Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,390)

Search Parameters:
Keywords = Extended Kalman Filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4423 KB  
Review
A Review of Nonlinear Filtering Algorithms in Integrated Navigation Systems
by Jiaqian Si, Yanxiong Niu and Botao Wang
Sensors 2025, 25(20), 6462; https://doi.org/10.3390/s25206462 (registering DOI) - 19 Oct 2025
Abstract
Nonlinear filtering algorithms have significant implications in the optimal estimation of navigation states and in improving the accuracy, reliability, and robustness of navigation systems. This manuscript surveys the developments of the nonlinear filtering algorithms (extended Kalman filtering (EKF), unscented Kalman filtering (UKF), Cubature [...] Read more.
Nonlinear filtering algorithms have significant implications in the optimal estimation of navigation states and in improving the accuracy, reliability, and robustness of navigation systems. This manuscript surveys the developments of the nonlinear filtering algorithms (extended Kalman filtering (EKF), unscented Kalman filtering (UKF), Cubature Kalman filtering (CKF), particle filtering (PF), neural network filtering (NNF)) and adaptive/robust KF in integrated navigation systems. The principle, application, and existing problems of these nonlinear filtering algorithms are mainly studied, and the comparative analysis and prospect are carried out. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

17 pages, 3294 KB  
Article
Autonomous Vision-Based Object Detection and Tracking System for Quadrotor Unmanned Aerial Vehicles
by Oumaima Gharsa, Mostefa Mohamed Touba, Mohamed Boumehraz and Nacira Agram
Sensors 2025, 25(20), 6403; https://doi.org/10.3390/s25206403 (registering DOI) - 16 Oct 2025
Viewed by 549
Abstract
This paper introduces an autonomous vision-based tracking system for a quadrotor unmanned aerial vehicle (UAV) equipped with an onboard camera, designed to track a maneuvering target without external localization sensors or GPS. Accurate capture of dynamic aerial targets is essential to ensure real-time [...] Read more.
This paper introduces an autonomous vision-based tracking system for a quadrotor unmanned aerial vehicle (UAV) equipped with an onboard camera, designed to track a maneuvering target without external localization sensors or GPS. Accurate capture of dynamic aerial targets is essential to ensure real-time tracking and effective management. The system employs a robust and computationally efficient visual tracking method that combines HSV filter detection with a shape detection algorithm. Target states are estimated using an enhanced extended Kalman filter (EKF), providing precise state predictions. Furthermore, a closed-loop Proportional-Integral-Derivative (PID) controller, based on the estimated states, is implemented to enable the UAV to autonomously follow the moving target. Extensive simulation and experimental results validate the system’s ability to efficiently and reliably track a dynamic target, demonstrating robustness against noise, light reflections, or illumination interference, and ensure stable and rapid tracking using low-cost components. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

16 pages, 12891 KB  
Article
On Improving the Performance of Kalman Filter in Denoising Oil Palm Hyperspectral Data
by Imanurfatiehah Ibrahim, Hamzah Arof, Mohd Izzuddin Anuar and Mohamad Sofian Abu Talip
Agriculture 2025, 15(20), 2149; https://doi.org/10.3390/agriculture15202149 - 15 Oct 2025
Viewed by 287
Abstract
A common drawback of denoising methods of images is that all pixels are filtered regardless of the amount of noise affecting them individually. Since the essence of denoising is lowpass filtering, subjecting clean pixels to denoising results in blurring. In this paper, a [...] Read more.
A common drawback of denoising methods of images is that all pixels are filtered regardless of the amount of noise affecting them individually. Since the essence of denoising is lowpass filtering, subjecting clean pixels to denoising results in blurring. In this paper, a filtering framework is introduced where a fitness function is incorporated in a Kalman filter (KF) to assess the suitability of accepting the value recommended by KF or retaining the existing value of a pixel. Furthermore, a limit on the number of iterations is imposed to avoid over filtering that leads to shrinkage of pixel value ranges of the channels and loss of spectral signatures. In post processing, the means of the filtered channels are shifted to their original values prior to filtering, to spread the pixel value ranges and regain important spectral signatures. The experiments involve the implementation of KF, extended Kalman filter (EKF), Kalman smoother (KS), extended Kalman smoother (EKS) and moving average filter (MAF) in filtering noisy channels of oil palm hyperspectral data under the same framework. Their performances are compared in terms of execution time, SNR gain, NIQE and SSIM metrics. In the second set of experiments, the performance of the improved KF with a fitness function and mean restoration is compared to those of KF and MAF. The results show that the improved KF outperforms the other two filters in the spectral signature characteristics and pixel value ranges of the denoised channels. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 3837 KB  
Article
RTK-GNSS Increment Prediction with a Complementary “RTK-SeqNet” Network: Exploring Hybridization with State-Space Systems
by Hassan Ali, Malik Muhammad Waqar, Ruihan Ma, Sang Cheol Kim, Yujun Baek, Jongrin Kim and Haksung Lee
Sensors 2025, 25(20), 6349; https://doi.org/10.3390/s25206349 - 14 Oct 2025
Viewed by 375
Abstract
Accurate and reliable localization is crucial for autonomous systems operating in dynamic and semi-structured environments, such as precision agriculture and outdoor robotics. Advances in Global Navigation Satellite System (GNSS) technologies, particularly Differential GPS (DGPS) and Real-Time Kinematic (RTK) positioning, have significantly enhanced position [...] Read more.
Accurate and reliable localization is crucial for autonomous systems operating in dynamic and semi-structured environments, such as precision agriculture and outdoor robotics. Advances in Global Navigation Satellite System (GNSS) technologies, particularly Differential GPS (DGPS) and Real-Time Kinematic (RTK) positioning, have significantly enhanced position estimation precision, achieving centimeter-level accuracy. However, GNSS-based localization continues to encounter inherent limitations due to signal degradation and intermittent data loss, known as GNSS outages. This paper proposes a novel complementary RTK-like position increment prediction model with the purpose of mitigating challenges posed by GNSS outages and RTK signal discontinuities. This model can be integrated with a Dual Extended Kalman Filter (Dual EKF) sensor fusion framework, widely utilized in robotic navigation. The proposed model uses time-synchronized inertial measurement data combined with the velocity inputs to predict GNSS position increments during periods of outages and RTK disengagement, effectively substituting for missing GNSS measurements. The model demonstrates high accuracy, as the total aDTW across 180 s trajectories averages at 1.6 m while the RMSE averages at 3.4 m. The 30 s test shows errors below 30 cm. We leave the actual Dual EKF fusion to future work, and here, we evaluate the standalone deep network. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

23 pages, 11567 KB  
Article
Georeferenced UAV Localization in Mountainous Terrain Under GNSS-Denied Conditions
by Inseop Lee, Chang-Ky Sung, Hyungsub Lee, Seongho Nam, Juhyun Oh, Keunuk Lee and Chansik Park
Drones 2025, 9(10), 709; https://doi.org/10.3390/drones9100709 - 14 Oct 2025
Viewed by 248
Abstract
In Global Navigation Satellite System (GNSS)-denied environments, unmanned aerial vehicles (UAVs) relying on Vision-Based Navigation (VBN) in high-altitude, mountainous terrain face severe challenges due to geometric distortions in aerial imagery. This paper proposes a georeferenced localization framework that integrates orthorectified aerial imagery with [...] Read more.
In Global Navigation Satellite System (GNSS)-denied environments, unmanned aerial vehicles (UAVs) relying on Vision-Based Navigation (VBN) in high-altitude, mountainous terrain face severe challenges due to geometric distortions in aerial imagery. This paper proposes a georeferenced localization framework that integrates orthorectified aerial imagery with Scene Matching (SM) to achieve robust positioning. The method employs a camera projection model combined with Digital Elevation Model (DEM) to orthorectify UAV images, thereby mitigating distortions from central projection and terrain relief. Pre-processing steps enhance consistency with reference orthophoto maps, after which template matching is performed using normalized cross-correlation (NCC). Sensor fusion is achieved through extended Kalman filters (EKFs) incorporating Inertial Navigation System (INS), GNSS (when available), barometric altimeter, and SM outputs. The framework was validated through flight tests with an aircraft over 45 km trajectories at altitudes of 2.5 km and 3.5 km in mountainous terrain. The results demonstrate that orthorectification improves image similarity and significantly reduces localization error, yielding lower 2D RMSE compared to conventional rectification. The proposed approach enhances VBN by mitigating terrain-induced distortions, providing a practical solution for UAV localization in GNSS-denied scenarios. Full article
(This article belongs to the Special Issue Autonomous Drone Navigation in GPS-Denied Environments)
Show Figures

Figure 1

21 pages, 5202 KB  
Article
Robust Underwater Docking Visual Guidance and Positioning Method Based on a Cage-Type Dual-Layer Guiding Light Array
by Ziyue Wang, Xingqun Zhou, Yi Yang, Zhiqiang Hu, Qingbo Wei, Chuanzhi Fan, Quan Zheng, Zhichao Wang and Zhiyu Liao
Sensors 2025, 25(20), 6333; https://doi.org/10.3390/s25206333 - 14 Oct 2025
Viewed by 216
Abstract
Due to the limited and fixed field of view of the onboard camera, the guiding beacons gradually drift out of sight as the AUV approaches the docking station, resulting in unreliable positioning and intermittent data. This paper proposes an underwater autonomous docking visual [...] Read more.
Due to the limited and fixed field of view of the onboard camera, the guiding beacons gradually drift out of sight as the AUV approaches the docking station, resulting in unreliable positioning and intermittent data. This paper proposes an underwater autonomous docking visual localization method based on a cage-type dual-layer guiding light array. To address the gradual loss of beacon visibility during AUV approach, a rationally designed localization scheme employing a cage-type, dual-layer guiding light array is presented. A dual-layer light array localization algorithm is introduced to accommodate varying beacon appearances at different docking stages by dynamically distinguishing between front and rear guiding light arrays. Following layer-wise separation of guiding lights, a robust tag-matching framework is constructed for each layer. Particle swarm optimization (PSO) is employed for high-precision initial tag matching, and a filtering strategy based on distance and angular ratio consistency eliminates unreliable matches. Under extreme conditions with three missing lights or two spurious beacons, the method achieves 90.3% and 99.6% matching success rates, respectively. After applying filtering strategy, error correction using backtracking extended Kalman filter (BTEKF) brings matching success rate to 99.9%. Simulations and underwater experiments demonstrate stable and robust tag matching across all docking phases, with average detection time of 0.112 s, even when handling dual-layer arrays. The proposed method achieves continuous visual guidance-based docking for autonomous AUV recovery. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

28 pages, 916 KB  
Article
Hybrid ISAC-LSTM Architecture for Enhanced Target Tracking in Integrated Sensing and Communication Systems: A Symmetric Dual-Function Framework
by Sümeye Nur Karahan
Symmetry 2025, 17(10), 1725; https://doi.org/10.3390/sym17101725 - 14 Oct 2025
Viewed by 350
Abstract
Target tracking in integrated sensing and communication (ISAC) systems faces critical challenges due to complex interference patterns and dynamic resource allocation between radar sensing and wireless communication functions. Classical tracking algorithms struggle with the non-Gaussian noise characteristics inherent in ISAC environments. This paper [...] Read more.
Target tracking in integrated sensing and communication (ISAC) systems faces critical challenges due to complex interference patterns and dynamic resource allocation between radar sensing and wireless communication functions. Classical tracking algorithms struggle with the non-Gaussian noise characteristics inherent in ISAC environments. This paper addresses these limitations through a novel hybrid ISAC-LSTM architecture that enhances Extended Kalman Filter performance using intelligent machine learning corrections. The approach processes comprehensive feature vectors including baseline EKF states, ISAC-specific interference indicators, and innovation-based statistical occlusion detection. ISAC systems exhibit fundamental symmetry through dual sensing–communication operations sharing identical spectral and hardware resources, requiring balanced resource allocation, where αsensing+αcomm=1. The proposed hybrid architecture preserves this functional symmetry while achieving balanced performance across symmetric dual evaluation scenarios (normal and extreme conditions). Comprehensive evaluation across three realistic deployment scenarios demonstrates substantial performance improvements, achieving 21–24% RMSE reductions over classical methods (3.5–3.6 m vs. 4.6 m) with statistical significance confirmed through paired t-tests and cross-validation. The hybrid system incorporates fail-safe mechanisms ensuring reliable operation when machine learning components encounter errors, addressing critical deployment concerns for practical ISAC applications. Full article
(This article belongs to the Special Issue Symmetry and Wireless Communication Technologies)
Show Figures

Figure 1

26 pages, 10166 KB  
Article
ADG-YOLO: A Lightweight and Efficient Framework for Real-Time UAV Target Detection and Ranging
by Hongyu Wang, Zheng Dang, Mingzhu Cui, Hanqi Shi, Yifeng Qu, Hongyuan Ye, Jingtao Zhao and Duosheng Wu
Drones 2025, 9(10), 707; https://doi.org/10.3390/drones9100707 - 13 Oct 2025
Viewed by 958
Abstract
The rapid evolution of UAV technology has increased the demand for lightweight airborne perception systems. This study introduces ADG-YOLO, an optimized model for real-time target detection and ranging on UAV platforms. Building on YOLOv11n, we integrate C3Ghost modules for efficient feature fusion and [...] Read more.
The rapid evolution of UAV technology has increased the demand for lightweight airborne perception systems. This study introduces ADG-YOLO, an optimized model for real-time target detection and ranging on UAV platforms. Building on YOLOv11n, we integrate C3Ghost modules for efficient feature fusion and ADown layers for detail-preserving downsampling, reducing the model’s parameters to 1.77 M and computation to 5.7 GFLOPs. The Extended Kalman Filter (EKF) tracking improves positional stability in dynamic environments. Monocular ranging is achieved using similarity triangle theory with known target widths. Evaluations on a custom dataset, consisting of 5343 images from three drone types in complex environments, show that ADG-YOLO achieves 98.4% mAP0.5 and 85.2% mAP0.5:0.95 at 27 FPS when deployed on Lubancat4 edge devices. Distance measurement tests indicate an average error of 4.18% in the 0.5–5 m range for the DJI NEO model, and an average error of 2.40% in the 2–50 m range for the DJI 3TD model. These results suggest that the proposed model provides a practical trade-off between detection accuracy and computational efficiency for resource-constrained UAV applications. Full article
Show Figures

Figure 1

21 pages, 8957 KB  
Article
Autonomous Navigation of Unmanned Ground Vehicles Based on Micro-Shell Resonator Gyroscope Rotary INS Aided by LDV
by Hangbin Cao, Yuxuan Wu, Longkang Chang, Yunlong Kong, Hongfu Sun, Wenqi Wu, Jiangkun Sun, Yongmeng Zhang, Xiang Xi and Tongqiao Miao
Drones 2025, 9(10), 706; https://doi.org/10.3390/drones9100706 - 13 Oct 2025
Viewed by 213
Abstract
Micro-Shell Resonator Gyroscopes have obvious SWaP (Size, Weight and Power) advantages and applicable accuracy for the autonomous navigation of Unmanned Ground Vehicles (UGVs), especially under GNSS-denied environments. When the Micro-Shell Resonator Gyroscope Rotary Inertial Navigation System (MSRG–RINS) operates in the whole-angle mode, its [...] Read more.
Micro-Shell Resonator Gyroscopes have obvious SWaP (Size, Weight and Power) advantages and applicable accuracy for the autonomous navigation of Unmanned Ground Vehicles (UGVs), especially under GNSS-denied environments. When the Micro-Shell Resonator Gyroscope Rotary Inertial Navigation System (MSRG–RINS) operates in the whole-angle mode, its bias varies as an even-harmonic function of the pattern angle, which leads to difficulty in estimating and compensating the bias based on the MSRG in the process of attitude measurement. In this paper, an attitude measurement method based on virtual rotation self-calibration and rotary modulation is proposed for the MSRG–RINS to address this problem. The method utilizes the characteristics of the two operating modes of the MSRG, the force-rebalanced mode and whole-angle mode, to perform virtual rotation self-calibration, thereby eliminating the characteristic bias of the MSRG. In addition, the reciprocating rotary modulation method is used to suppress the residual bias of the MSRG. Furthermore, the magnetometer-aided initial alignment of the MSRG–RINS is carried out and the state-transformation extended Kalman filter is adopted to solve the large misalignment-angle problem under magnetometer assistance so as to enhance the rapidity and accuracy of initial attitude acquisition. Results from real-world experiments substantiated that the proposed method can effectively suppress the influence of MSRG’s bias on attitude measurement, thereby achieving high-precision autonomous navigation in GNSS-denied environments. In the 1 h, 3.7 km, long-range in-vehicle autonomous navigation experiments, the MSRG–RINS, integrated with a Laser Doppler Velocimetry (LDV), attained a heading accuracy of 0.35° (RMS), a horizontal positioning error of 4.9 m (RMS), and a distance-traveled accuracy of 0.24% D. Full article
Show Figures

Figure 1

22 pages, 15904 KB  
Article
Multi-Timescale Estimation of SOE and SOH for Lithium-Ion Batteries with a Fractional-Order Model and Multi-Innovation Filter Framework
by Jing Yu and Fang Yao
Batteries 2025, 11(10), 372; https://doi.org/10.3390/batteries11100372 - 10 Oct 2025
Viewed by 272
Abstract
Based on a fractional-order equivalent circuit model, this paper proposes a multi-timescale collaborative State of Energy (SOE) and State of Health (SOH) estimation method (FOASTFREKF-EKF) for lithium batteries to mitigate the influence of model inaccuracies and battery aging on SOE estimation. Initially, a [...] Read more.
Based on a fractional-order equivalent circuit model, this paper proposes a multi-timescale collaborative State of Energy (SOE) and State of Health (SOH) estimation method (FOASTFREKF-EKF) for lithium batteries to mitigate the influence of model inaccuracies and battery aging on SOE estimation. Initially, a fractional-order equivalent circuit model is built, and its parameters are identified offline using the Starfish Optimization Algorithm (SFOA) to establish a high-fidelity battery model. An H∞ filter is then integrated to improve the algorithm’s resilience to external disturbances. Furthermore, an adaptive noise covariance adjustment mechanism is employed to reduce the effect of operational noise, and a time-varying attenuation factor is introduced to improve the algorithm’s tracking and convergence capabilities during abrupt system-state changes. A joint estimator is subsequently constructed, which uses an Extended Kalman Filter (EKF) for the online determination of battery parameters and SOH assessment. This approach minimizes the effect of varying model parameters on SOE accuracy while reducing computational load through multi-timescale methods. Experimental validation under diverse operating conditions shows that the proposed algorithm achieves root mean square errors (RMSE) of less than 0.21% for SOE and 0.31% for SOH. These findings demonstrate that the method provides high accuracy and reliability under complex operating conditions. Full article
(This article belongs to the Special Issue Control, Modelling, and Management of Batteries)
Show Figures

Figure 1

16 pages, 3235 KB  
Article
Delay-Compensated Lane-Coordinate Vehicle State Estimation Using Low-Cost Sensors
by Minsu Kim, Weonmo Kang and Changsun Ahn
Sensors 2025, 25(19), 6251; https://doi.org/10.3390/s25196251 - 9 Oct 2025
Viewed by 405
Abstract
Accurate vehicle state estimation in a lane coordinate system is essential for safe and reliable operation of Advanced Driver Assistance Systems (ADASs) and autonomous driving. However, achieving robust lane-based state estimation using only low-cost sensors, such as a camera, an IMU, and a [...] Read more.
Accurate vehicle state estimation in a lane coordinate system is essential for safe and reliable operation of Advanced Driver Assistance Systems (ADASs) and autonomous driving. However, achieving robust lane-based state estimation using only low-cost sensors, such as a camera, an IMU, and a steering angle sensor, remains challenging due to the complexity of vehicle dynamics and the inherent signal delays in vision systems. This paper presents a lane-coordinate-based vehicle state estimator that addresses these challenges by combining a vehicle dynamics-based bicycle model with an Extended Kalman Filter (EKF) and a signal delay compensation algorithm. The estimator performs real-time estimation of lateral position, lateral velocity, and heading angle, including the unmeasurable lateral velocity about the lane, by predicting the vehicle’s state evolution during camera processing delays. A computationally efficient camera processing pipeline, incorporating lane segmentation via a pre-trained network and lane-based state extraction, is implemented to support practical applications. Validation using real vehicle driving data on straight and curved roads demonstrates that the proposed estimator provides continuous, high-accuracy, and delay-compensated lane-coordinate-based vehicle states. Compared to conventional camera-only methods and estimators without delay compensation, the proposed approach significantly reduces estimation errors and phase lag, enabling the reliable and real-time acquisition of vehicle-state information critical for ADAS and autonomous driving applications. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Automotive Engineering)
Show Figures

Figure 1

23 pages, 2257 KB  
Article
A Deviation Correction Technique Based on Particle Filtering Combined with a Dung Beetle Optimizer with the Improved Model Predictive Control for Vertical Drilling
by Abobaker Albabo, Guojun Wen, Siyi Cheng, Asaad Mustafa and Wangde Qiu
Appl. Sci. 2025, 15(19), 10773; https://doi.org/10.3390/app151910773 - 7 Oct 2025
Viewed by 231
Abstract
The following study will look at the issue of the dealignment of the trajectory when drilling vertically (a fact), where measurement and process errors are still the primary source of error that can easily lead to the inclination angle having overshot the desired [...] Read more.
The following study will look at the issue of the dealignment of the trajectory when drilling vertically (a fact), where measurement and process errors are still the primary source of error that can easily lead to the inclination angle having overshot the desired bounds. The current methods, such as the Extended Kalman Filters (EKFs), can incorrectly estimate non-Gaussian noises, unlike the classical particle filters (PFs), which are unable to handle significant measurement errors appropriately. We will solve these problems by creating a new deviation correction mechanism using a dung beetle optimizer particle filter (DBOPF) with a superior Model Predictive Controller (MPC). The DBOPF makes use of the prior knowledge and optimization process to enhance the precision of state estimation and is superior in noise reduction to traditional filters. The improved MPC introduces flexible constraints and weight adjustments in the form of a sigmoid function that enables solutions when the inclination angle exceeds the threshold, and priorities are given to control objectives dynamically. The simulation outcomes indicate that the approach is more effective in the correction of the trajectory and control of inclination angle than the conventional MPC and other optimization-based filters, such as the PSO and SSA, in the presence of the noisy drilling environment. Full article
Show Figures

Figure 1

21 pages, 720 KB  
Article
A Bilevel Optimization Framework for Adversarial Control of Gas Pipeline Operations
by Tejaswini Sanjay Katale, Lu Gao, Yunpeng Zhang and Alaa Senouci
Actuators 2025, 14(10), 480; https://doi.org/10.3390/act14100480 - 1 Oct 2025
Viewed by 329
Abstract
Cyberattacks on pipeline operational technology systems pose growing risks to energy infrastructure. This study develops a physics-informed simulation and optimization framework for analyzing cyber–physical threats in petroleum pipeline networks. The model integrates networked hydraulic dynamics, SCADA-based state estimation, model predictive control (MPC), and [...] Read more.
Cyberattacks on pipeline operational technology systems pose growing risks to energy infrastructure. This study develops a physics-informed simulation and optimization framework for analyzing cyber–physical threats in petroleum pipeline networks. The model integrates networked hydraulic dynamics, SCADA-based state estimation, model predictive control (MPC), and a bilevel formulation for stealthy false-data injection (FDI) attacks. Pipeline flow and pressure dynamics are modeled on a directed graph using nodal pressure evolution and edge-based Weymouth-type relations, including control-aware equipment such as valves and compressors. An extended Kalman filter estimates the full network state from partial SCADA telemetry. The controller computes pressure-safe control inputs via MPC under actuator constraints and forecasted demands. Adversarial manipulation is formalized as a bilevel optimization problem where an attacker perturbs sensor data to degrade throughput while remaining undetected by bad-data detectors. This attack–control interaction is solved via Karush–Kuhn–Tucker (KKT) reformulation, which results in a tractable mixed-integer quadratic program. Test gas pipeline case studies demonstrate the covert reduction in service delivery under attack. Results show that undetectable attacks can cause sustained throughput loss with minimal instantaneous deviation. This reveals the need for integrated detection and control strategies in cyber–physical infrastructure. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

31 pages, 4392 KB  
Article
Grid Search and Genetic Algorithm Optimization of Neural Networks for Automotive Radar Object Classification
by Atila Gabriel Ham, Corina Nafornita, Vladimir Cristian Vesa, George Copacean, Voislava Denisa Davidovici and Ioan Nafornita
Sensors 2025, 25(19), 6017; https://doi.org/10.3390/s25196017 - 30 Sep 2025
Viewed by 367
Abstract
This paper proposes and evaluates two neural network-based approaches for object classification in automotive radar systems, comparing the performance impact of grid search and genetic algorithm (GA) hyperparameter optimization strategies. The task involves classifying cars, pedestrians, and cyclists using radar-derived features. The grid [...] Read more.
This paper proposes and evaluates two neural network-based approaches for object classification in automotive radar systems, comparing the performance impact of grid search and genetic algorithm (GA) hyperparameter optimization strategies. The task involves classifying cars, pedestrians, and cyclists using radar-derived features. The grid search–optimized model employs a compact architecture with two hidden layers and 10 neurons per layer, leveraging kinematic correlations and motion descriptors to achieve mean accuracies of 90.06% (validation) and 90.00% (test). In contrast, the GA-optimized model adopts a deeper architecture with nine hidden layers and 30 neurons per layer, integrating an expanded feature set that includes object dimensions, signal-to-noise ratio (SNR), radar cross-section (RCS), and Kalman filter–based motion descriptors, resulting in substantially higher performance at approximately 97.40% mean accuracy on both validation and test datasets. Principal Component Analysis (PCA) and SHapley Additive exPlanations (SHAP) highlight the enhanced discriminative power of the new set of features, while parallelized GA execution enables efficient exploration of a broader hyperparameter space. Although currently optimized for urban traffic scenarios, the proposed approach can be extended to highway and extra-urban environments through targeted dataset expansion and developing additional features that are less sensitive to object kinematics, thereby improving robustness across diverse motion patterns and operational contexts. Full article
Show Figures

Figure 1

22 pages, 17573 KB  
Article
Robust UAV Path Planning Using RSS in GPS-Denied and Dense Environments Based on Deep Reinforcement Learning
by Kyounghun Kim, Joonho Seon, Jinwook Kim, Jeongho Kim, Youngghyu Sun, Seongwoo Lee, Soohyun Kim, Byungsun Hwang, Mingyu Lee and Jinyoung Kim
Electronics 2025, 14(19), 3844; https://doi.org/10.3390/electronics14193844 - 28 Sep 2025
Viewed by 410
Abstract
A wide range of research has been conducted on path planning and collision avoidance to enhance the operational efficiency of unmanned aerial vehicles (UAVs). The existing works have mainly assumed an environment with static obstacles and global positioning system (GPS) signals. However, practical [...] Read more.
A wide range of research has been conducted on path planning and collision avoidance to enhance the operational efficiency of unmanned aerial vehicles (UAVs). The existing works have mainly assumed an environment with static obstacles and global positioning system (GPS) signals. However, practical environments have often been involved with dynamic obstacles, dense areas with numerous obstacles in confined spaces, and blocked GPS signals. In order to consider these issues for practical implementation, a deep reinforcement learning (DRL)-based method is proposed for path planning and collision avoidance in GPS-denied and dense environments. In the proposed method, robust path planning and collision avoidance can be conducted by using the received signal strength (RSS) value with the extended Kalman filter (EKF). Additionally, the attitude of the UAV is adopted as part of the action space to enable the generation of smooth trajectories. Performance was evaluated under single- and multi-target scenarios with numerous dynamic obstacles. Simulation results demonstrated that the proposed method can generate smoother trajectories and shorter path lengths while consistently maintaining a lower collision rate compared to conventional methods. Full article
Show Figures

Figure 1

Back to TopTop