RTK-GNSS Increment Prediction with a Complementary “RTK-SeqNet” Network: Exploring Hybridization with State-Space Systems
Abstract
1. Introduction
2. Related Works
Choice of GRU over LSTM
3. Data Construction and Proposed Method
3.1. Data Collection and Processing
3.2. Proposed RTK-SeqNet Architecture
3.3. Optimization and Loss Functions
3.3.1. GNSS Loss
3.3.2. Directional Loss
3.3.3. Vector Loss
4. Experiments and Results
4.1. Vector Direction Progression
4.2. Model Performance
Algorithm 1. Trajectory Update and Integration |
1: 2: from last iteration 3: Append placeholder to 4: for each pred in predictions do 5: do 6: try 7: |
8: 9: except Index Error do 10: 11: break 12: 13: end for |
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teunissen, P.J.G.; Kleusberg, A. GPS for Geodesy; Springer Science & Business Media: Berlin, Germany, 2012; pp. 477–478. [Google Scholar]
- Spilker, J.S., Jr.; Axelrad, P.; Parkinson, B.W.; Enge, P. Global Positioning System: Theory Applications Volume, I; American Institute of Aeronautics and Astronautics: Washington, DC, USA, 1996. [Google Scholar]
- Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems; Artech House: Norwood, MA, USA, 2013; pp. 1–824. [Google Scholar]
- Moore, T.; Stouch, D. A generalized extended kalman filter implementation for the robot operating system. Intelligent Autonomous Systems 13. In Proceedings of the 13th International Conference IAS-13; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 335–348. [Google Scholar]
- Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In arXiv; 2014. [Google Scholar] [CrossRef]
- Larsen, W.E.; Nielsen, G.A.; Tyler, D.A. Tyler. Precision navigation with GPS. Comput. Electron. Agric. 1994, 11, 85–95. [Google Scholar] [CrossRef]
- Anneveld, J.C. Mammoth vessels and coriolis force. J. Navig. 1971, 24, 50–55. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [PubMed]
- Sepp, H.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Tang, R.; Bao, J.; Lu, J.; Zhang, Z. A real-time trajectory prediction method of small-scale quadrotors based on GPS data and neural network. Sensors 2020, 20, 7061. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xu, L.; Yan, X.; Chang, N.; Wan, Q.; Wu, Y. A Tractor Work Position Prediction Method Based on CNN-BiLSTM Under GNSS Signal Denial. World Electr. Veh. J. 2024, 16, 11. [Google Scholar]
- Herath, S.; Yan, H.; Furukawa, Y. RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark, Evaluations, & New Methods. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–1 August 2020; pp. 3146–3152. [Google Scholar]
- Cao, Y.; Bai, H.; Jin, K.; Zou, G. An GNSS/INS integrated navigation algorithm based on PSO-LSTM in satellite rejection. Electronics 2023, 12, 2905. [Google Scholar] [CrossRef]
- Lin, C.; Lin, J.; Sui, Z.; Qu, X.; Wang, R.; Sheng, K.; Zhang, B. An End-to-End Learning-Based Multi-Sensor Fusion for Autonomous Vehicle Localization. arXiv 2025, arXiv:2503.05088. [Google Scholar]
- Liu, F.; Zhao, H.; Chen, W. A Hybrid Algorithm of LSTM and Factor Graph for Improving Combined GNSS/INS Positioning Accuracy during GNSS Interruptions. Sensors 2024, 24, 5605. [Google Scholar] [CrossRef] [PubMed]
- Quigley, M.; Gerkey, B.; Smart, W.D. Programming Robots with ROS: A Practical Introduction to the Robot Operating System; O’Reilly Media: Sebastopol, CA, USA, 2015. [Google Scholar]
- Markov, A. Extension of the limit theorems of probability theory to a sum of variables connected in a chain. Dynam. Probabilist. Syst. 1971, 1, 552. [Google Scholar]
- Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New York, NY, USA, 1992; pp. 492–518. [Google Scholar]
- Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. In IEEE Transactions on Acoustics, Speech, and Signal Processing; IEEE: New York, NY, USA, 1978; Volume 26, pp. 43–49. [Google Scholar]
- Levinson, J.; Askeland, J.; Becker, J.; Dolson, J.; Held, D.; Kammel, S.; Kolter, J.Z.; Langer, D.; Pink, O.; Pratt, V.; et al. Towards fully autonomous driving: Systems and algorithms. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 163–168. [Google Scholar]
- Mahony, R.; Hamel, T.; Pflimlin, J.-M. Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control. 2008, 53, 1203–1218. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Grift, T.E. Dual Extended Kalman Filter for Robust Localization of Agricultural Vehicles in GNSS-Challenged Fields. Int. J. Adv. Robot. Syst. 2019, 16, 5. [Google Scholar]
Gate | Role (LSTM) | Role (GRU) |
---|---|---|
Input Gate | Controls how much information flows into the cell state | (Handled by the update gate in GRU) |
Forget Gate | Controls how much information is discarded from the cell state | (Also handled by the update gate in GRU) |
Output Gate | Controls how much of the cell state is exposed as output | (Not present in GRU) |
Update Gate | (Not present in LSTM) | Controls both input and memory retention |
Reset Gate | (Not present in LSTM) | Decides how much of the previous state to keep when updating |
Recurrent Unit | Parameters | Timing |
---|---|---|
Bi-GRU | 810,435 | 8.545 milliseconds |
Bi-LSTM | 1,008,067 | 11.14 milliseconds |
Sensor | Sensitivity (Temp Coefficient) | Accuracy/ Stability |
---|---|---|
Rate Gyroscope | ±0.04%/°C | 20° drift-s−1 |
Accelerometer | ±0.02%/°C | ±0.75 mg/°C (X,Y), ±1.5 mg/°C (Z) |
Heading | < | Static pitch/roll ± 1°, dynamic ± 3°; static yaw ± 3°, dynamic ± 5° |
GNSS (u-blox ZED-F9P) | 0.01 m | - |
Hyper Parameters | Configuration |
---|---|
Epoch | 350 |
Optimizer | ADAM |
Learning Rate | |
Weight Decay | |
Sequence Length | 64 |
Anchors | 32 |
Trajectories (180 s) | Average DTW | RMSE |
---|---|---|
0–180 s | 2.5953 m | 6.5930 m |
15–195 s | 1.2809 m | 3.3427 m |
30–210 s | 1.5127 m | 5.3223 m |
50–230 s | 1.4278 m | 1.4995 m |
80–260 s | 1.0866 m | 1.3645 m |
120–300 s | 1.6238 m | 2.2825 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, H.; Waqar, M.M.; Ma, R.; Kim, S.C.; Baek, Y.; Kim, J.; Lee, H. RTK-GNSS Increment Prediction with a Complementary “RTK-SeqNet” Network: Exploring Hybridization with State-Space Systems. Sensors 2025, 25, 6349. https://doi.org/10.3390/s25206349
Ali H, Waqar MM, Ma R, Kim SC, Baek Y, Kim J, Lee H. RTK-GNSS Increment Prediction with a Complementary “RTK-SeqNet” Network: Exploring Hybridization with State-Space Systems. Sensors. 2025; 25(20):6349. https://doi.org/10.3390/s25206349
Chicago/Turabian StyleAli, Hassan, Malik Muhammad Waqar, Ruihan Ma, Sang Cheol Kim, Yujun Baek, Jongrin Kim, and Haksung Lee. 2025. "RTK-GNSS Increment Prediction with a Complementary “RTK-SeqNet” Network: Exploring Hybridization with State-Space Systems" Sensors 25, no. 20: 6349. https://doi.org/10.3390/s25206349
APA StyleAli, H., Waqar, M. M., Ma, R., Kim, S. C., Baek, Y., Kim, J., & Lee, H. (2025). RTK-GNSS Increment Prediction with a Complementary “RTK-SeqNet” Network: Exploring Hybridization with State-Space Systems. Sensors, 25(20), 6349. https://doi.org/10.3390/s25206349