronique Jubéra, André Del Guerzo, Andrea Simone Stucchi de Camargo, Lionel Canioni and Thierry Cardinal
Crystals 2021, 11(2), 148; https://doi.org/10.3390/cryst11020148 - 1 Feb 2021
Cited by 9 | Viewed by 2917
Abstract
We report on the 3D precipitation, using a direct laser writing approach, of highly fluorescent silver clusters in a Eu3+-doped silver-containing zinc phosphate glass. Micro-spectroscopy of fluorescence emission shows the ability to continuously adjust the local tri-chromatic coordinates in the CIE [...] Read more.
We report on the 3D precipitation, using a direct laser writing approach, of highly fluorescent silver clusters in a Eu3+-doped silver-containing zinc phosphate glass. Micro-spectroscopy of fluorescence emission shows the ability to continuously adjust the local tri-chromatic coordinates in the CIE (Commission Internationale de l’Éclairage) chromaticity diagram between red and white colors, thanks to the laser-deposited dose and resulting tunable combination of emissions from Eu3+ and silver clusters. Moreover, continuous-wave and time-resolved FAST-FLIM spectroscopies showed a significant enhancement of the fluorescence emission of Eu3+ ions while being co-located with UV-excited laser-inscribed silver clusters. These results demonstrate the ability to perform efficient resonant non-radiative energy transfer from excited silver clusters to Eu3+, allowing such energy transfer to be highly localized on demand thanks to laser inscription. Such results open the route to 3D printing of the rare earth ions emission in glass. Full article
(This article belongs to the Special Issue Laser-Induced Crystallization)
Show Figures

Figure 1

Back to TopTop